le cnam

Master Structural Mechanics and Coupled Systems

Applied Mathematics

Lecture 9 Curvilinear integral

- Introduction to curvilinear integrals

We suppose given a curve Γ in space $\mathbb{R}^{2}:[0,1] \ni t \longmapsto M(t)=(X(t), Y(t)) \in \mathbb{R}^{2}$. The curvilinear abscissa is the length of the curve. We have $\mathrm{d} s=\|\mathrm{d} M\|=\sqrt{\left(X^{\prime}(t)\right)^{2}+\left(X^{\prime}(t)\right)^{2}} \mathrm{~d} t$.
A first example is the arch of parabola. We have in this case $y=Y(x)=\frac{1}{2} \frac{x^{2}}{a}$ and we suppose $0 \leq x \leq a$ with $a>0$. Then $\mathrm{d} s=\sqrt{1+\left(Y^{\prime}(x)\right)^{2}} \mathrm{~d} x=\sqrt{1+(x / a)^{2}} \mathrm{~d} x$ in this case.
An arch of circle admits a representation typically given by the relation $\left[\theta_{\min }, \theta_{\max }\right] \ni \theta \longmapsto(X(\theta), Y(\theta))=(R \cos \theta, R \sin \theta)$. In that case, we have $\mathrm{d} s=R \mathrm{~d} \theta$.
We suppose also given a function f from \mathbb{R}^{2} and taking its values in $\mathbb{R}: f(M) \in \mathbb{R}$ if $M \in \mathbb{R}^{2}$. The question is to define the curvilinear integral $I=\int_{\Gamma} f(M) \mathrm{d} s$. This integral depends on the curve Γ and on the function f. We observe that if $f(M) \equiv 1$, then we have $\int_{0}^{L} \mathrm{~d} s=L$, the length of the curve Γ.

- Parameterization

If we use the conventional settings $[0,1] \ni t \longmapsto M(t)=(X(t), Y(t)) \in \mathbb{R}^{2}$ for defining the curve Γ, the value $f(M)$ when M belongs to the curve Γ is equal to $f(X(t), Y(t))$ and we set $\int_{\Gamma} f(M(s)) \mathrm{d} s=\int_{0}^{1} f(X(t), Y(t)) \frac{\mathrm{d} s}{\mathrm{~d} t} \mathrm{~d} t$.
For example, with the previous parabola $y=\frac{x^{2}}{2 a}$, we have $X(x)=x$ and $Y(x)=\frac{x^{2}}{2 a}$. Associated with the polynomial function $f(x, y)=x$, we obtain the explicitation of the curvilinear integral: $\int_{\Gamma} f(M(s)) \mathrm{d} s=\int_{0}^{a} x \sqrt{1+\frac{x^{2}}{a^{2}}} \mathrm{~d} x$. After some lines of elementary calculus, this integral is equal to $\frac{a^{2}}{3}(2 \sqrt{2}-1)$.
An other example with the same function $f(x, y)=x$ and the half circle of radius R centered at the origin and in the half plane $\{y>0\}$. We have $\int_{\Gamma} x \mathrm{~d} s=\int_{0}^{\pi} R \cos \theta R \mathrm{~d} \theta=0$. With the half circle in the half plane $\{x>0\}$, it comes $\int_{\Gamma} x \mathrm{~d} s=\int_{-\pi / 2}^{\pi / 2} R \cos \theta R \mathrm{~d} \theta=2 R^{2}$.

- The curvilinear integral does not depend on the parameterization

With the choice $[0,1] \ni t \longmapsto M(t)=(X(t), Y(t)) \in \mathbb{R}^{2}$ done previously, we have $I=\int_{\Gamma} f(M(s)) \mathrm{d} s=\int_{0}^{1} f(X(t), Y(t)) \frac{\mathrm{d} s}{\mathrm{~d} t} \mathrm{~d} t$. If we consider now an other parameterization of the same curve, $[\alpha, \beta] \ni \theta \longmapsto \widetilde{M}(\theta)=(\widetilde{X}(\theta), \widetilde{Y}(\theta)) \in \mathbb{R}^{2}$, we have the change of variable $\theta=K(t)$ such that $\widetilde{M}(\theta)=\widetilde{M}(K(t))=M(t)$. The associated expression for the curvilinear integral takes the form $J=\int_{\Gamma} f(M(s)) \mathrm{d} s=\int_{\alpha}^{\beta} f(\widetilde{X}(\theta), \widetilde{Y}(\theta)) \frac{\mathrm{d} s}{\mathrm{~d} \theta} \mathrm{~d} \theta$. This expression is coherent

François Dubois

with the previous one: we have $I=J$. More precisely, after the change of variable $\theta=K(t)$ in the integral J, we have $J=\int_{\alpha}^{\beta} f(\widetilde{X}(\theta), \widetilde{Y}(\theta)) \frac{\mathrm{d} s}{\mathrm{~d} \theta} \mathrm{~d} \theta=\int_{0}^{1} f(X(t), Y(t)) \frac{\mathrm{d} s}{\mathrm{~d} \theta} \frac{\mathrm{~d} \theta}{\mathrm{~d} t} \mathrm{~d} t=I$.

- Circulation of a vector field

A vector field Φ is a vector valued function, defined for $(x, y) \in \mathbb{R}^{2}$ by its coordinates. We have $\Phi(x, y)=\left(\Phi_{x}(x, y), \Phi_{y}(x, y)\right)$. The circulation γ of the vector field Φ along the curve Γ is by definition the curvilinear integral $\gamma=\int_{\Gamma}(\Phi(M), \tau(M)) \mathrm{d} s$ with $\tau(M)=\frac{\mathrm{d} M}{\mathrm{~d} s}$ is the tangent unitary vector along the curve Γ. Observe that the expression $(\Phi(M), \tau(M))$ is the scalar product $\Phi_{x} \tau_{x}+\Phi_{y} \tau_{y}$. Then we have also $\gamma=\int_{\Gamma}(\Phi(M), \tau(M)) \mathrm{d} s=\int_{\Gamma}\left(\Phi_{x} \mathrm{~d} X+\Phi_{y} \mathrm{~d} Y\right)$ because $\tau \mathrm{d} s=\mathrm{d} M=(\mathrm{d} X, \mathrm{~d} Y)$.
For example with the circle $X(\theta)=R \cos \theta, Y(\theta)=R \sin \theta$, we have $\tau(\theta)=(-\sin \theta, \cos \theta)$. For the circulation $\gamma=\int_{\Gamma}(\Phi(M), \tau(M)) \mathrm{d} s$ of the vector field $\Phi(x, y)=(-y, x)$ along this circle, we first observe that we have $(\Phi(M), \tau(M))=R$, then $\gamma=\int_{0}^{2 \pi} R \mathrm{~d} s=2 \pi R^{2}$.

- When the vector field is the gradient of a potential

The vector field Φ can be written $\Phi=\nabla \psi$ for some scalar function ψ if we have $\Phi_{x}=\frac{\partial \psi}{\partial x}$ and $\Phi_{y}=\frac{\partial \psi}{\partial y}$. Then the circulation of this vector field depends only on the extremities of the curve Γ. With $M(0)=A$ and $M(1)=B$, we have $\gamma=\int_{\Gamma}(\nabla \psi(M), \tau(M)) \mathrm{d} s=\psi(B)-\psi(A)$.
The proof consists to evaluate the scalar product $(\Phi, \mathrm{d} M)$. We have
$(\Phi, \mathrm{d} M)=\left(\frac{\partial \psi}{\partial x} \frac{\mathrm{~d} X}{\mathrm{~d} t}+\frac{\partial \psi}{\partial y} \frac{\mathrm{~d} Y}{\mathrm{~d} t}\right) \mathrm{d} t=\frac{\mathrm{d}}{\mathrm{d} t}[\psi(X(t), Y(t))] \mathrm{d} t$. After integration we obtain $\int_{A}^{B}(\Phi, \mathrm{~d} M)=\int_{A}^{B} \frac{\mathrm{~d}}{\mathrm{~d} t}[\psi(X(t), Y(t))] \mathrm{d} t=\psi(B)-\psi(A)$.

- Flux of a vector field in two space dimensions

We recall that for a plane curve, we have chosen in a previous chapter a tangent vector $\tau=\frac{\mathrm{d} M}{\mathrm{~d} s}=\left(\frac{\mathrm{d} x}{\mathrm{~d} s}, \frac{\mathrm{~d} y}{\mathrm{~d} s}\right)$ and a normal vector n such that $n_{x}=\tau_{y}$ and $n_{y}=-\tau_{x}$. Then the orthonormal basis (n, τ) is a direct basis.
The flux φ of the vector field Φ along the curve Γ is defined by $\varphi=\int_{\Gamma}(\Phi(M), n) \mathrm{d} s$ and this curvilinear integral can also be written $\varphi=\int_{\Gamma}\left(\Phi_{x}(M) \tau_{y}(M)-\Phi_{y}(M) \tau_{x}(M)\right) \mathrm{d} s$ or more simply $\varphi=\int_{\Gamma}\left(\Phi_{x} \mathrm{~d} Y-\Phi_{y} \mathrm{~d} X\right)$.
For example the flux of the field $\Phi(x, y)=(x, y)$ along the whole circle of radius R centered at the origin is equal to $\int_{\Gamma}(\Phi, n) \mathrm{d} s=2 \pi R^{2}$. The flux of the same vector field along the parabola of equation $y=\frac{x^{2}}{2 a}$ with the constraint $0 \leq x \leq a$ is equal to $\frac{a^{2}}{6}$.

Applied Mathematics

Exercices

- Along an arch of parabola

In the affine Euclidian plane, we wonsider the parabola of equation $y=x^{2}$ and the points $A(-1,1)$ and $B(2,4)$ on this parabola.
Compute the curvilear integral $I=\int_{A}^{B}(x y \mathrm{~d} x+(x+y) \mathrm{d} y)$.

- Along an half circle

Let Γ be the half circle in the affine Euclidian plane of radius $R>0$, centered at the origin and included in the half plane $y>0$. Let n be the unity normal vector pointing in the direction opposite to the origin.
a) Illustrate these geometrical data with a drawing.
b) How express the curvilinear alscissa s along the half circle Γ ?
c) Compute the curvilinear integral $I=\int_{\Gamma} x n_{x} \mathrm{~d} s$.
d) Compute the curvilinear integral $J=\int_{\Gamma}[(x-y) \mathrm{d} x+(x+y) \mathrm{d} y]$.

- Along a complete circle

The letter C names the circle of radius equal to one centered at the origin. We suppose that it is oriented in the direct sense.
Compute the integral $I=\int_{C}\left[\left(x-y^{3}\right) \mathrm{d} x+x^{3} \mathrm{~d} y\right]$.

- Along an other arch of parabola

Let $a>0$ a number and $[0, a] \ni x \longmapsto Y(x)=\frac{1}{2} \frac{x^{2}}{a}$ an arch Γ of parabola. We introduce the scalar field $\psi(x, y)=\frac{1}{2}\left(x^{2}+y^{2}\right)$ and the vector field $\Phi=\nabla \psi$.
a) What are the components of the vector field Φ ?
b) Compute directly the circulation $\gamma=\int_{\Gamma}(\Phi(M), \tau(M)) \mathrm{d} s$ of this vector field.
c) Using a result proposed in the course, recover this result.

