le cnam

Master Structural Mechanics and Coupled Systems

Applied Mathematics

Lecture 3 Changing the basis

- Linear map

We consider two vector spaces E and F and a map u from E to F : for each $x \in E$, there exists a unique vector $y=u(x)$ image of x by the map u. We say that the map u is linear if and only if the two following conditions of compatibility are satisfied: compatibility with the addition $\forall x, y \in E, u(x+y)=u(x)+u(y)$, and compatibility with the external multiplication $\forall \lambda \in \mathbb{R}, u(\lambda . x)=\lambda . u(x)$.
We use the following example constructed as follows. We denote by P_{1} the vector space of all affine functions. In particular the function f_{0} defined by $\left.\mathbb{R} \ni t \longmapsto f_{0}(t)\right)=1 \in \mathbb{R}$ and the function f_{1} is such that $\left.\mathbb{R} \ni t \longmapsto f_{1}(t)\right)=t \in \mathbb{R}$. The affine functions f_{0} and f_{1} are vectors in the space P_{1}. The family $\left(f_{0}, f_{1}\right)$ is a basis of P_{1}. Each $f \in P_{1}$ can be decomposed in the following way: $f=b f_{0}+a f_{1}$ and the real coefficients a and b are unique. The application w from P_{1} to P_{1} is defined by the relation $w\left(b f_{0}+a f_{1}\right)=(2 a+3 b) f_{1}$. It is a linear map defined on P_{1} and taking its values in P_{1}.

- Kernel

We consider a linear map $u \in \mathscr{L}(E, F)$ between the vector spaces E and F. The kernel
Ker u is a subset of E defined by the following condition: $x \in \operatorname{Ker} u$ if and only if $u(x)=0$.
The kernel Ker u is a vector subspace of the space E. In particular, $\operatorname{Ker} u \subset E$.
With the previous example $w \in \mathscr{L}\left(P_{1}\right)$ and we have
Ker $w=\left\{f \in P_{1}, \exists a \in \mathbb{R}, \forall t \in \mathbb{R}, f(t)=a\left(t-\frac{2}{3}\right)\right\}=<\varphi>$ with $\varphi(t)=t-\frac{2}{3}$.

- Image

We consider a linear map $u \in \mathscr{L}(E, F)$ between the vector spaces E and F. The $\operatorname{Image} \operatorname{Im} u$ is a subset of F defined by the condition that $y \in \operatorname{Im} u$ if and only if there exists $x \in E$ such that $y=u(x)$. The image $\operatorname{Im} u$ is a vector subspace of the space F and $\operatorname{Im} u \subset F$.
For the previous example with $w \in \mathscr{L}\left(P_{1}\right)$, we have
$\operatorname{Im} w=\left\{f \in P_{1}, \exists \alpha \in \mathbb{R}, f=\alpha f_{1}\right\}=<f_{1}>$.

- Conservation of the dimension

We consider a vector space E with a finite dimension: $\operatorname{dim} E=n$, where n is a nonnegative integer, and we introduce also $u \in \mathscr{L}(E)$. Then the spaces $\operatorname{Ker} u$ and $\operatorname{Im} u$ are of finite dimensions and we have the relation $\operatorname{dim} \operatorname{Ker} u+\operatorname{dim} \operatorname{Im} u=\operatorname{dim} E$.

François Dubois

For the previous example with $w \in \mathscr{L}\left(P_{1}\right)$, we have $\operatorname{dim} \operatorname{Ker} \mathrm{w}=1$ and $\operatorname{dim} \operatorname{Im} \mathrm{w}=1$ whereas $\operatorname{dim} P_{1}=2$ as we observed in the previous chapter.

- Matrix of a linear map relatively to a set of bases

We consider a vector space E of finite dimension n and we introduce a basis $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ of this space. We suppose given also a vector space F of dimension p and we introduce a basis $\left(f_{1}, f_{2}, \ldots, f_{p}\right)$ of the vector space F. For $j=1, \ldots, n$, the vector $u\left(e_{j}\right) \in F$ can be secomposed in a unique way in the basis $\left(f_{1}, f_{2}, \ldots, f_{p}\right)$: there exists unique coefficients $a_{1 j}, a_{2 j}, \ldots, a_{p j}$ in such a way that $u\left(e_{j}\right)=\sum_{i=1}^{p} a_{i j} \cdot f_{i}$. We regroup these $n p$ coefficients into a matrix $M_{u} \equiv\left(a_{i j}\right)_{1 \leq i \leq p, 1 \leq j \leq n}$ with p lines and n columns. This matrix is the matrix of the linear map u relatively to the bases $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ of E and $\left(f_{1}, f_{2}, \ldots, f_{p}\right)$ of F. We can write it in the following way: $M_{u}=\left(\begin{array}{cccccc}a_{11} & a_{12} & \cdots & a_{1 j} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 j} & \cdots & a_{2 n} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{i 1} & a_{i 2} & \cdots & a_{i j} & \cdots & a_{i n} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{p 1} & a_{p 2} & \cdots & a_{p j} & \cdots & a_{p n}\end{array}\right)$.
With the linear map $w \in \mathscr{L}\left(P_{1}\right)$ introduced previously, the associated matrix M_{w} is given by the relation $M_{w}=\left(\begin{array}{ll}0 & 0 \\ 3 & 2\end{array}\right)$ relatively to the basis $\left(f_{0}, f_{1}\right)$.

- Output of a given vector

With the previous notations, we regroup the components $x_{1}, x_{2}, \ldots, x_{n}$ of the vector $x=\sum_{j=1}^{n} x_{j} \cdot e_{j}$ in the basis $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ of E into a single vector X with one column and n lines: $X=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right)$.
Analogously, the coordinates $y_{1}, y_{2}, \ldots, y_{p}$ of the vector $y=u(x)=\sum_{i=1}^{p} y_{i} \cdot f_{i}$ in the basis $\left(f_{1}, f_{2}, \ldots, f_{p}\right)$ of F are presented with a vector Y with one column and p liges :
$Y=\left(\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{p}\end{array}\right)$.
Then the coordinates $y_{i}=\sum_{j=1}^{n} a_{i j} x_{j}$ can be expressed with the help of the product of the matrix
M_{u} with the vector $X: Y=\left(\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{i} \\ \vdots \\ y_{p}\end{array}\right)=\left(\begin{array}{cccccc}a_{11} & a_{12} & \cdots & a_{1 j} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 j} & \cdots & a_{2 n} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{i 1} & a_{i 2} & \cdots & a_{i j} & \cdots & a_{i n} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{p 1} & a_{p 2} & \cdots & a_{p j} & \cdots & a_{p n}\end{array}\right) \cdot\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{j} \\ \vdots \\ x_{n}\end{array}\right)=M_{u} \cdot X$.

Applied Mathematics

The coordinates Y of the image vector $u(x)$ are obtained by the mutiplication of the matrice M_{u} of operator u by the coordinates X of the vector $x \in E: Y=M_{u} X$.

With the previous linear map $w \in \mathscr{L}\left(P_{1}\right)$ and the vector $x=4 f_{0}-f_{1}$, we have $X=\binom{4}{-1}$.
We can perform the product and $Y=M_{w} X=\left(\begin{array}{ll}0 & 0 \\ 3 & 2\end{array}\right) \cdot\binom{4}{-1}=\binom{0}{10}$. Thus $w(x)=10 f_{1}$.

- Bijectivity

Racall that a map u from E to F is bijective if and only if for each $y \in F$, the equation $u(x)=y$ has unique solution x that belongs to the domain E.

Theorem. Let E be a vector space of finite dimension: $\operatorname{dim} E=n$ with $n \in \mathbb{N}$, and let u be a linear map from E to $E(u \in \mathscr{L}(E))$. Then u is bijective if and only if one of the following conditions is satisfied: (i) u is injective, (ii) $\operatorname{Ker} u=\{0\}$, (iii) u is surjective, (iv) $\operatorname{Im} u=E$, (v) u transforms a given basis of E into a new basis of E, (vi) the matrix M_{u} of the operator u relatively to a given basis is invertible in \mathscr{M}_{n}.
The linear map $w \in \mathscr{L}\left(P_{1}\right)$ introduced previously is not bijectie. We have for example $\operatorname{Ker} u$ of dimension 1 . We remark also that the matrix M_{w} is clearly not invertible.

The linear map $\theta \in \mathscr{L}\left(P_{1}\right)$ defined by $P_{1} \ni f=b f_{0}+a f_{1} \longmapsto \theta(f)=a f_{0}+b f_{1} \in P_{1}$ is bijective. Its matrix M_{θ} is equal to $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ and is invertible.

- Change of basis

Let E be the vector space $<e_{1}, e_{2}, \ldots, e_{n}>$ of dimension n. Then the family $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ is a basis of E. Each vector $x \in E$ can be decomposed as a linear combination of the vectors of this basis: $x=\sum_{j=1}^{n} x_{j} e_{j}$ and the coordinates x_{j} are uniquely defined. We introduce a new family of vectors $\widetilde{e}_{1}, \widetilde{e}_{2}, \ldots, \widetilde{e}_{n}$ defined by their decomposition in the previous basis: $\widetilde{e}_{k}=\sum_{j=1}^{n} P_{j k} e_{j}$. The coefficients $P_{j k}$ for $1 \leq j, k \leq n$ compose a square matrix P with n lines and n columns, called the transfer matrix. The components of the new vector \widetilde{e}_{k} define the k th column of the transfer matrix. We have the following result.
Theorem. The family of vectors $\left(\widetilde{e}_{1}, \widetilde{e}_{2}, \ldots, \widetilde{e}_{n}\right)$ is a basis of the space E if and only if the transfer matrix P is invertible.
If we wish to write the new coordinates \widetilde{x}_{k} of the previous vector $x \in E$, we have the relation $P \widetilde{X}=X$ between the column vector X of the old coordinates x_{j} and the column vector \widetilde{X} of the new coordinates $\widetilde{x}_{k}: x=\sum_{j=1}^{n} x_{j} e_{j}=\sum_{k=1}^{n} \widetilde{x}_{k} \widetilde{e}_{k}$. To explicit the coordinates in the new basis, it is necessary to solve a linear system associated with the transfer matrix.

- Change of matrix of a linear map when changing the basis of the vector space

With the standard hypothesis of a finite dimensional vector space E of dimension $n \in \mathbb{N}$, we consider a linear map $u \in \mathscr{L}(E)$ and the associated matrix M_{u} relatively a given basis $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$. When we change the basis of E for a new basis $\left(\widetilde{e}_{1}, \widetilde{e}_{2}, \ldots, \widetilde{e}_{n}\right)$ of the same space, we introduce an invertible transfer matrix P. Then the matrix \widetilde{M}_{u} of the linear map u in the new basis is related to the previous data according to the relation $\widetilde{M}_{u}=P^{-1} M_{u} P$.

François Dubois

Exercices

- A change of basis in the space of affine functions

We denote by P_{1} the space of affine functions. The basis functions f_{0} and f_{1} are defined by the relations $f_{0}(t)=1$ and $f_{1}(t)=t$ for any arbitrary $t \in \mathbb{R}$. We consider the two new functions φ_{0} and φ_{1} defined by the relations $\varphi_{0}(t)=1+t$ and $\varphi_{1}(t)=1-t$ for an arbitrary $t \in \mathbb{R}$.
a) Express the two vectors φ_{0} and φ_{1} as linear combinations of f_{0} and f_{1}.
b) What is the transfer matrix P between the family $\left(f_{0}, f_{1}\right)$ and the new family $\left(\varphi_{0}, \varphi_{1}\right)$?
c) Prove that the family $\left(\varphi_{0}, \varphi_{1}\right)$ is a basis of the space P_{1}.
d) What are the coordinates of the affine function f defined by $f(t)=a t+b$ (for an arbitrary real number $t \in \mathbb{R}$) in the basis $\left(\varphi_{0}, \varphi_{1}\right)$?

- Changing the basis of a linear map

We still denote by P_{1} the space of affine functions and by $\left(f_{0}, f_{1}\right)$ and $\left(\varphi_{0}, \varphi_{1}\right)$ the bases defined previously. The operator w (or the linear map w) is defined by the relation $w\left(b f_{0}+a f_{1}\right)=(2 a+3 b) f_{1}$.
a) Recall the value of the matrix M_{w} of the linear map w relatively to the basis $\left(f_{0}, f_{1}\right)$.
b) With a relation introduced in this chapter, precise the value of the matrix \widetilde{M}_{w} in the new basis $\left(\varphi_{0}, \varphi_{1}\right)$.
c) Express the vectors $w\left(\varphi_{0}\right)$ and $w\left(\varphi_{1}\right)$ in the basis $\left(\varphi_{0}, \varphi_{1}\right)$ and recover the result of the previous question.

- Changing the basis for an other linear map

We still denote by P_{1} the space of affine functions and by $\left(f_{0}, f_{1}\right)$ and $\left(\varphi_{0}, \varphi_{1}\right)$ the bases introduced during the first exercice. The operator θ is defined by the relation
$\theta\left(b f_{0}+a f_{1}\right)=a f_{0}+b f_{1}$.
a) Recall the value of the matrix M_{θ} of the linear map w relatively to the basis $\left(f_{0}, f_{1}\right)$.
b) Prove that the map θ is a bijection from P_{1} on the space P_{1}.
c) With an algebraic relation introduced in this chapter, precise the value of the matrix \widetilde{M}_{θ} in the new basis $\left(\varphi_{0}, \varphi_{1}\right)$.
d) Express the vectors $\theta\left(\varphi_{0}\right)$ and $\theta\left(\varphi_{1}\right)$ in the basis $\left(\varphi_{0}, \varphi_{1}\right)$ and recover the result of the previous question.

- Determinant of a linear map.

Let E be of dimension $n, u \in \mathscr{L}(E)$ a linear map from E to E, M_{u} the matrix of this map u relatively to a given basis and P the transfer matrix from the given basis and a new basis of E. We denote by \widetilde{M}_{u} the matrix of u relatively the new basis.
a) Propose an algebraic relation between the matrices P, M_{u} and \widetilde{M}_{u}.
b) Prove that the determinant does not depend on the choice of the basis: $\operatorname{det} \widetilde{M}_{u}=\operatorname{det} M_{u}$.

