le c**nam**

Master Structural Mechanics and Coupled Systems

Applied Mathematics

Lecture 9 Curvilinear integral

• Introduction to curvilinear integrals

We suppose given a curve Γ in space \mathbb{R}^2 : $[0, 1] \ni t \mapsto M(t) = (X(t), Y(t)) \in \mathbb{R}^2$. The curvilinear abscissa is the length of the curve. We have $ds = || dM || = \sqrt{(X'(t))^2 + (X'(t))^2} dt$. A first example is the arch of parabola. We have in this case $y = Y(x) = \frac{1}{2} \frac{x^2}{a}$ and we suppose $0 \le x \le a$ with a > 0. Then $ds = \sqrt{1 + (Y'(x))^2} dx = \sqrt{1 + (x/a)^2} dx$ in this case.

An arch of circle admits a representation typically given by the relation

 $[\theta_{\min}, \theta_{\max}] \ni \theta \longmapsto (X(\theta), Y(\theta)) = (R \cos \theta, R \sin \theta)$. In that case, we have $ds = R d\theta$. We suppose also given a function f from \mathbb{R}^2 and taking its values in \mathbb{R} : $f(M) \in \mathbb{R}$ if $M \in \mathbb{R}^2$. The question is to define the curvilinear integral $I = \int_{\mathbb{R}^2} f(M) ds$. This integral depends on the

The question is to define the curvilinear integral $I = \int_{\Gamma} f(M) \, ds$. This integral depends on the curve Γ and on the function f. We observe that if $f(M) \equiv 1$, then we have $\int_0^L ds = L$, the length of the curve Γ .

• Parameterization

If we use the conventional settings $[0, 1] \ni t \mapsto M(t) = (X(t), Y(t)) \in \mathbb{R}^2$ for defining the curve Γ , the value f(M) when M belongs to the curve Γ is equal to f(X(t), Y(t)) and we set $\int_{\Gamma} f(M(s)) ds = \int_0^1 f(X(t), Y(t)) \frac{ds}{dt} dt$.

For example, with the previous parabola $y = \frac{x^2}{2a}$, we have X(x) = x and $Y(x) = \frac{x^2}{2a}$. Associated with the polynomial function f(x, y) = x, we obtain the explicitation of the curvilinear integral: $\int_{\Gamma} f(M(s)) ds = \int_0^a x \sqrt{1 + \frac{x^2}{a^2}} dx$. After some lines of elementary calculus, this integral is equal to $\frac{a^2}{3}(2\sqrt{2}-1)$.

An other example with the same function f(x, y) = x and the half circle of radius *R* centered at the origin and in the half plane $\{y > 0\}$. We have $\int_{\Gamma} x \, ds = \int_{0}^{\pi} R \cos \theta R \, d\theta = 0$. With the half circle in the half plane $\{x > 0\}$, it comes $\int_{\Gamma} x \, ds = \int_{-\pi/2}^{\pi/2} R \cos \theta R \, d\theta = 2R^2$.

• The curvilinear integral does not depend on the parameterization

With the choice $[0, 1] \ni t \mapsto M(t) = (X(t), Y(t)) \in \mathbb{R}^2$ done previously, we have

 $I = \int_{\Gamma} f(M(s)) \, ds = \int_{0}^{1} f(X(t), Y(t)) \frac{ds}{dt} \, dt.$ If we consider now an other parameterization of the same curve, $[\alpha, \beta] \ni \theta \longmapsto \widetilde{M}(\theta) = (\widetilde{X}(\theta), \widetilde{Y}(\theta)) \in \mathbb{R}^{2}$, we have the change of variable $\theta = K(t)$ such that $\widetilde{M}(\theta) = \widetilde{M}(K(t)) = M(t)$. The associated expression for the curvilinear integral takes the form $J = \int_{\Gamma} f(M(s)) \, ds = \int_{\alpha}^{\beta} f(\widetilde{X}(\theta), \widetilde{Y}(\theta)) \frac{ds}{d\theta} \, d\theta$. This expression is coherent

FRANÇOIS DUBOIS

with the previous one: we have I = J. More precisely, after the change of variable $\theta = K(t)$ in the integral J, we have $J = \int_{\alpha}^{\beta} f(\widetilde{X}(\theta), \widetilde{Y}(\theta)) \frac{ds}{d\theta} d\theta = \int_{0}^{1} f(X(t), Y(t)) \frac{ds}{d\theta} \frac{d\theta}{dt} dt = I$.

• Circulation of a vector field

A vector field Φ is a vector valued function, defined for $(x, y) \in \mathbb{R}^2$ by its coordinates. We have $\Phi(x, y) = (\Phi_x(x, y), \Phi_y(x, y))$. The circulation γ of the vector field Φ along the curve Γ is by definition the curvilinear integral $\gamma = \int_{\Gamma} (\Phi(M), \tau(M)) ds$ with $\tau(M) = \frac{dM}{ds}$ is the tangent unitary vector along the curve Γ . Observe that the expression $(\Phi(M), \tau(M))$ is the scalar product $\Phi_x \tau_x + \Phi_y \tau_y$. Then we have also $\gamma = \int_{\Gamma} (\Phi(M), \tau(M)) ds = \int_{\Gamma} (\Phi_x dX + \Phi_y dY)$ because $\tau ds = dM = (dX, dY)$.

For example with the circle $X(\theta) = R \cos \theta$, $Y(\theta) = R \sin \theta$, we have $\tau(\theta) = (-\sin \theta, \cos \theta)$. For the circulation $\gamma = \int_{\Gamma} (\Phi(M), \tau(M)) ds$ of the vector field $\Phi(x, y) = (-y, x)$ along this circle, we first observe that we have $(\Phi(M), \tau(M)) = R$, then $\gamma = \int_{0}^{2\pi} R ds = 2\pi R^{2}$.

• When the vector field is the gradient of a potential

The vector field Φ can be written $\Phi = \nabla \psi$ for some scalar function ψ if we have $\Phi_x = \frac{\partial \psi}{\partial x}$ and $\Phi_y = \frac{\partial \psi}{\partial y}$. Then the circulation of this vector field depends only on the extremities of the curve Γ . With M(0) = A and M(1) = B, we have $\gamma = \int_{\Gamma} (\nabla \psi(M), \tau(M)) \, ds = \psi(B) - \psi(A)$.

The proof consists to evaluate the scalar product (Φ, dM) . We have

 $(\Phi, dM) = \left(\frac{\partial \psi}{\partial x}\frac{dX}{dt} + \frac{\partial \psi}{\partial y}\frac{dY}{dt}\right) dt = \frac{d}{dt} \left[\psi(X(t), Y(t))\right] dt.$ After integration we obtain $\int_{A}^{B} (\Phi, dM) = \int_{A}^{B} \frac{d}{dt} \left[\psi(X(t), Y(t))\right] dt = \psi(B) - \psi(A).$

• Flux of a vector field in two space dimensions

We recall that for a plane curve, we have chosen in a previous chapter a tangent vector $\tau = \frac{dM}{ds} = \left(\frac{dx}{ds}, \frac{dy}{ds}\right)$ and a normal vector *n* such that $n_x = \tau_y$ and $n_y = -\tau_x$. Then the orthonormal basis (n, τ) is a direct basis.

The flux φ of the vector field Φ along the curve Γ is defined by $\varphi = \int_{\Gamma} (\Phi(M), n) ds$ and this curvilinear integral can also be written $\varphi = \int_{\Gamma} (\Phi_x(M) \tau_y(M) - \Phi_y(M) \tau_x(M)) ds$ or more simply $\varphi = \int_{\Gamma} (\Phi_x dY - \Phi_y dX)$.

For example the flux of the field $\Phi(x, y) = (x, y)$ along the whole circle of radius *R* centered at the origin is equal to $\int_{\Gamma} (\Phi, n) ds = 2\pi R^2$. The flux of the same vector field along the parabola of equation $y = \frac{x^2}{2a}$ with the constraint $0 \le x \le a$ is equal to $\frac{a^2}{6}$.

APPLIED MATHEMATICS

Exercices

Along an arch of parabola •

In the affine Euclidian plane, we wonsider the parabola of equation $y = x^2$ and the points A(-1, 1) and B(2, 4) on this parabola.

Compute the curvilear integral $I = \int_{A}^{B} (xy \, dx + (x+y) \, dy).$ $\left[\frac{69}{4}\right]$

Along an half circle •

Let Γ be the half circle in the affine Euclidian plane of radius R > 0, centered at the origin and included in the half plane y > 0. Let n be the unity normal vector pointing in the direction opposite to the origin.

- Illustrate these geometrical data with a drawing. a)
- How express the curvilinear alscissa *s* along the half circle Γ ? b)
- Compute the curvilinear integral $I = \int_{\Gamma} x n_x \, ds$. c)
- $\begin{bmatrix} \frac{1}{2} \pi R^2 \\ \pi R^2 \end{bmatrix}$ Compute the curvilinear integral $J = \int_{\Gamma} [(x-y) dx + (x+y) dy]$. d)
- Along a complete circle •

The letter C names the circle of radius equal to one centered at the origin. We suppose that it is oriented in the direct sense.

Compute the integral $I = \int_C [(x - y^3) dx + x^3 dy]$. $\left[\frac{3}{2}\pi\right]$

Along an other arch of parabola •

Let a > 0 a number and $[0, a] \ni x \longmapsto Y(x) = \frac{1}{2} \frac{x^2}{a}$ an arch Γ of parabola. We introduce the scalar field $\Psi(x, y) = \frac{1}{2}(x^2 + y^2)$ and the vector field $\Phi = \nabla \Psi$.

- a) What are the components of the vector field Φ ?
- b) Compute directly the circulation $\gamma = \int_{\Gamma} (\Phi(M), \tau(M)) ds$ of this vector field.
- $\left[\frac{5}{8}a^2\right]$ Using a result proposed in the course, recover this result. c)