le c**nam**

Master Structural Mechanics and Coupled Systems

Applied Mathematics

Lecture 3 Changing the basis

• Linear map

We consider two vector spaces *E* and *F* and a map *u* from *E* to *F*: for each $x \in E$, there exists a unique vector y = u(x) image of *x* by the map *u*. We say that the map *u* is linear if and only if the two following conditions of compatibility are satisfied: compatibility with the addition $\forall x, y \in E, u(x+y) = u(x) + u(y)$, and compatibility with the external multiplication $\forall \lambda \in \mathbb{R}, u(\lambda . x) = \lambda . u(x)$.

We use the following example constructed as follows. We denote by P_1 the vector space of all affine functions. In particular the function f_0 defined by $\mathbb{R} \ni t \mapsto f_0(t) = 1 \in \mathbb{R}$ and the function f_1 is such that $\mathbb{R} \ni t \mapsto f_1(t) = t \in \mathbb{R}$. The affine functions f_0 and f_1 are vectors in the space P_1 . The family (f_0, f_1) is a basis of P_1 . Each $f \in P_1$ can be decomposed in the following way: $f = b f_0 + a f_1$ and the real coefficients a and b are unique. The application w from P_1 to P_1 is defined by the relation $w(b f_0 + a f_1) = (2a + 3b) f_1$. It is a linear map defined on P_1 and taking its values in P_1 .

• Kernel

We consider a linear map $u \in \mathscr{L}(E, F)$ between the vector spaces E and F. The kernel Ker u is a subset of E defined by the following condition: $x \in \text{Ker } u$ if and only if u(x) = 0. The kernel Ker u is a vector subspace of the space E. In particular, Ker $u \subset E$.

With the previous example $w \in \mathscr{L}(P_1)$ and we have

Ker
$$w = \{f \in P_1, \exists a \in \mathbb{R}, \forall t \in \mathbb{R}, f(t) = a\left(t - \frac{2}{3}\right)\} = \langle \varphi \rangle$$
 with $\varphi(t) = t - \frac{2}{3}$.

• Image

We consider a linear map $u \in \mathscr{L}(E, F)$ between the vector spaces E and F. The Image Imu is a subset of F defined by the condition that $y \in \text{Im } u$ if and only if there exists $x \in E$ such that y = u(x). The image Imu is a vector subspace of the space F and Im $u \subset F$.

For the previous example with $w \in \mathscr{L}(P_1)$, we have Im $w = \{f \in P_1, \exists \alpha \in \mathbb{R}, f = \alpha f_1\} = \langle f_1 \rangle$.

• Conservation of the dimension

We consider a vector space *E* with a finite dimension: $\dim E = n$, where *n* is a nonnegative integer, and we introduce also $u \in \mathcal{L}(E)$. Then the spaces Ker*u* and Im*u* are of finite dimensions and we have the relation dim Ker u + dim Im u = dim*E*.

FRANÇOIS DUBOIS

For the previous example with $w \in \mathcal{L}(P_1)$, we have dim Ker w = 1 and dim Im w = 1 whereas dim $P_1 = 2$ as we observed in the previous chapter.

• Matrix of a linear map relatively to a set of bases

We consider a vector space E of finite dimension n and we introduce a basis (e_1, e_2, \ldots, e_n) of this space. We suppose given also a vector space F of dimension p and we introduce a basis (f_1, f_2, \ldots, f_p) of the vector space F. For $j = 1, \ldots, n$, the vector $u(e_j) \in F$ can be secomposed in a unique way in the basis (f_1, f_2, \ldots, f_p) : there exists unique coefficients $a_{1j}, a_{2j}, \ldots, a_{pj}$ in such a way that $u(e_j) = \sum_{i=1}^p a_{ij} \cdot f_i$. We regroup these np coefficients into a matrix $M_u \equiv (a_{ij})_{1 \le i \le p, 1 \le j \le n}$ with p lines and n columns. This matrix is the matrix of the linear map u relatively to the bases (e_1, e_2, \ldots, e_n) of E and (f_1, f_2, \ldots, f_p) of F. We can

write it in the following way:
$$M_{u} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2j} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ij} & \cdots & a_{in} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{p1} & a_{p2} & \cdots & a_{pj} & \cdots & a_{pn} \end{pmatrix}$$

With the linear map $w \in \mathscr{L}(P_1)$ introduced previously, the associated matrix M_w is given by the relation $M_w = \begin{pmatrix} 0 & 0 \\ 3 & 2 \end{pmatrix}$ relatively to the basis (f_0, f_1) .

• Output of a given vector

With the previous notations, we regroup the components $x_1, x_2, ..., x_n$ of the vector $x = \sum_{j=1}^n x_j \cdot e_j$ in the basis $(e_1, e_2, ..., e_n)$ of *E* into a single vector *X* with one column and

n lines: $X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$.

Analogously, the coordinates $y_1, y_2, ..., y_p$ of the vector $y = u(x) = \sum_{i=1}^p y_i \cdot f_i$ in the basis $(f_1, f_2, ..., f_p)$ of *F* are presented with a vector *Y* with one column and *p* liges :

$$Y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_p \end{pmatrix}.$$

Then the coordinates $y_i = \sum_{j=1}^n a_{ij} x_j$ can be expressed with the help of the product of the matrix $\begin{pmatrix} y_1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1k} \end{pmatrix} \begin{pmatrix} x_1 \end{pmatrix} \begin{pmatrix} x_1 \end{pmatrix}$

$$M_{u} \text{ with the vector } X: Y = \begin{pmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{i} \\ \vdots \\ y_{p} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2j} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ij} & \cdots & a_{in} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{p1} & a_{p2} & \cdots & a_{pj} & \cdots & a_{pn} \end{pmatrix} \cdot \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{j} \\ \vdots \\ x_{n} \end{pmatrix} = M_{u} \cdot X.$$

APPLIED MATHEMATICS

The coordinates *Y* of the image vector u(x) are obtained by the mutiplication of the matrice M_u of operator *u* by the coordinates *X* of the vector $x \in E$: $Y = M_u X$.

With the previous linear map $w \in \mathscr{L}(P_1)$ and the vector $x = 4f_0 - f_1$, we have $X = \begin{pmatrix} 4 \\ -1 \end{pmatrix}$.

We can perform the product and $Y = M_w X = \begin{pmatrix} 0 & 0 \\ 3 & 2 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 10 \end{pmatrix}$. Thus $w(x) = 10 f_1$.

• Bijectivity

Racall that a map u from E to F is bijective if and only if for each $y \in F$, the equation u(x) = y has unique solution x that belongs to the domain E.

Theorem. Let *E* be a vector space of finite dimension: dim E = n with $n \in \mathbb{N}$, and let *u* be a linear map from *E* to *E* ($u \in \mathcal{L}(E)$). Then *u* is bijective if and only if one of the following conditions is satisfied: (i) *u* is injective, (ii) Ker $u = \{0\}$, (iii) *u* is surjective, (iv) Im u = E, (v) *u* transforms a given basis of *E* into a new basis of *E*, (vi) the matrix M_u of the operator *u* relatively to a given basis is invertible in \mathcal{M}_n .

The linear map $w \in \mathscr{L}(P_1)$ introduced previously is not bijectie. We have for example Ker *u* of dimension 1. We remark also that the matrix M_w is clearly not invertible.

The linear map $\theta \in \mathscr{L}(P_1)$ defined by $P_1 \ni f = b f_0 + a f_1 \mapsto \theta(f) = a f_0 + b f_1 \in P_1$ is bijective. Its matrix M_{θ} is equal to $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and is invertible.

• Change of basis

Let *E* be the vector space $\langle e_1, e_2, ..., e_n \rangle$ of dimension *n*. Then the family $(e_1, e_2, ..., e_n)$ is a basis of *E*. Each vector $x \in E$ can be decomposed as a linear combination of the vectors of this basis: $x = \sum_{j=1}^{n} x_j e_j$ and the coordinates x_j are uniquely defined. We introduce a new family of vectors $\tilde{e}_1, \tilde{e}_2, ..., \tilde{e}_n$ defined by their decomposition in the previous basis: $\tilde{e}_k = \sum_{j=1}^{n} P_{jk} e_j$. The coefficients P_{jk} for $1 \leq j, k \leq n$ compose a square matrix *P* with *n* lines and *n* columns, called the transfer matrix. The components of the new vector \tilde{e}_k define the *k*th column of the transfer matrix. We have the following result.

Theorem. The family of vectors $(\tilde{e}_1, \tilde{e}_2, \dots, \tilde{e}_n)$ is a basis of the space *E* if and only if the transfer matrix *P* is invertible.

If we wish to write the new coordinates \tilde{x}_k of the previous vector $x \in E$, we have the relation $P\tilde{X} = X$ between the column vector X of the old coordinates x_j and the column vector \tilde{X} of the new coordinates \tilde{x}_k : $x = \sum_{j=1}^n x_j e_j = \sum_{k=1}^n \tilde{x}_k \tilde{e}_k$. To explicit the coordinates in the new basis, it is necessary to solve a linear system associated with the transfer matrix.

• Change of matrix of a linear map when changing the basis of the vector space

With the standard hypothesis of a finite dimensional vector space E of dimension $n \in \mathbb{N}$, we consider a linear map $u \in \mathscr{L}(E)$ and the associated matrix M_u relatively a given basis (e_1, e_2, \ldots, e_n) . When we change the basis of E for a new basis $(\tilde{e}_1, \tilde{e}_2, \ldots, \tilde{e}_n)$ of the same space, we introduce an invertible transfer matrix P. Then the matrix \tilde{M}_u of the linear map u in the new basis is related to the previous data according to the relation $\tilde{M}_u = P^{-1}M_u P$.

FRANÇOIS DUBOIS

Exercices

• A change of basis in the space of affine functions

We denote by P_1 the space of affine functions. The basis functions f_0 and f_1 are defined by the relations $f_0(t) = 1$ and $f_1(t) = t$ for any arbitrary $t \in \mathbb{R}$. We consider the two new functions φ_0 and φ_1 defined by the relations $\varphi_0(t) = 1 + t$ and $\varphi_1(t) = 1 - t$ for an arbitrary $t \in \mathbb{R}$.

- a) Express the two vectors φ_0 and φ_1 as linear combinations of f_0 and f_1 .
- b) What is the transfer matrix P between the family (f_0, f_1) and the new family (φ_0, φ_1) ?
- c) Prove that the family (φ_0, φ_1) is a basis of the space P_1 .

d) What are the coordinates of the affine function *f* defined by f(t) = at + b (for an arbitrary real number $t \in \mathbb{R}$) in the basis (φ_0, φ_1) ?

• Changing the basis of a linear map

We still denote by P_1 the space of affine functions and by (f_0, f_1) and (φ_0, φ_1) the bases defined previously. The operator w (or the linear map w) is defined by the relation $w(bf_0 + af_1) = (2a + 3b)f_1$.

a) Recall the value of the matrix M_w of the linear map w relatively to the basis (f_0, f_1) .

b) With a relation introduced in this chapter, precise the value of the matrix M_w in the new basis (φ_0, φ_1) .

c) Express the vectors $w(\varphi_0)$ and $w(\varphi_1)$ in the basis (φ_0, φ_1) and recover the result of the previous question.

• Changing the basis for an other linear map

We still denote by P_1 the space of affine functions and by (f_0, f_1) and (φ_0, φ_1) the bases introduced during the first exercice. The operator θ is defined by the relation

$$\theta(bf_0+af_1)=af_0+bf_1.$$

- a) Recall the value of the matrix M_{θ} of the linear map w relatively to the basis (f_0, f_1) .
- b) Prove that the map θ is a bijection from P_1 on the space P_1 .

c) With an algebraic relation introduced in this chapter, precise the value of the matrix M_{θ} in the new basis (φ_0, φ_1) .

d) Express the vectors $\theta(\varphi_0)$ and $\theta(\varphi_1)$ in the basis (φ_0, φ_1) and recover the result of the previous question.

• Determinant of a linear map.

Let *E* be of dimension *n*, $u \in \mathscr{L}(E)$ a linear map from *E* to *E*, M_u the matrix of this map *u* relatively to a given basis and *P* the transfer matrix from the given basis and a new basis of *E*. We denote by \widetilde{M}_u the matrix of *u* relatively the new basis.

- a) Propose an algebraic relation between the matrices P, M_u and M_u .
- b) Prove that the determinant does not depend on the choice of the basis: $\det M_u = \det M_u$.