le cnam

Master Structural Mechanics and Coupled Systems

Applied Mathematics

Student presentation 5 (course 10)

- Solving a linear system by a minimization process

Let $n \geq 1$ an integer and A a real symmetric positive definite matrix of order n. We introduce also a given vector $b \in \mathbb{R}^{n}$ and the functional J defined from \mathbb{R}^{n} to the set of real numbers by the relation $J(x)=\frac{1}{2}(x, A x)-(b, x)$, with $\left.x, y\right) \equiv \sum_{j} x_{j} y_{j}$ the scalar product of two vectors in \mathbb{R}^{n}. We admit that there exists some $\bar{x} \in \mathbb{R}^{n}$ such that for all $x \in \mathbb{R}^{n}, J(x) \geq J(\bar{x})$.
a) Prove that the functional J is differentiable in \mathbb{R}^{n}.
b) What is the action $\mathrm{d} J(x) . h$ of the differential of the functional J on a arbitrary vector h ?
c) Show that the point of minimum introduced previously satisfy to the relation $\mathrm{d} J(\bar{x}) \cdot h=0$ for every vector $h \in \mathbb{R}^{n}$.
d) Explicit a simple equation satisfied by the vector \bar{x}.
e) Solve completely the following example with $n=2, A=\left(\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right)$ and $b=\binom{3}{4}$.

