## le cnam

## Master Structural Mechanics and Coupled Systems

## Applied Mathematics

## Lecture 13 Surface integral

- Local parameterization

We give ourselves four real numbers $a<b, c<d$ and a space of parameters $(u, v) \in \mathbb{R}^{2}$ such that $a \leq u \leq b$ and $c \leq v \leq d$. We define the parametrized sheet $\Sigma$ in space $\mathbb{R}^{3}$ by a continuously differentiable function $\Phi$ fom the rectangle $\widehat{\Sigma} \equiv[a, b] \times[c, d]$ and taking its values in $\mathbb{R}^{3}$. This application $\Phi$ is called the "local map". The parameterized sheet $\Sigma$ is defined by the relation $\Sigma=\Phi(\widehat{\Sigma})$. A point $M(u, v)$ of the parametric sheet has coordinates $x, y$ et $z$ that are regular functions of the parameters $u$ and $v: x=X(u, v), y=Y(u, v)$ et $z=Z(u, v)$.
The fundamental example is a plane parallelogram. The equation of the plane is for example of the form $z=\alpha x+\beta y+\gamma$. For $a \leq u \leq b$ and $c \leq v \leq d$, we set $x=u, y=v$ and $z=$ $\alpha u+\beta v+\gamma$.
A second example concerns a surface with equation $z=f(x, y)$. It is similar to the previous case except that the affine function $f(x, y)=\alpha x+\beta y+\gamma$ is replaced by a function $f$ of two variables while remaining fairly regular.
The next example is the sphere centered at the origin O and of radius $R>0$. We use the spherical coordinates of the three-dimensional space. We project the current point $M$ of the sphere onto the $x \mathrm{O} y$ plane at a point $m$. We have: $z=R \cos \theta$ and $\mathrm{O} m=R \sin \theta$. It comes then $x=\mathrm{O} m \cos \varphi=R \sin \theta \cos \varphi$ and $y=\mathrm{O} m \sin \varphi=R \sin \theta \sin \varphi$.

- Tangent plane

We suppose the function $\Phi$ différentiable at the point $(u, v)$ :
$\Phi(u+\delta u, v+\delta v)=\Phi(u, v)+\frac{\partial \Phi}{\partial u}(u, v) \delta u+\frac{\partial \Phi}{\partial v}(u, v) \delta v+\|(u, v)\| \varepsilon(\delta u, \delta v)$. The two tangent vectors $\frac{\partial \Phi}{\partial u}(u, v)$ and $\frac{\partial \Phi}{\partial v}(u, v)$ are two vectors of space $\mathbb{R}^{3}$. We suppose that the family $\left(\frac{\partial \Phi}{\partial u}, \frac{\partial \Phi}{\partial v}\right)$ is non-degenerate and the point $M=\Phi(u, v)$ is a "regular point" of the surface. The tangent plane to the parametrized sheet $\Sigma$ at the point $M=\Phi(u, v)$ is the affine plane that passes through the point $M(u, v)$ with an associated vector plane that has as its basis the family of two vectors $\frac{\partial \Phi}{\partial u}(u, v)$ and $\frac{\partial \Phi}{\partial v}(u, v)$.
In the case of a surface of the form $z=f(x, y)$, the two parameters are the abscissa $x$ and the the ordinate $y$. We have $\frac{\partial \Phi}{\partial x}=\left(1,0, \frac{\partial f}{\partial x}\right)^{\mathrm{t}}$ and $\frac{\partial \Phi}{\partial y}=\left(0,1, \frac{\partial f}{\partial y}\right)^{\mathrm{t}}$. They always form a free family whatever the function $f$.

## François Dubois

For a sphere of radius $R>0$ and centered at the origin, we introduce the spherical coordinates, so the two polar angles $\theta$ and $\varphi$ such that $x=R \sin \theta \cos \varphi, y=R \sin \theta \sin \varphi$ and $z=R \cos \theta$. The moving reference frame $\left(e_{r}, e_{\theta}, e_{\varphi}\right)$ is defined by the relations $e_{r}(\theta, \varphi)=\sin \theta\left(\cos \varphi e_{1}+\sin \varphi e_{2}\right)+\cos \theta e_{3}, e_{\theta}(\theta, \varphi)=\cos \theta\left(\cos \varphi e_{1}+\sin \varphi e_{2}\right)-\sin \theta e_{3}$ and $e_{\varphi}(\varphi)=-\sin \varphi e_{1}+\cos \varphi e_{2}$. In the case of the sphere of radius $R$, we have $\mathrm{d} M=R\left(e_{\theta} \mathrm{d} \theta+e_{\varphi} \sin \theta \mathrm{d} \varphi\right)$; we deduce $\frac{\partial M}{\partial \theta}=R e_{\theta}$ and $\frac{\partial M}{\partial \varphi}=R \sin \theta e_{\varphi}$.

- Vector product

Let $u$ and $v$ be two vectors in an euclidian space of dimension 3. The vector product $u \times v$ satisfies the following properties.
(i) The vector product $u \times v$ is orthogonal to the vectors $u$ and $v:(u \times v, u)=(u \times v, v)=0$.
(ii) If the vectors $u$ and $v$ are collinear, the vector product $u \times v$ is zero.
(iii) If $P(u, v)$ is the parallelogram generated by the vectors $u$ and $v$ :
$P(u, v)=\left\{x \in \mathbb{R}^{3}, \exists \theta, \xi, 0 \leq \theta \leq 1,0 \leq \xi \leq 1, x=\theta u+\xi v\right\}$, then the area of this parallelogram is equal to the norm of the vector product $u \times v:|P(u, v)|=\|u \times v\|$. Moreover, $\|u \times v\| \leq\|u\|\|v\|$.
(iv) We give ourselves a direct orthonormal basis $\left(e_{1}, e_{2}, e_{3}\right)$ and the components of the two vectors $u$ and $v: u=\sum_{j=1}^{3} u_{j} e_{j}$ and $v=\sum_{k=1}^{3} v_{k} e_{k}$. The vector product $u \times v$ is expressed in the basis $\left(e_{1}, e_{2}, e_{3}\right)$ via the relation: $u \times v=\left|\begin{array}{ll}u_{1} & v_{1} \\ u_{2} & v_{2}\end{array}\right| e_{3}+\left|\begin{array}{ll}u_{2} & v_{2} \\ u_{3} & v_{3}\end{array}\right| e_{1}+\left|\begin{array}{ll}u_{3} & v_{3} \\ u_{1} & v_{1}\end{array}\right| e_{2}$.
(v) It is possible to prove that $w=u \times v$ is a biliear function of the two vectors $u$ and $v$ :
$\left(\alpha u+\beta u^{\prime}\right) \times v=\alpha(u \times v)+\beta\left(u^{\prime} \times v\right)$ and $u \times\left(\alpha v+\beta v^{\prime}\right)=\alpha(u \times v)+\beta\left(u \times v^{\prime}\right)$, whatever the choice of vectors $u, u^{\prime}, v, v^{\prime}$ and whatever the choice of numbers $\alpha$ and $\beta$.
(vi) If $u \times v \neq 0$, the family $(u, v, u \times v)$ is a direct basis of $\mathbb{R}^{3}$ : the change matrix of basis between a direct orthonormal basis $\left(e_{1}, e_{2}, e_{3}\right)$ and the family $(u, v, u \times v)$ is strictly positive.
(vii) Be careful, the vector product is not associative: in general, $u \times(v \times w) \neq(u \times v) \times w$.

- Normal vector

We assume that the point $M=\Phi(u, v)$ is a regular point of the surface, i.e. that the family $\left(\frac{\partial \Phi}{\partial u}(u, v), \frac{\partial \Phi}{\partial v}(u, v)\right)$ is free. Then the vector product $\frac{\partial \Phi}{\partial u}(u, v) \times \frac{\partial \Phi}{\partial v}(u, v)$ is not zero. The norm $\left\|\frac{\partial \Phi}{\partial u}(u, v) \times \frac{\partial \Phi}{\partial v}(u, v)\right\|$ of this vector product is equal to the surface of the parallelogram constructed with the two tangent vectors $\frac{\partial \Phi}{\partial u}(u, v)$ and $\frac{\partial \Phi}{\partial v}(u, v)$. We define the normal vector $n(u, v)$ as the unit vector constructed from this vector product:
$n(u, v)=\frac{1}{\left\|\frac{\partial \Phi}{\partial u}(u, v) \times \frac{\partial \Phi}{\partial v}(u, v)\right\|} \frac{\partial \Phi}{\partial u}(u, v) \times \frac{\partial \Phi}{\partial v}(u, v)$.
It is a vector orthogonal to the tangent plane. Hence the name "normal" or "normal vector".
For a surface of the form $z=f(x, y)$, we have $\frac{\partial \Phi}{\partial x} \times \frac{\partial \Phi}{\partial y}=\left(-\frac{\partial f}{\partial x},-\frac{\partial f}{\partial y}, 1\right)^{\mathrm{t}}$ and $n(x, y)=\frac{1}{\sqrt{1+\left(\frac{\partial \Phi}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}}}\left(-\frac{\partial f}{\partial x},-\frac{\partial f}{\partial y}, 1\right)^{\mathrm{t}}$.
For the sphere of radius $R$, we have the relation $\frac{\partial M}{\partial \theta} \times \frac{\partial M}{\partial \varphi}=R^{2} \sin \theta e_{r}$. We deduce $\left\|\frac{\partial M}{\partial \theta} \times \frac{\partial M}{\partial \varphi}\right\|=R^{2} \sin \theta$ and $n(\theta, \varphi)=e_{r}(\theta, \varphi)$.

- Scaled surface

To approximate a curve $\Gamma$, we give ourselves points on the curve and we approach the curve by the sequence of strings stretched between a point and its neighbor. Through two different points

## Applied Mathematics

there always passes one and only one line segment. Thus we obtain a continuous approximation of the curve $\Gamma$.
To approximate a surface, it is more delicate. Indeed, we give ourselves an integer $n \geq 1$ and we discretize first the rectangle $[a, b] \times[c, d]$ in the parameter space with small rectangles of the type $[a+i h, a+(i+1) h] \times[c+j k, c+(j+1) k]$ with $h=\frac{b-a}{n}$ and $k=\frac{b-a}{n}$. The image by the local map $\Phi$ is a curvilinear quadrangle whose four corners we denote by
$M_{i j}=\Phi(a+i h, c+j k), M_{i+1, j}=\Phi(a+(i+1) h, c+j k)$,
$M_{i+1, j+1}=\Phi(a+(i+1) h, c+(j+1) k)$ and $M_{i, j+1}=\Phi(a+i h, c+(j+1) k)$. These four points are close enough if $n$ is large enough belong to the surface $\Sigma$ but are not coplanar in general. We propose to approximate the surface quadrilateral
$Q_{i j}=\Phi([a+i h, a+(i+1) h] \times[c+j k, c+(j+1) k])$ by a plane parallelogram $\widetilde{Q_{i j}}$ localized on the tangent plane to the surface $\Sigma$ at the point $M_{i j}$. Precisely $\widetilde{Q_{i j}}$ is the parallelogram passing through the point $M_{i j}$ and directed by two tangent vectors at the point $M_{i j}$, i.e. $h \frac{\partial \Phi}{\partial u}(a+i h, c+j k)$ and $k \frac{\partial \Phi}{\partial v}(a+i h, c+j k)$. We have
$\widetilde{Q_{i j}}=M_{i j}+\left\{\xi h \frac{\partial \Phi}{\partial u}(a+i h, c+j k)+\eta k \frac{\partial \Phi}{\partial v}(a+i h, c+j k), 0 \leq \xi, \eta \leq 1\right\}$. The area $\left|\widetilde{Q_{i j}}\right|$ of this parallelogram is given by the norm of the vector product of the two tangent vectors: $\left|\widetilde{Q_{i j}}\right|=h k\left\|\left(\frac{\partial \Phi}{\partial u} \times \frac{\partial \Phi}{\partial v}\right)(a+i h, c+j k)\right\|$.
Such a plane parallelogram is, for $n$ large enough, i.e. $h$ and $k$ small enough, a good approximation of the surface parallelogram $Q_{i j}$. When we join all these parallelograms for $0 \leq i, j<n$, we obtain an approximation $\Sigma_{n}=\cup_{0 \leq i, j<n} \widetilde{Q_{i j}}$ fairly accurate surface $\Sigma$, but it has the defect of being discontinuous at the interfaces. Hence the expression "scaled surface".

- Surface of a parametrized sheet

We first define the surface $\left|\Sigma_{n}\right|$ of the scaled surface $\Sigma_{n}$ associated with the rectangle cutout $\widehat{\Sigma}=[a, b] \times[c, d]$ of the parameters into $n \times n$ small rectangles: $\left|\Sigma_{n}\right|=\sum_{i=0}^{n-1} \sum_{j=0}^{n-1}\left|\widetilde{Q_{i j}}\right|$. Given the surface of a piece of scale $\widetilde{Q_{i j}}$, we have $\left|\Sigma_{n}\right|=\sum_{i=0}^{n-1} \sum_{j=0}^{n-1}\left\|\left(\frac{\partial \Phi}{\partial u} \times \frac{\partial \Phi}{\partial v}\right)(a+i h, c+j k)\right\| h k$. We then make the integer $n$ tend to infinity. The double sum converges to the double integral on the rectangle $\widehat{\Sigma}$ of the function $(u, v) \longmapsto\left\|\left(\frac{\partial \Phi}{\partial u} \times \frac{\partial \Phi}{\partial v}\right)(u, v)\right\|$. We deduce an expression for the surface of the parameterized sheet: $|\Sigma|=\iint_{\widehat{\Sigma}}\left\|\left(\frac{\partial \Phi}{\partial u} \times \frac{\partial \Phi}{\partial v}\right)(u, v)\right\| \mathrm{d} u \mathrm{~d} v$. We define the element of surface $\mathrm{d} \sigma$ by the relation $\mathrm{d} \sigma=\left\|\frac{\partial \Phi}{\partial u} \times \frac{\partial \Phi}{\partial v}\right\| \mathrm{d} u \mathrm{~d} v$ and then we write in a deceptively simple way: $|\Sigma|=\iint_{\widehat{\Sigma}} \mathrm{d} \sigma$. The surface element $\mathrm{d} \sigma$ does not depend on the chosen parameterization and the relation $|\Sigma|=\iint_{\widehat{\Sigma}} \mathrm{d} \sigma$ is intrinsic.
The metric term $\left\|\left(\frac{\partial \Phi}{\partial u} \times \frac{\partial \Phi}{\partial v}\right)\right\|$ is to be compared to the length when calculating the length of an curve $\Gamma:|\Gamma|=\int_{a}^{b} \|\left(\frac{\mathrm{d} M}{\mathrm{~d} t}(t) \| \mathrm{d} t=\int_{a}^{b} \mathrm{~d} s\right.$. For a sphere $\Sigma$ of radius $R$, we have seen that $n=e_{r}$ and $\frac{\partial M}{\partial \theta} \times \frac{\partial M}{\partial \varphi}=R^{2} \sin \theta e_{r}$. We can therefore write the surface element
$\mathrm{d} \sigma=\left\|\frac{\partial M}{\partial \theta} \times \frac{\partial M}{\partial \varphi}\right\| \mathrm{d} \theta \mathrm{d} \varphi=R^{2} \sin \theta \mathrm{~d} \theta \mathrm{~d} \varphi$. Then we have for the sphere $\Sigma$ such that $0 \leq \theta \leq \pi$ and $0 \leq \varphi \leq 2 \pi,|\Sigma|=\int_{0}^{\pi} \mathrm{d} \theta \int_{0}^{2 \pi} \mathrm{~d} \varphi R^{2} \sin \theta=4 \pi R^{2}$.

- Surface integral

A function $f$ defined on a parametric sheet $\Sigma$ can also be written as a function of the parameters $u$ and $v: \widehat{f}(u, v)=f(\Phi(u, v))$. For $n \geq 1$ we introduce the scaled surface $\Sigma_{n}$ associated to a discretization $M_{i j}=\Phi(a+i h, c+j k)$ of $\widehat{\Sigma}=[a, b] \times[c, d]$. We can approximate the function

## François Dubois

$f$ on $\Sigma_{n}$ by the stepped function equal to the constant $f\left(M_{i j}\right)$ in each parallelogram $\widetilde{Q_{i j}}$. Given the value $\left\|\left(\frac{\partial \Phi}{\partial u} \times \frac{\partial \Phi}{\partial v}\right)(a+i h, c+j k)\right\|$ of the surface of this parallelogram, we define the approximate integral $I_{n}$ of the function $f$ on the surface $\Sigma$ by $I_{n}=\sum_{i=0}^{n-1} \sum_{j=0}^{n-1} f\left(M_{i j}\right)\left\|\left(\frac{\partial \Phi}{\partial u} \times \frac{\partial \Phi}{\partial v}\right)(a+i h, c+j k)\right\| h k$. If $n$ tends to infinity and if the function function $f$ is continuous to fix the ideas, the sequence $I_{n}$ converges to the double integral $I=\iint_{\widehat{\Sigma}} f(\Phi(u, v))\left\|\left(\frac{\partial \Phi}{\partial u} \times \frac{\partial \Phi}{\partial v}\right)(u, v)\right\| \mathrm{d} u \mathrm{~d} v$. We define the surface integral $\int_{\Sigma} f(M) \mathrm{d} \sigma$ by the relation $\int_{\Sigma} f(M) \mathrm{d} \sigma=\iint_{\widehat{\Sigma}} f(\Phi(u, v))\left\|\left(\frac{\partial \Phi}{\partial u} \times \frac{\partial \Phi}{\partial v}\right)(u, v)\right\| \mathrm{d} u \mathrm{~d} v$. It does not depend on the parameterization.
In the case where $f(M) \equiv 1$, we do find the value $|\Sigma|$ for the area of the surface $\Sigma: \int_{\Sigma} \mathrm{d} \sigma=|\Sigma|$.

- Flow of a vector field

We give ourselves a vector field $\varphi: \mathbb{R}^{3} \longmapsto \mathbb{R}^{3}$ continuous to fix the ideas. If $f(M)=(\Phi, n)$, scalar product of the field $\varphi$ against the normal vector of the surface $\Sigma$, the corresponding surface integral defines the flux $\Phi$ of the vector field $\varphi$ on the surface $\Sigma$ : $\Phi=\int_{\Sigma}(\Phi, n) \mathrm{d} \sigma$.

## Exercises

- On half-spheres

We denote by $\Sigma$ the half-sphere centered at the origin, of radius $R>0$ and defined also by the inequality $z \geq 0$.
a) In troduce a parameterization of this half-sphere with the spherical coordinate system $r$, $\theta$ and $\varphi$ such that $x=r \sin \theta \cos \varphi, y=r \sin \theta \sin \varphi$ and $z=r \cos \theta$.
b) In what intervals vary the angles $\theta$ and $\varphi$ ?
c) Propose an expression for the surface element $\mathrm{d} \sigma$ as a function of the variables of the problem.
d) Compute the integral $I=\int_{\Sigma} z \mathrm{~d} \sigma$.

$$
\left[\pi R^{3}\right]
$$

e) Go back to the questions b), c) and d) of this exercice raplacing on one hand the halfsphere $\Sigma$ by the half-sphere $\widetilde{\Sigma}$ of radius $R>0$, centered at the origin and defined by the inequality $x \geq 0$ and on the other hand the integral $I$ by $J=\int_{\tilde{\Sigma}} x \mathrm{~d} \sigma$.
f) Why the questions d) and e) are related in a simple manner ?

- Surface of a truncated cone

We consider a truncated cone with a circular basis, a radius $R>0$ and a height equal to $h>0$.
a) Show that the half-angle $\theta$ at the summit satisfies to the relation $\tan \theta=\frac{R}{h}$.
b) Show that truncated cone can be parameterized with the relations $x=R \cos \varphi\left(1-\frac{z}{h}\right)$, $y=R \sin \varphi\left(1-\frac{z}{h}\right)$ and $z=z$, with $0 \leq \varphi \leq 2 \pi$ and $0 \leq z \leq h$.
c) Compute the cartesian components of the vectors $\frac{\bar{\partial} M}{\partial \varphi}$ and $\frac{\partial M}{\partial z}$.
d) Express the element of surface $\mathrm{d} \sigma$ as a function of the geometrical parameters $R$ and $h$, of the coordinates $\varphi$ and $z$ along the truncated cone and of the product $\mathrm{d} \varphi \mathrm{d} z$.
e) Show that the surface $S$ of this truncated cone is equal to $\pi R \sqrt{R^{2}+h^{2}}$.

## Applied Mathematics

- Computation of a flux

We consider the half-sphere $\Sigma$ with radius $R>0$ centered at the origin and defined by the inequality $z \geq 0$. We denote by $n$ the normal vector field pointing in a direction such that $n_{z} \geq 0$. We consider also the vector field $\psi(x, y, z)=(x, y, 0)$.
a) Compute the scalar product $(\psi, n)$ on the half-sphere $\Sigma$.
$\left[R \sin ^{2} \theta\right]$
b) Computer the flux $\Phi=\int_{\Sigma}(\psi \cdot n) \mathrm{d} \sigma$ of the vector field $\psi$ on the half-sphere $\Sigma$. $\quad\left[\frac{4}{3} \pi R^{3}\right]$

