le cnam

Master Structural Mechanics and Coupled Systems

Applied Mathematics

Student presentation 3 (course 08)

- Generalized eigenvalues and eigenvectors

Let $n \geq 1$ an integer, K and M two a real symmetric positive definite matrices of order n. We consider the following Generalized eigenvalue problem: find $x \neq 0$ and a scalar λ such that $K x=\lambda M x$.
a) With the result of the previous exercice, prove that there exists a real symmetric positive definite matrix $M^{1 / 2}$ of order n such that $M=M^{1 / 2} \cdot M^{1 / 2}$.
b) Transform the problem of finding $x \neq 0$ and a scalar λ such that $K x=\lambda M x$ into a classical spectrum problem associated to a real symmetric positive definite matrix A.
c) Explicit the matrix A in terms of the matrices introduced previously.
d) What are the orthogonality relations between the eigenvectors?
e) Solve the generalized eigenvalues problem when $K=\left(\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right)$ and $M=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$.

