le c**nam**

Master Structural Mechanics and Coupled Systems

Applied Mathematics

Lecture 13 Surface integral

• Local parameterization

We give ourselves four real numbers a < b, c < d and a space of parameters $(u, v) \in \mathbb{R}^2$ such that $a \le u \le b$ and $c \le v \le d$. We define the parametrized sheet Σ in space \mathbb{R}^3 by a continuously differentiable function Φ fom the rectangle $\widehat{\Sigma} \equiv [a, b] \times [c, d]$ and taking its values in \mathbb{R}^3 . This application Φ is called the "local map". The parameterized sheet Σ is defined by the relation $\Sigma = \Phi(\widehat{\Sigma})$. A point M(u, v) of the parametric sheet has coordinates x, y et z that are regular functions of the parameters u and v: x = X(u, v), y = Y(u, v) et z = Z(u, v).

The fundamental example is a plane parallelogram. The equation of the plane is for example of the form $z = \alpha x + \beta y + \gamma$. For $a \le u \le b$ and $c \le v \le d$, we set x = u, y = v and $z = \alpha u + \beta v + \gamma$.

A second example concerns a surface with equation z = f(x, y). It is similar to the previous case except that the affine function $f(x, y) = \alpha x + \beta y + \gamma$ is replaced by a function f of two variables while remaining fairly regular.

The next example is the sphere centered at the origin O and of radius R > 0. We use the spherical coordinates of the three-dimensional space. We project the current point M of the sphere onto the xOy plane at a point m. We have: $z = R \cos \theta$ and $Om = R \sin \theta$. It comes then $x = Om \cos \varphi = R \sin \theta \cos \varphi$ and $y = Om \sin \varphi = R \sin \theta \sin \varphi$.

• Tangent plane

We suppose the function Φ différentiable at the point (u, v):

 $\Phi(u + \delta u, v + \delta v) = \Phi(u, v) + \frac{\partial \Phi}{\partial u}(u, v) \,\delta u + \frac{\partial \Phi}{\partial v}(u, v) \,\delta v + \|(u, v)\| \,\varepsilon(\delta u, \delta v)$. The two tangent vectors $\frac{\partial \Phi}{\partial u}(u, v)$ and $\frac{\partial \Phi}{\partial v}(u, v)$ are two vectors of space \mathbb{R}^3 . We suppose that the family $(\frac{\partial \Phi}{\partial u}, \frac{\partial \Phi}{\partial v})$ is non-degenerate and the point $M = \Phi(u, v)$ is a "regular point" of the surface. The tangent plane to the parametrized sheet Σ at the point $M = \Phi(u, v)$ is the affine plane that passes through the point M(u, v) with an associated vector plane that has as its basis the family of two vectors $\frac{\partial \Phi}{\partial u}(u, v)$ and $\frac{\partial \Phi}{\partial v}(u, v)$.

In the case of a surface of the form z = f(x, y), the two parameters are the abscissa x and the the ordinate y. We have $\frac{\partial \Phi}{\partial x} = (1, 0, \frac{\partial f}{\partial x})^t$ and $\frac{\partial \Phi}{\partial y} = (0, 1, \frac{\partial f}{\partial y})^t$. They always form a free family whatever the function f.

FRANÇOIS DUBOIS

For a sphere of radius R > 0 and centered at the origin, we introduce the spherical coordinates, so the two polar angles θ and φ such that $x = R \sin \theta \cos \varphi$, $y = R \sin \theta \sin \varphi$ and $z = R \cos \theta$. The moving reference frame $(e_r, e_\theta, e_\varphi)$ is defined by the relations

 $e_r(\theta, \varphi) = \sin \theta (\cos \varphi \, e_1 + \sin \varphi \, e_2) + \cos \theta \, e_3, \, e_\theta(\theta, \varphi) = \cos \theta (\cos \varphi \, e_1 + \sin \varphi \, e_2) - \sin \theta \, e_3$ and $e_\varphi(\varphi) = -\sin \varphi \, e_1 + \cos \varphi \, e_2$. In the case of the sphere of radius *R*, we have $dM = R(e_\theta \, d\theta + e_\varphi \, \sin \theta \, d\varphi)$; we deduce $\frac{\partial M}{\partial \theta} = R e_\theta$ and $\frac{\partial M}{\partial \varphi} = R \sin \theta \, e_\varphi$.

• Vector product

Let *u* and *v* be two vectors in an euclidian space of dimension 3. The vector product $u \times v$ satisfies the following properties.

(i) The vector product $u \times v$ is orthogonal to the vectors u and v: $(u \times v, u) = (u \times v, v) = 0$. (ii) If the vectors u and v are collinear, the vector product $u \times v$ is zero.

(iii) If P(u, v) is the parallelogram generated by the vectors u and v:

 $P(u, v) = \{x \in \mathbb{R}^3, \exists \theta, \xi, 0 \le \theta \le 1, 0 \le \xi \le 1, x = \theta u + \xi v\}$, then the area of this parallelogram is equal to the norm of the vector product $u \times v$: $|P(u, v)| = ||u \times v||$. Moreover, $||u \times v|| \le ||u|| ||v||$.

(iv) We give ourselves a direct orthonormal basis (e_1, e_2, e_3) and the components of the two vectors u and v: $u = \sum_{j=1}^{3} u_j e_j$ and $v = \sum_{k=1}^{3} v_k e_k$. The vector product $u \times v$ is expressed in the basis (e_1, e_2, e_3) via the relation: $u \times v = \begin{vmatrix} u_1 & v_1 \\ u_2 & v_2 \end{vmatrix} \begin{vmatrix} e_3 + \begin{vmatrix} u_2 & v_2 \\ u_3 & v_3 \end{vmatrix} \begin{vmatrix} e_1 + \begin{vmatrix} u_3 & v_3 \\ u_1 & v_1 \end{vmatrix} \begin{vmatrix} e_2 \\ e_3 + \begin{vmatrix} u_2 & v_2 \\ u_3 & v_3 \end{vmatrix} \end{vmatrix} e_1 + \begin{vmatrix} u_3 & v_3 \\ u_1 & v_1 \end{vmatrix} e_2$.

(v) It is possible to prove that $w = u \times v$ is a biliear function of the two vectors u and v: $(\alpha u + \beta u') \times v = \alpha (u \times v) + \beta (u' \times v)$ and $u \times (\alpha v + \beta v') = \alpha (u \times v) + \beta (u \times v')$, whatever the choice of vectors u, u', v, v' and whatever the choice of numbers α and β .

(vi) If $u \times v \neq 0$, the family $(u, v, u \times v)$ is a direct basis of \mathbb{R}^3 : the change matrix of basis between a direct orthonormal basis (e_1, e_2, e_3) and the family $(u, v, u \times v)$ is strictly positive. (vii) Be careful, the vector product is not associative: in general, $u \times (v \times w) \neq (u \times v) \times w$.

Normal vector

We assume that the point $M = \Phi(u, v)$ is a regular point of the surface, *i.e.* that the family $(\frac{\partial \Phi}{\partial u}(u, v), \frac{\partial \Phi}{\partial v}(u, v))$ is free. Then the vector product $\frac{\partial \Phi}{\partial u}(u, v) \times \frac{\partial \Phi}{\partial v}(u, v)$ is not zero. The norm $\| \frac{\partial \Phi}{\partial u}(u, v) \times \frac{\partial \Phi}{\partial v}(u, v) \|$ of this vector product is equal to the surface of the parallelogram constructed with the two tangent vectors $\frac{\partial \Phi}{\partial u}(u, v)$ and $\frac{\partial \Phi}{\partial v}(u, v)$. We define the normal vector n(u, v) as the unit vector constructed from this vector product:

$$n(u, v) = \frac{1}{\|\frac{\partial \Phi}{\partial u}(u, v) \times \frac{\partial \Phi}{\partial v}(u, v)\|} \frac{\partial \Phi}{\partial u}(u, v) \times \frac{\partial \Phi}{\partial v}(u, v)$$

It is a vector orthogonal to the tangent plane. Hence the name "normal" or "normal vector". For a surface of the form z = f(x, y), we have $\frac{\partial \Phi}{\partial x} \times \frac{\partial \Phi}{\partial y} = (-\frac{\partial f}{\partial x}, -\frac{\partial f}{\partial y}, 1)^{t}$ and $n(x, y) = \frac{1}{\sqrt{1 + (\frac{\partial \Phi}{\partial x})^2 + (\frac{\partial f}{\partial y})^2}} (-\frac{\partial f}{\partial x}, -\frac{\partial f}{\partial y}, 1)^{t}$.

For the sphere of radius *R*, we have the relation $\frac{\partial M}{\partial \theta} \times \frac{\partial M}{\partial \varphi} = R^2 \sin \theta \, e_r$. We deduce $\| \frac{\partial M}{\partial \theta} \times \frac{\partial M}{\partial \varphi} \| = R^2 \sin \theta$ and $n(\theta, \varphi) = e_r(\theta, \varphi)$.

• Scaled surface

To approximate a curve Γ , we give ourselves points on the curve and we approach the curve by the sequence of strings stretched between a point and its neighbor. Through two different points

APPLIED MATHEMATICS

there always passes one and only one line segment. Thus we obtain a continuous approximation of the curve Γ .

To approximate a surface, it is more delicate. Indeed, we give ourselves an integer $n \ge 1$ and we discretize first the rectangle $[a, b] \times [c, d]$ in the parameter space with small rectangles of the type $[a+ih, a+(i+1)h] \times [c+jk, c+(j+1)k]$ with $h = \frac{b-a}{n}$ and $k = \frac{b-a}{n}$. The image by the local map Φ is a curvilinear quadrangle whose four corners we denote by

$$M_{ij} = \Phi(a+ih, c+jk), M_{i+1,j} = \Phi(a+(i+1)h, c+jk),$$

 $M_{i+1,j+1} = \Phi(a + (i+1)h, c + (j+1)k)$ and $M_{i,j+1} = \Phi(a+ih, c + (j+1)k)$. These four points are close enough if *n* is large enough belong to the surface Σ but are not coplanar in general. We propose to approximate the surface quadrilateral

 $Q_{ij} = \Phi([a+ih, a+(i+1)h] \times [c+jk, c+(j+1)k])$ by a plane parallelogram $\widetilde{Q_{ij}}$ localized on the tangent plane to the surface Σ at the point M_{ij} . Precisely $\widetilde{Q_{ij}}$ is the parallelogram passing through the point M_{ij} and directed by two tangent vectors at the point M_{ij} , *i.e.* $h \frac{\partial \Phi}{\partial u}(a+ih, c+jk)$ and $k \frac{\partial \Phi}{\partial v}(a+ih, c+jk)$. We have

$$\begin{split} &h \frac{\partial \Phi}{\partial u}(a+ih,c+jk) \text{ and } k \frac{\partial \Phi}{\partial v}(a+ih,c+jk). \text{ We have} \\ &\widetilde{Q}_{ij} = M_{ij} + \{\xi h \frac{\partial \Phi}{\partial u}(a+ih,c+jk) + \eta k \frac{\partial \Phi}{\partial v}(a+ih,c+jk), 0 \le \xi, \eta \le 1\}. \text{ The area } |\widetilde{Q}_{ij}| \\ &\text{ of this parallelogram is given by the norm of the vector product of the two tangent vectors:} \\ &|\widetilde{Q}_{ij}| = hk \| (\frac{\partial \Phi}{\partial u} \times \frac{\partial \Phi}{\partial v})(a+ih,c+jk) \|. \end{split}$$

Such a plane parallelogram is, for *n* large enough, *i.e. h* and *k* small enough, a good approximation of the surface parallelogram Q_{ij} . When we join all these parallelograms for $0 \le i, j < n$, we obtain an approximation $\Sigma_n = \bigcup_{0 \le i, j < n} \widetilde{Q_{ij}}$ fairly accurate surface Σ , but it has the defect of being discontinuous at the interfaces. Hence the expression "scaled surface".

• Surface of a parametrized sheet

We first define the surface $|\Sigma_n|$ of the scaled surface Σ_n associated with the rectangle cutout $\widehat{\Sigma} = [a, b] \times [c, d]$ of the parameters into $n \times n$ small rectangles: $|\Sigma_n| = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} |\widehat{Q}_{ij}|$. Given the surface of a piece of scale \widetilde{Q}_{ij} , we have $|\Sigma_n| = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \|(\frac{\partial \Phi}{\partial u} \times \frac{\partial \Phi}{\partial v})(a+ih, c+jk)\| hk$. We then make the integer *n* tend to infinity. The double sum converges to the double integral on the rectangle $\widehat{\Sigma}$ of the function $(u, v) \mapsto \|(\frac{\partial \Phi}{\partial u} \times \frac{\partial \Phi}{\partial v})(u, v)\|$. We deduce an expression for the surface of the parameterized sheet: $|\Sigma| = \iint_{\widehat{\Sigma}} \|(\frac{\partial \Phi}{\partial u} \times \frac{\partial \Phi}{\partial v})(u, v)\|$ du dv. We define the element of surface d\sigma by the relation $d\sigma = \|\frac{\partial \Phi}{\partial u} \times \frac{\partial \Phi}{\partial v}\|$ du dv and then we write in a deceptively simple way: $|\Sigma| = \iint_{\widehat{\Sigma}} d\sigma$. The surface element $d\sigma$ does not depend on the chosen parameterization and the relation $|\Sigma| = \iint_{\widehat{\Sigma}} d\sigma$ is intrinsic.

The metric term $\| \left(\frac{\partial \Phi}{\partial u} \times \frac{\partial \Phi}{\partial v} \right) \|$ is to be compared to the length when calculating the length of an curve $\Gamma : |\Gamma| = \int_a^b \| \left(\frac{dM}{dt}(t) \| dt = \int_a^b ds$. For a sphere Σ of radius R, we have seen that $n = e_r$ and $\frac{\partial M}{\partial \theta} \times \frac{\partial M}{\partial \varphi} = R^2 \sin \theta e_r$. We can therefore write the surface element $d\sigma = \| \frac{\partial M}{\partial \theta} \times \frac{\partial M}{\partial \varphi} \| d\theta d\varphi = R^2 \sin \theta d\theta d\varphi$. Then we have for the sphere Σ such that $0 \le \theta \le \pi$ and $0 \le \varphi \le 2\pi$, $|\Sigma| = \int_0^{\pi} d\theta \int_0^{2\pi} d\varphi R^2 \sin \theta = 4\pi R^2$.

• Surface integral

A function f defined on a parametric sheet Σ can also be written as a function of the parameters u and v: $\hat{f}(u, v) = f(\Phi(u, v))$. For $n \ge 1$ we introduce the scaled surface Σ_n associated to a discretization $M_{ij} = \Phi(a + ih, c + jk)$ of $\hat{\Sigma} = [a, b] \times [c, d]$. We can approximate the function

FRANÇOIS DUBOIS

f on Σ_n by the stepped function equal to the constant $f(M_{ij})$ in each parallelogram \widetilde{Q}_{ij} . Given the value $\|(\frac{\partial \Phi}{\partial u} \times \frac{\partial \Phi}{\partial v})(a+ih, c+jk)\|$ of the surface of this parallelogram, we define the approximate integral I_n of the function f on the surface Σ by

 $I_n = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} f(M_{ij}) \| (\frac{\partial \Phi}{\partial u} \times \frac{\partial \Phi}{\partial v})(a+ih, c+jk) \| hk. \text{ If } n \text{ tends to infinity and if the function function } f \text{ is continuous to fix the ideas, the sequence } I_n \text{ converges to the double integral } I = \iint_{\widehat{\Sigma}} f(\Phi(u, v)) \| (\frac{\partial \Phi}{\partial u} \times \frac{\partial \Phi}{\partial v})(u, v) \| du dv. \text{ We define the surface integral } \int_{\Sigma} f(M) d\sigma \text{ by the relation } \int_{\Sigma} f(M) d\sigma = \iint_{\widehat{\Sigma}} f(\Phi(u, v)) \| (\frac{\partial \Phi}{\partial u} \times \frac{\partial \Phi}{\partial v})(u, v) \| du dv. \text{ It does not depend on the parameterization.}$

In the case where $f(M) \equiv 1$, we do find the value $|\Sigma|$ for the area of the surface Σ : $\int_{\Sigma} d\sigma = |\Sigma|$.

• Flow of a vector field

We give ourselves a vector field $\varphi \colon \mathbb{R}^3 \mapsto \mathbb{R}^3$ continuous to fix the ideas. If $f(M) = (\Phi, n)$, scalar product of the field φ against the normal vector of the surface Σ , the corresponding surface integral defines the flux Φ of the vector field φ on the surface $\Sigma \colon \Phi = \int_{\Sigma} (\Phi, n) \, d\sigma$.

Exercises

• On half-spheres

We denote by Σ the half-sphere centered at the origin, of radius R > 0 and defined also by the inequality $z \ge 0$.

a) In troduce a parameterization of this half-sphere with the spherical coordinate system r, θ and φ such that $x = r \sin \theta \cos \varphi$, $y = r \sin \theta \sin \varphi$ and $z = r \cos \theta$.

b) In what intervals vary the angles θ and ϕ ?

c) Propose an expression for the surface element $d\sigma$ as a function of the variables of the problem.

d) Compute the integral $I = \int_{\Sigma} z \, d\sigma$.

 $[\pi R^3]$

e) Go back to the questions b), c) and d) of this exercice raplacing on one hand the halfsphere Σ by the half-sphere $\widetilde{\Sigma}$ of radius R > 0, centered at the origin and defined by the inequality $x \ge 0$ and on the other hand the integral *I* by $J = \int_{\widetilde{\Sigma}} x \, d\sigma$.

f) Why the questions d) and e) are related in a simple manner ?

• Surface of a truncated cone

We consider a truncated cone with a circular basis, a radius R > 0 and a height equal to h > 0.

- a) Show that the half-angle θ at the summit satisfies to the relation $\tan \theta = \frac{R}{h}$.
- b) Show that truncated cone can be parameterized with the relations $x = R \cos \varphi (1 \frac{z}{h})$,

 $y = R \sin \varphi \left(1 - \frac{z}{h}\right)$ and z = z, with $0 \le \varphi \le 2\pi$ and $0 \le z \le h$.

c) Compute the cartesian components of the vectors $\frac{\partial M}{\partial \varphi}$ and $\frac{\partial M}{\partial z}$.

- d) Express the element of surface $d\sigma$ as a function of the geometrical parameters *R* and *h*, of the coordinates φ and *z* along the truncated cone and of the product $d\varphi dz$.
- e) Show that the surface S of this truncated cone is equal to $\pi R \sqrt{R^2 + h^2}$.

APPLIED MATHEMATICS

• Computation of a flux

We consider the half-sphere Σ with radius R > 0 centered at the origin and defined by the inequality $z \ge 0$. We denote by *n* the normal vector field pointing in a direction such that $n_z \ge 0$. We consider also the vector field $\Psi(x, y, z) = (x, y, 0)$.

- a) Compute the scalar product (ψ, n) on the half-sphere Σ . [$R \sin^2 \theta$]
- b) Computer the flux $\Phi = \int_{\Sigma} (\psi . n) d\sigma$ of the vector field ψ on the half-sphere Σ . $\left[\frac{4}{3}\pi R^3\right]$