The systematic quest for exotic derivations.

Interesting *exotic derivations* appear to fall into three broad classes, of which the first two are well understood, the third one hardly at all. They are:

- The alien derivations Δ_{ω} : it is their pull-backs $\widehat{\Delta}_{\omega}$ in the ζ -plane, or Borel plane, that make direct sense. These $\widehat{\Delta}_{\omega}$ are derivations relative to the convolution product * and can tackle any type of isolated singularity over the points $\omega \in \mathbb{C}$.
- The foreign derivations ∇_{ω} : they are defined directly in the multiplicative z-plane; act as derivations relative to ordinary point-wise multiplication; but can tackle only mild singularities of type exp(o(logz)) over $\omega \in \mathbb{C}$.
- The arithmetical derivations \Box_{τ} : these are derivations that act trivially on the ring \mathbb{A} of algebraic numbers, and non-trivially on some larger ring \mathbb{B} , with $\mathbb{A} \subset \mathbb{B} \subset \mathbb{C}$.

A useless instance would be a ring $\mathbb{B} = \mathbb{A} \otimes \mathbb{Q}[\cup_{\tau} x_{\tau}]$ generated by a set of complex numbers x_{τ} known to be transcendental and algebraically independent, with derivations \Box_{τ} acting as follows:

$$- \qquad \Box_{\tau}(x y) \equiv (\Box_{\tau} x) y + x (\Box_{\tau} y)$$

$$- \qquad \Box_{\tau} \mathbb{A} = \{0$$

- $\Box_{\tau_1} x_{\tau_2} = \delta_{\tau_1, \tau_2}$ (= Kronecker symbol)

A useful instance would be the exact reverse: it would be a ring \mathbb{B} consisting of numbers whose arithmetical nature is a priori unknown, plus a system \square of derivations \square_{τ} whose action is defined directly, based on some universal representation of the numbers in \mathbb{B} (say, some generalisation of continued fractions) so that the arithmetical nature of the elements of \mathbb{B} (transcendence + algebraic dependence or independence) could be inferred from the action of \square on \mathbb{B} . The theory is still in its infancy – it is actually more of a dream than even an infant theory – but the multizetas, with the perinomal representation of their irreducibles, might offer a promising start.