le c**nam**

Master Structural Mechanics and Coupled Systems

Applied Mathematics

Student presentation 5 (course 10)

• Solving a linear system by a minimization process

Let $n \ge 1$ an integer and A a real symmetric positive definite matrix of order n. We introduce also a given vector $b \in \mathbb{R}^n$ and the functional J defined from \mathbb{R}^n to the set of real numbers by the relation $J(x) = \frac{1}{2}(x, Ax) - (b, x)$, with $x, y) \equiv \sum_j x_j y_j$ the scalar product of two vectors in \mathbb{R}^n . We admit that there exists some $\bar{x} \in \mathbb{R}^n$ such that for all $x \in \mathbb{R}^n$, $J(x) \ge J(\bar{x})$.

- a) Prove that the functional J is differentiable in \mathbb{R}^n .
- b) What is the action dJ(x).h of the differential of the functional J on a arbitrary vector h?
- c) Show that the point of minimum introduced previously satisfy to the relation $dJ(\bar{x}).h = 0$ for every vector $h \in \mathbb{R}^n$.

d) Explicit a simple equation satisfied by the vector \bar{x} .

e) Solve completely the following example with
$$n = 2$$
, $A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$ and $b = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$.