le c**nam**

Master Structural Mechanics and Coupled Systems

Applied Mathematics

Student presentation 3 (course 09)

• Power method

Let $n \ge 1$ an integer and A a real symmetric positive definite matrix of order n. We consider its eigenvalues $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$. We suppose that the greatest eigenvalue λ_1 is simple: $\lambda_1 > \lambda_j$ for all $j \ge 2$. We denote by r_1 a unitary eigenvector associated to this biggest eigenvalue λ_1 . We consider the sequence of vectors $x_k \in \mathbb{R}^n$ such that $(x_0, r_1) > 0$ and x_{k+1} is obtained by the action of the matrix A: $x_{k+1} = Ax_k$.

a) Prove that for each $k \in \mathbb{N}$, the vector x_k is not equal to zero.

We set $y_k = \frac{1}{\|x_k\|} x_k$

- b) Prove that the family of vectors y_k converges towards the vector r_1 .
- c) Prove that the family of numbers (y_k, Ay_k) converges towards the eigenvalue λ_1 .