le cnam

Master Structural Mechanics and Coupled Systems

Applied Mathematics

Lecture 4 Eigenvalues and eigenvectors

- Pair of eigenvalue and eigenvector

We consider a vector space E of finite dimension n, and a map u from E to E : for each $x \in E$, there exists a unique vector $y=u(x)$ image of x by the map u and $y \in E$. We say that u is an endomorphism of E and we write $u \in \mathscr{L}(E)$. We remark that $u(0)=0$. Then for each number λ, we have $u(0)=\lambda .0$.
We say that a non-zero vector $x \in E$ is an eigenvector of the operator u (or of the linear map u) if on one hand $x \neq 0$ and on the other hand there exists some number λ such that $u(x)=\lambda . x$. The number λ is called the eigenvalue associated with the eigenvector $x \neq 0$.
We say also that λ is an eigenvalue of the operator u if and only if there exists some vector $x \in E$ such that $x \neq 0$ and $u(x)=\lambda . x$.
For example, consider $E=P_{1}$ the vector space of all affine functions with the basis $\left(f_{0}, f_{1}\right)$ defined by $\mathbb{R} \ni t \longmapsto f_{0}(t)=1 \in \mathbb{R}$ and $\mathbb{R} \ni t \longmapsto f_{1}(t)=t \in \mathbb{R}$. The operator w from P_{1} to P_{1} defined by the relation $w\left(b f_{0}+a f_{1}\right)=(2 a+3 b) f_{1}$ is a linear map and $\lambda=0$ is an eigenvalue of this operator. We have $w\left(b f_{0}+a f_{1}\right)=0$ if and only if $2 a+3 b=0$. Then taking $a=3$ and $b=-2$ to fix the ideas, we have $w\left(r_{1}\right)=0 . r_{1}$ with $r_{1}=-2 f_{0}+3 f_{1}$. We observe that $r_{1} \neq 0$ then it can be called eigenvector of the linear map w associated with the eigenvalue $\lambda=0$. For this very specific example, we recognize also that r_{1} is a basis of the kernel Kerw.

- Matrix expression

If $\left(e_{1}, \ldots, e_{n}\right)$ is a basis of the vector space E, we consider the matrix A of the linear map $u \in \mathscr{L}(E)$. A vector $x \in E$ can be decomposed in an unique way under the form $x=\sum_{j=1}^{n} x_{j} e_{j}$ and we can introduce the column matrix $X=\left(x_{1}, \ldots, x_{n}\right)^{\mathrm{t}}$ of its components. Then x is an eigenvector of the operator u if and only if $X \neq 0$ and if there exists an eigenvalue $\lambda \in \mathbb{R}$ (or $\lambda \in \mathbb{C}$) such that $A X=\lambda X$.
By extension of the previous definition, we say that such a non-zero column vector X is an eigenvector of the matrix A with an associated eigenvalue equal to λ when we have the relation $A X=\lambda X$ with $X \neq 0$.

François Dubois

- Computation of the eigenvalues

We first recall that a square matrix B with n lines and n columns is invertible if and only if its determinant is not equal to zero. If there exists a non-zero column matrix X such that $B X=0$, then the matrix B is not invertible and its determinant is equal to zero.
Denote by I the identity matrix with n lines and n columns. Then the relation $A X=\lambda X$ is equivalent to the relation $(A-\lambda \mathrm{I}) X=0$. If X is an eigenvector of the matrix A, the matrix $B=A-\lambda \mathrm{I}$ is not invertible and we have the relation $\operatorname{det}(A-\lambda \mathrm{I})=0$. An eigenvalue λ is a root of the polynomial $p(\lambda) \equiv \operatorname{det}(A-\lambda \mathrm{I})$. This polynomial is called the characteristic polynomial. It is a polynomial of degree n if the matrix A is a square matrix of order n. We have to keep in mind that the number of eigenvalues is always limited.
For the previous example in the vector space $E=P_{1}$, the matrix of the operator w in the basis $\left(f_{0}, f_{1}\right)$ is equal to $A=\left(\begin{array}{ll}0 & 0 \\ 3 & 2\end{array}\right)$. Then $\operatorname{det}(A-\lambda \mathrm{I})=\left|\begin{array}{cc}-\lambda & 0 \\ 3 & 2-\lambda\end{array}\right|=\lambda(\lambda-2)$. The operator w admits two eigenvalues: $\lambda=0$ studied previously and $\lambda=2$.

- Computation of an eigenvector once the eigenvalue is known.

We suppose that the eigenvalue λ is known. Then it satisfies $\operatorname{det}(A-\lambda \mathrm{I})=0$. An eigenvector $x \neq 0$ in the vector space is represented with a column vector X such that $(A-\lambda \mathrm{I}) X=0$. We have to find a non-zero solution of this set of n linear equations. It is possible since the determinant of the associated linear system is null.
With the previous example, we have $A=\left(\begin{array}{ll}0 & 0 \\ 3 & 2\end{array}\right)$. If the eigenvector $r_{2}=b f_{0}+a f_{1}$ is associated with the eigenvalue $\lambda=2$, it satisfies the relation $\left(\begin{array}{ll}0 & 0 \\ 3 & 2\end{array}\right)\binom{b}{a}=2\binom{b}{a}$. Then we have $b=0$ and a can be chosen ad libitum, except the value $a=0$. A simple choice is $r_{2}=f_{1}$.

- Diagonalizable operator, diagonalizable matrix

Let E be a vector space of dimension n and u a linear map, $u \in \mathscr{L}(E)$. If there exists a basis $\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ composed by eigenvectors of the operator u, we say that the linear map u is diagonalizable. Recall that the vectors r_{j} are necessarily not equal to zero and moreover there exits eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ satisfying the n relations $u\left(r_{j}\right)=\lambda_{j} r_{j}$ for $1 \leq j \leq n$. With the matrix A of the operator u in a given basis, we introduce the column vector R_{j} composed with the coordinates of the vector r_{j}. We have the relations $A R_{j}=\lambda_{j} R_{j}$ and the conditions $R_{j} \neq 0$ for all indexes j satisfying $1 \leq j \leq n$.
It is immediate from the relations $u\left(r_{j}\right)=\lambda_{j} r_{j}$ that the matrix of the operator u in the basis $\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ is a diagonal matrix $\Lambda: \Lambda_{i j}=0$ if $i \neq j$. Moreover, the j th diagonal coefficient of the matrix Λ is exactly the eigenvalue λ_{j}. We can write $\Lambda_{i j}=\lambda_{j} \delta_{i j}$ with the Kroneker symbol $\delta_{i j}$. We remark also that if P is the transfer matrix between the initial basis $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ and the basis $\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ of eigenvectors, we have the relation $P^{-1} A P=\Lambda$. The matrix A has been changed into a diagonal matrix; we have diagonalized the operator $u \in \mathscr{L}(E)$.
By extension, we say that a given matrix A is diagonalizable if there exists an invertible matrix P and a diagonal matrix Λ such that $P^{-1} A P=\Lambda$. In this case, the columns R_{j} of the transfer matrix P are non zero column vectors and if $\Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$, we have the

Applied Mathematics

relations $A R_{j}=\lambda_{j} R_{j}$ for all the indices j.
With our example $E=P_{1}$ and $A=\left(\begin{array}{ll}0 & 0 \\ 3 & 2\end{array}\right)$, we have $\Lambda=\left(\begin{array}{ll}0 & 0 \\ 0 & 2\end{array}\right)$ in the basis $\left(r_{1}, r_{2}\right)$ with $r_{1}=-2 f_{0}+3 f_{1}$ and $r_{2}=f_{1}$ introduced previously.

- An important result

If a linear operator u admits n distinct eigenvalues, id est $\lambda_{i} \neq \lambda_{j}$ if $i \neq j$, then the linear map u is diagonalizable
It is the case for our example $E=P_{1}$ with $n=2$ associated with the matrix $A=\left(\begin{array}{ll}0 & 0 \\ 3 & 2\end{array}\right)$. The two eigenvalues, 0 and 2 , are distinct.

- There exists non-diagonalizable operators

We introduce the following example in $E=P_{1}$. We consider the basis $\left(f_{0}, f_{1}\right)$ and we define a linear map $\zeta \in \mathscr{L}\left(P_{1}\right)$ by the relations $\zeta\left(f_{0}\right)=0$ and $\zeta\left(f_{1}\right)=f_{0}$. In this basis, the operator ζ has an associated matrix $J=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$. We observe that this matrix is not equal to the zero matrix in $\mathscr{M}_{2}(\mathbb{R})$ due to the number 1 at the top right position. The calculus of the eigenvalues is easy and we observe that $\lambda=0$ is the unique (double) eigenvalue of the characteristic polynomial $p(\lambda)=\operatorname{det}(J-\lambda \mathrm{I}) \equiv \lambda^{2}$.
We say that the operator ζ is not diagonalizable: we can not find a basis of the vector space P_{1} composed uniquely with eigenvectors of ζ. Indeed, if ζ is diagonalizable, we must find an invertible matrix P such that $P^{-1} J A P=\Lambda$. In this case, the matrix Λ is equal to zero, the null matrix, because the two eigenvalues are both equal to zero. Then we must have $J=0$ because the transfer matrix P is invertible. We are in front of a contradiction since we know that the matrix J is not the null matrix. In consequence, our hypothesis of diagonalizability is false and the associated operator ζ is not diagonalizable.

François Dubois

Exercices

- Basic diagonalization

We set $A=\left(\begin{array}{ccc}2 & 8 & -7 \\ 3 & -3 & 3 \\ -2 & -2 & 7\end{array}\right)$.
a) What are the eigenvalues of this matrix ?
b) Suggest values for the eigenvectors, with expressions as simple as possible.
c) Check the previous computations through an elementary calculus.
d) Prove that the matrix A is diagonalizable.
e) What is the result matrix if we consider the associated operator in a basis of eigenvectors?
f) Same questions with the matrix $B=\left(\begin{array}{ccc}-1 & -4 & 11 \\ -4 & 14 & -4 \\ 11 & -4 & -1\end{array}\right)$.

- Diagonalization with complex numbers

We suppose given two real numbers a and b. We set $A=\left(\begin{array}{cc}a & -b \\ b & a\end{array}\right)$.
a) Show that if $b=0$, this matrix is diagonalizable on the field \mathbb{R}.
b) Prove that if $b \neq 0$, the matrix A is not diagonalizable on \mathbb{R}. We make this hypothesis $b \neq 0$ for all subsequent questions.
c) What ae the complex eigenvalues of the matrix A ?
d) Propose a set of complex eigenvectors for the matrix A.
e) If P is the square matrix whose columns are composed with the two eigenvectors of the matrix A, show without any calculation the value of the matrix $\widetilde{A}=P^{-1} A P$.

- A parameterized problem

For any real number a, we set $A=\left(\begin{array}{ccc}1 & -1 & -1 \\ -1 & a^{2} & 0 \\ -1 & 0 & a^{2}\end{array}\right)$.
a) Determine the eigenvalues and eigenvectors of the matrix A when $a=0$.
b) Same question if $a=1$.
c) Same question in all the other cases.

- Cayley-Hamilton theorem

We consider the two matrices $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ and $N=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$.
a) What are the characteristic polynomials of these two matrices ?
b) Verify that the Cayley-Hamilton theorem is satisfied: each of these matrices annul its characteristic polynomial.

