le cnam

Master Structural Mechanics and Coupled Systems

Applied Mathematics

Lecture 7 Length and normal of a curve

- Plane curve in the Euclidian plane

The first example is the line segment $[A, B]$ between the two points $A(\alpha, \beta)$ and $B(\gamma, \delta)$. We have a parameterization $[0,1] \ni t \longmapsto M(t)=(X(t), Y(t))=(1-t) A+t B$. In particular, $X(t)=(1-t) \alpha+t \gamma$ and $Y(t)=(1-t) \beta+t \delta$.
The second example is a circular arc. We introduce $R>0$ and θ_{1} and θ_{2} such that $0 \leq \theta_{1}<\theta_{2} \leq 2 \pi$ to fix the ideas. Then a point $M(\theta)$ of this curve satisfies the conditions $\theta_{1} \leq \theta \leq \theta_{2}$ and $M(\theta)=R(\cos \theta, \sin \theta)$.
Functional curve (third exmple). For $a>b$ two given reals, we consider the mapping $[a, b] \ni t \longmapsto f(t) \in \mathbb{R}$ and the associate graph in the Euclidian plane: $X(t)=t, Y(t)=f(t)$.
In general, we have two regular functions X and Y from the interval $[a, b]$ and taking their values in \mathbb{R}. The curve Γ is composed by all the points $M(t)=(X(t), Y(t))$ for all $t \in[a, b]$.

- Velocity vector

When the mapping $t \longmapsto M(t)$ is derivable, we set $V(t)=\frac{\mathrm{d} M}{\mathrm{~d} t}$. The components of the velocity vector are simply $\frac{\mathrm{d} M}{\mathrm{~d} t}=\left(\frac{\mathrm{d} X}{\mathrm{~d} t}, \frac{\mathrm{~d} y}{\mathrm{~d} t}\right)$.
For the previous examples, we have respectively $V(t)=-A+B=\overrightarrow{A B}$ for the first example, $V(\theta)=R(-\sin \theta, \cos \theta)$ in the second case and $V(t)=\left(1, f^{\prime}(t)\right)$ for a functional curve.

- Length of a regular curve

We introduce an integer $N \geq 1$ and we first define the approximated length L_{N}. With $h=\frac{b-a}{N}$, we consiter $a=t_{0}<t_{1}<\ldots<t_{j}=a+j h<t_{j+1}=t_{j}+h<\ldots<t_{N}=b$ and $M_{j}=M\left(t_{j}\right)$. We approach the length of the curvilear arc $\widehat{M_{j} M_{j+1}}$ by the length $\left\|\overrightarrow{M_{j} M_{j+1}}\right\|$ of the segment $\left[M_{j}, M_{j+1}\right]$. We have $\left\|\overrightarrow{M_{j} M_{j+1}}\right\|=\sqrt{\left(X\left(t_{j+1}\right)-X\left(t_{j}\right)\right)^{2}+\left(Y\left(t_{j+1}\right)-Y\left(t_{j}\right)\right)^{2}}$ and we set $L_{N}=\sum_{j=1}^{N}\left\|\overrightarrow{M_{j} M_{j+1}}\right\|$ for the length of the polygoal approximation of the curve.
We have also the following expansions, if the functions X and Y are derivable: $X\left(t_{j}+h\right)=X\left(t_{j}\right)+h \frac{\mathrm{~d} X}{\mathrm{~d} t}\left(t_{j}\right)+h \varepsilon_{j}^{X}(h)$ and $Y\left(t_{j}+h\right)=Y\left(t_{j}\right)+h \frac{\mathrm{~d} Y}{\mathrm{~d} t}\left(t_{j}\right)+h \varepsilon_{j}^{Y}(h)$ with $\varepsilon_{j}^{X}(h)$ and $\varepsilon_{j}^{Y}(h)$ tending to zero as h tends to zero. Then $\left\|\overrightarrow{M_{j} M_{j+1}}\right\|=h\left\|\frac{\mathrm{~d} M}{\mathrm{~d} t}\left(t_{j}\right)\right\|+h \eta_{j}(h)$ and $\eta_{j}(h)$ tends to zero if h tends to zero. In consequence, we have the decomposition

François Dubois

$L_{N}=\sum_{j=1}^{N} h\left\|\frac{\mathrm{~d} M}{\mathrm{~d} t}\left(t_{j}\right)\right\|+h \sum_{j=1}^{N} \eta_{j}(h)$. The second term tends to zero when h tends to zero and the first tends to the integral $\int_{a}^{b}\left\|\frac{\mathrm{~d} M}{\mathrm{~d} t}(t)\right\| \mathrm{d} t$ in the same conditions.
The length L of the curve Γ between the parameters a and b is given by the relation $L=\int_{a}^{b}\left\|\frac{\mathrm{~d} M}{\mathrm{~d} t}(t)\right\| \mathrm{d} t=\int_{a}^{b}\|V(t)\| \mathrm{d} t$.
For an arc segment, we recover the coherence $L=\|\overrightarrow{A B}\|=A B$. For an arc of circle, we have $\left\|\frac{\mathrm{d} M}{\mathrm{~d} \theta}\right\|=R$ and $L=R\left(\theta_{2}-\theta_{1}\right)$. A functional curve satisfies $\|V(t)\|=\sqrt{1+\left(f^{\prime}(t)\right)^{2}}$ and $L=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(t)\right)^{2}} \mathrm{~d} t$.

- Regular points

A regular point $M(t)$ of a curve Γ satisfies the condition $\frac{\mathrm{d} M}{\mathrm{~d} t}(t) \neq 0$. All the previous examples are composed only with regular points.

- Curvilinear abscissa

With the notations used previously, we define the curvilinear abscissa by the relation $s(t)=\int_{a}^{t}\left\|\frac{\mathrm{~d} M}{\mathrm{~d} t}(t)\right\| \mathrm{d} t$. Then we have $s(a)=0, s(b)=L$, the function $t \longmapsto s(t)$ is derivable and $\frac{\mathrm{d} s}{\mathrm{~d} t}=\left\|\frac{\mathrm{d} M}{\mathrm{~d} t}(t)\right\|>0$ if all the points are regular. Then this function is continuous and strictly increasing. It realizes a bijection from the interval $[a, b]$ onto the interval $[0, L]$. Its reciprocal mapping $T:[0, L] \ni s \longmapsto T(s) \in[a, b]$ gives the value of the parameter t when the value of the curvilinear absissa is known. Moreover, this reciprocal function $s \longmapsto t=T(s)$ is derivable and we have the classical relation $\frac{\mathrm{d} T}{\mathrm{~d} s}=\frac{1}{\frac{\mathrm{~d} s}{\mathrm{~d} t}}=\frac{1}{\left\|\frac{\mathrm{dM}}{\mathrm{d} t}\right\|}$.

- Tangent vector

We use the intrinsic parametrization of the curve Γ by the curvilinear abscissa. We consider the composed map $[0, L] \ni s \longmapsto P(s)=\left(M_{\circ} T\right)(s)=M(T(s))$. Then its derivate $\tau(s)=\frac{\mathrm{d} P}{\mathrm{~d} s}=\frac{\mathrm{d} M}{\mathrm{~d} t} \frac{\mathrm{~d} T}{\mathrm{~d} s}=\frac{1}{\left\|\frac{\mathrm{~d} M}{\mathrm{~d} t}\right\|} \frac{\mathrm{d} M}{\mathrm{~d} t}$ is a unitary vector: $\|\tau(s)\|=1$. It is by definition the tangent vector to the curve Γ.
For the previous examples, we have $\tau(s)=\frac{1}{\|\overrightarrow{A B}\|} \overrightarrow{A B}$ for the line segment, $\tau(s)=(-\sin \theta, \cos \theta)$ for the arc of circle and $\tau(s)=\frac{1}{\sqrt{1+\left(f^{\prime}(t)\right)^{2}}}\left(1, f^{\prime}(t)\right)$ for a functional curve.

- Normal vector

The normal vector $n(s)$ is defined in these lectures as the result of a rotation of angle $-\frac{\pi}{2}$ on the tangent vector $\tau(s)$. We have the relation $n(s)=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right) \tau(s)$ and looking to the components: $n_{x}=\tau_{y}, n_{y}=-\tau_{x}$. Then the local basis $(n(s), \tau(s))$ is a direct orthonormal basis of the vector plane \mathbb{R}^{2}.

For the arc of circle, we have $M(\theta)=(R \cos \theta, R \sin \theta)$ and the normal proposed in this section is simply given by $n=(\cos \theta, \sin \theta)$. We observe that it is pointing outside the disc of radius R centered at the origin.

Applied Mathematics

Exercices

- Catenary curve

We recall some elements of hyperbolic trigonometry: $\cosh x=\frac{1}{2}(\exp (x)+\exp (-x))$ and $\sinh x=\frac{1}{2}(\exp (x)-\exp (-x))$.
a) Prove that for each real number x, we have $(\cosh x)^{2}-(\sinh x)^{2}=1$.
b) Prove the following rules for the derivatives of hyperbolic cosine and hyperbolic sinus: $\frac{\mathrm{d}}{\mathrm{d} x} \cosh x=\sinh x$ and $\frac{\mathrm{d}}{\mathrm{d} x} \sinh x=\cosh x$.
We suppose given $a>0$ and $X \geq 0$. A catenary curve has a cartesian equation given by the relation $y=a \cosh \left(\frac{x}{a}\right)$ in an orthonormal frame of reference.
c) Draw the catenary curve.
d) What is the length of the catenary curve between the points of abscissa $x=0$ and $x=X$?

$$
\left[L=a \sinh \left(\frac{X}{a}\right)\right]
$$

- Length of an arch of parabola

We use hyperbolic cosine and hyperbolic sinus recalled in the previous exercice.
a) Show that the hyperbolic sinus map is continuous, strictly increasing, that $\sinh x$ approaches $+\infty$ [respectively $-\infty$] if x approaches $+\infty$ [respectively $-\infty$].
b) Deduce from the previous question that the hyperbolic sinus map is bijective from \mathbb{R} to \mathbb{R}.

We denote by argsh the inverse function: $x=\operatorname{argsh} y$ is equivalent to $y=\sinh x$.
c) What is the derivative of the function argsh?
d) Prove that we have $\operatorname{argsh} x=\log \left(x+\sqrt{1+x^{2}}\right)$.

We set $F(x)=\frac{1}{2}\left(\operatorname{argsh} x+x \sqrt{1+x^{2}}\right)$.
e) Show that the function F is derivable for $x \in \mathbb{R}$ and evaluate the derivative $\frac{\mathrm{d} F}{\mathrm{~d} x}$.

We introduce $a>0$ and the parabola of equation $y=\frac{x^{2}}{2 a}$ in an orthonormal frame of reference. We suppose also given an abscissa $X \geq 0$.
f) Compute the lenght of an arc of this parabola between the ponts with abscissa $x=0$ and $x=X$. We can explicit the result with the function F introduced previously. $\quad\left[L=a F\left(\frac{X}{a}\right)\right]$

- Length of a cycloid

A cycloid associated with a circle of radius $R>0$ admits the following parametric representation $x(\theta)=R(\theta-\sin \theta), y(\theta)=R(1-\cos \theta)$.
a) Draw this curve for $0 \leq \theta \leq 2 \pi$.
b) Express the element of length $\mathrm{d} s$ in terms of the variable θ and the infinitesimal $\mathrm{d} \theta$.
c) What is the length of the arch of cycloid between the points A corresponding to $\theta=0$ and B associated with $\theta=2 \pi$?

