le cnam

Master Structural Mechanics and Coupled Systems

Applied Mathematics

Student presentation 1 (course 06)

- Power method

Let $n \geq 1$ an integer and A a real symmetric positive definite matrix of order n. We consider its eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$. We suppose that the greatest eigenvalue λ_{1} is simple: $\lambda_{1}>\lambda_{j}$ for all $j \geq 2$. We denote by r_{1} a unitary eigenvector associated to this biggest eigenvalue λ_{1}. We consider the sequence of vectors $x_{k} \in \mathbb{R}^{n}$ such that $\left(x_{0}, r_{1}\right)>0$ and x_{k+1} is obtained by the action of the matrix $A: x_{k+1}=A x_{k}$.
a) Prove that for each $k \in \mathbb{N}$, the vector x_{k} is not equal to zero.

We set $y_{k}=\frac{1}{\left\|x_{k}\right\|} x_{k}$
b) Prove that the family of vectors y_{k} converges towards the vector r_{1}.
c) Prove that the family of numbers $\left(y_{k}, A y_{k}\right)$ converges towards the eigenvalue λ_{1}.

