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Lecture 7 Length and normal of a curve

• Plane curve in the Euclidian plane
The first example is the line segment [A, B] between the two points A(α, β ) and B(γ, δ ).
We have a parameterization [0, 1] ∋ t 7−→ M(t) = (X(t), Y (t)) = (1− t)A+ t B. In particular,
X(t) = (1− t)α + t γ and Y (t) = (1− t)β + t δ .
The second example is a circular arc. We introduce R > 0 and θ1 and θ2 such that
0 ≤ θ1 < θ2 ≤ 2π to fix the ideas. Then a point M(θ) of this curve satisfies the conditions
θ1 ≤ θ ≤ θ2 and M(θ) = R(cosθ , sinθ).
Functional curve (third exmple). For a > b two given reals, we consider the mapping
[a, b] ∋ t 7−→ f (t) ∈ R and the associate graph in the Euclidian plane: X(t) = t, Y (t) = f (t).

In general, we have two regular functions X and Y from the interval [a, b] and taking their
values in R. The curve Γ is composed by all the points M(t) = (X(t), Y (t)) for all t ∈ [a, b].

• Velocity vector
When the mapping t 7−→ M(t) is derivable, we set V (t) = dM

dt . The components of the velocity
vector are simply dM

dt =
( dX

dt ,
dy
dt

)
.

For the previous examples, we have respectively V (t) = −A+B =
−→
AB for the first example,

V (θ) = R(−sinθ , cosθ) in the second case and V (t) = (1, f ′(t)) for a functional curve.

• Length of a regular curve
We introduce an integer N ≥ 1 and we first define the approximated length LN . With h = b−a

N ,
we consiter a = t0 < t1 <...< t j = a+ j h < t j+1 = t j + h <... < tN = b and M j = M(t j).
We approach the length of the curvilear arc ¸�M j M j+1 by the length ||−−−−−→M j M j+1|| of the seg-
ment [M j, M j+1]. We have ||−−−−−→M j M j+1||=

»
(X(t j+1)−X(t j))2 +(Y (t j+1)−Y (t j))2 and we set

LN = ∑
N
j=1 ||

−−−−−→
M j M j+1|| for the length of the polygoal approximation of the curve.

We have also the following expansions, if the functions X and Y are derivable:
X(t j + h) = X(t j)+ h dX

dt (t j)+ hεX
j (h) and Y (t j + h) = Y (t j)+ h dY

dt (t j)+ hεY
j (h) with εX

j (h)

and εY
j (h) tending to zero as h tends to zero. Then ||−−−−−→M j M j+1|| = h || dM

dt (t j)||+ hη j(h)
and η j(h) tends to zero if h tends to zero. In consequence, we have the decomposition

François Dubois, 29 november 2022.



FRANÇOIS DUBOIS

LN = ∑
N
j=1 h || dM

dt (t j)||+ h ∑
N
j=1 η j(h). The second term tends to zero when h tends to zero

and the first tends to the integral
∫ b

a || dM
dt (t)|| dt in the same conditions.

The length L of the curve Γ between the parameters a and b is given by the relation
L =

∫ b
a || dM

dt (t)|| dt =
∫ b

a ||V (t)|| dt.
For an arc segment, we recover the coherence L = ||−→AB|| = AB. For an arc of circle, we have
|| dM

dθ
|| = R and L = R(θ2 − θ1). A functional curve satisfies ||V (t)|| =

√
1+( f ′(t))2 and

L =
∫ b

a

√
1+( f ′(t))2 dt.

• Regular points
A regular point M(t) of a curve Γ satisfies the condition dM

dt (t) ̸= 0. All the previous examples
are composed only with regular points.

• Curvilinear abscissa
With the notations used previously, we define the curvilinear abscissa by the relation
s(t) =

∫ t
a || dM

dt (t)|| dt. Then we have s(a) = 0, s(b) = L, the function t 7−→ s(t) is derivable
and ds

dt = || dM
dt (t)||> 0 if all the points are regular. Then this function is continuous and strictly

increasing. It realizes a bijection from the interval [a, b] onto the interval [0, L]. Its reciprocal
mapping T : [0, L] ∋ s 7−→ T (s) ∈ [a, b] gives the value of the parameter t when the value of
the curvilinear absissa is known. Moreover, this reciprocal function s 7−→ t = T (s) is derivable
and we have the classical relation dT

ds = 1
ds
dt
= 1

|| dM
dt ||

.

• Tangent vector
We use the intrinsic parametrization of the curve Γ by the curvilinear abscissa. We consider the
composed map [0, L] ∋ s 7−→ P(s) = (M◦T )(s) = M(T (s)). Then its derivate
τ(s) = dP

ds = dM
dt

dT
ds = 1

|| dM
dt ||

dM
dt is a unitary vector: ||τ(s)|| = 1. It is by definition the tangent

vector to the curve Γ.
For the previous examples, we have τ(s)= 1

||−→AB||
−→
AB for the line segment, τ(s)= (−sinθ , cosθ)

for the arc of circle and τ(s) = 1√
1+( f ′(t))2

(1, f ′(t)) for a functional curve.

• Normal vector
The normal vector n(s) is defined in these lectures as the result of a rotation of angle −π

2

on the tangent vector τ(s). We have the relation n(s) =

Ç
0 1
−1 0

å
τ(s) and looking to the

components: nx = τy, ny =−τx. Then the local basis (n(s), τ(s)) is a direct orthonormal basis
of the vector plane R2.

For the arc of circle, we have M(θ) = (R cosθ , R sinθ) and the normal proposed in this section
is simply given by n = (cosθ , sinθ). We observe that it is pointing outside the disc of radius R
centered at the origin.
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Exercices
• Catenary curve
We recall some elements of hyperbolic trigonometry: coshx = 1

2

(
exp(x) + exp(−x)

)
and

sinhx = 1
2

(
exp(x)− exp(−x)

)
.

a) Prove that for each real number x, we have (coshx)2 − (sinhx)2 = 1.
b) Prove the following rules for the derivatives of hyperbolic cosine and hyperbolic sinus:
d
dx coshx = sinhx and d

dx sinhx = coshx.

We suppose given a > 0 and X ≥ 0. A catenary curve has a cartesian equation given by the
relation y = a cosh

( x
a

)
in an orthonormal frame of reference.

c) Draw the catenary curve.
d) What is the length of the catenary curve between the points of abscissa x = 0 and x = X ?

[L = a sinh
(X

a

)
]

• Length of an arch of parabola
We use hyperbolic cosine and hyperbolic sinus recalled in the previous exercice.
a) Show that the hyperbolic sinus map is continuous, strictly increasing, that sinhx ap-
proaches +∞ [respectively −∞] if x approaches +∞ [respectively −∞].
b) Deduce from the previous question that the hyperbolic sinus map is bijective from R to R.
We denote by argsh the inverse function: x = argshy is equivalent to y = sinhx.
c) What is the derivative of the function argsh?
d) Prove that we have argshx = log

(
x+

√
1+ x2

)
.

We set F(x) = 1
2

(
argshx+ x

√
1+ x2

)
.

e) Show that the function F is derivable for x ∈ R and evaluate the derivative dF
dx .

We introduce a > 0 and the parabola of equation y = x2

2a in an orthonormal frame of reference.
We suppose also given an abscissa X ≥ 0.
f) Compute the lenght of an arc of this parabola between the ponts with abscissa x = 0 and
x = X . We can explicit the result with the function F introduced previously. [L = aF

(X
a

)
]

• Length of a cycloid
A cycloid associated with a circle of radius R > 0 admits the following parametric representa-
tion x(θ) = R(θ − sinθ), y(θ) = R(1− cosθ).
a) Draw this curve for 0 ≤ θ ≤ 2π .
b) Express the element of length ds in terms of the variable θ and the infinitesimal dθ .
c) What is the length of the arch of cycloid between the points A corresponding to θ = 0
and B associated with θ = 2π ? [8R]
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