Arithmetical dimorphy for multizetas. Canonical irreducibles.

Warning: the various symmetry types are defined in the bottom section.
Coloured multizetas, actual and formal. Dimorphy.
In the first basis, the multizetas are given by polylogarithmic integrals:

$$
\mathrm{Wa}_{*}^{\alpha_{1}, \ldots, \alpha_{l}}:=(-1)^{l_{0}} \int_{0}^{1} \frac{d t_{l}}{\left(\alpha_{l}-t_{l}\right)} \ldots \int_{0}^{t_{3}} \frac{d t_{2}}{\left(\alpha_{2}-t_{2}\right)} \int_{0}^{t_{2}} \frac{d t_{1}}{\left(\alpha_{1}-t_{1}\right)}
$$

with α_{j} either 0 or a unit root, and l_{0} the number of zeros in $\left\{\alpha_{1}, \ldots, \alpha_{l}\right\}$. In the second basis, multizetas are expressed as harmonic sums :

$$
\left.\mathrm{Ze}_{*}{ }_{\left(\epsilon_{1}, \ldots, s_{1}, \ldots, \epsilon_{r}\right)}^{\epsilon_{1}}\right):=\sum_{n_{1}>\cdots>n_{r}>0} n_{1}^{-s_{1}} \ldots n_{r}^{-s_{r}} e_{1}^{-n_{1}} \ldots e_{r}^{-n_{r}}
$$

with $s_{j} \in \mathbb{N}^{*}$ and unit roots $e_{j}:=\exp \left(2 \pi i \epsilon_{j}\right)$ with 'logarithms' $\epsilon_{j} \in \mathbb{Q} / \mathbb{Z}$. The star * in $W a_{*}^{\bullet}$ or $Z e_{*}^{\bullet}$ signals restriction to the convergent case. Its removal denotes extension to the divergent case. The conversion rule

$$
\left.\mathrm{Wa}_{*}{ }^{e_{1}, 00^{\left[s_{1}-1\right]}, \ldots, e_{r}, 0^{\left[s_{r}-1\right]}}:=\mathrm{Ze}_{*} \stackrel{\left(\begin{array}{c}
\varepsilon_{r}, \\
s_{r},
\end{array}, \epsilon_{r_{r}-1 . r}, \ldots, \ldots, \epsilon_{1: 2}, 2\right.}{s_{r-1}}, \ldots, s_{1}\right)
$$

together with the bimould symmetries (see infra, in the bottom section)

| $\mathrm{Wa}_{*}^{\bullet}$ | is symmetral with a unique symmetral extension | $\mathrm{Wa} \bullet$ |
| ---: | :--- | :--- | :--- |
| $\mathrm{Ze}_{*}^{\bullet}$ | is symmetrel with a unique symmetrel extension | Ze |

and the multiplication rules they encode, are the essence of multizeta dimorphy. It is conjectured that these three rules exhaust all algebraic relations between multizetas. Pending a proof, the symbols $w a^{\bullet}$ and $z e^{\bullet}$ subject to the three rules, are known as formal multizetas. They are known to span a polynomial subring $\mathbb{Q}\left[\cup_{j} i r r_{j}\right]$ of \mathbb{C} generated by contably many irreducibles $i r r_{j}$, and the challenge is to describe these irreducibles.

Generating series. Dimorphy rephrased.
The generating series

$$
\begin{aligned}
& \operatorname{zag}^{\binom{u_{1}, \ldots, u_{r}}{\epsilon_{1}, \ldots, \epsilon_{r}}}:=\sum_{1 \leqslant s_{j}} \operatorname{wa}^{e_{1}, 0^{\left[s_{1}-1\right]}, \ldots, e_{r}, 0^{\left[s_{r}-1\right]}} u_{1}^{s_{1}-1} u_{12}^{s_{2}-1} \ldots u_{12 \ldots r}^{s_{r}-1} \\
& \operatorname{zig}^{\binom{\left(\epsilon_{1}, \ldots, \varepsilon_{r}\right.}{v_{1}, \ldots, v_{r}}}:=\sum_{1 \leqslant s_{j}} \mathrm{ze}^{\binom{\left(\epsilon_{1}, \ldots, \epsilon_{r}\right.}{s_{1}, \ldots, s_{r}}} v_{1}^{s_{1}-1} \ldots v_{r}^{s_{r}-1}
\end{aligned}
$$

define bimoulds $z a g^{\bullet}, z i g^{\bullet}$ of type as/as and as/is (see bottom section). Moreover, $z a g^{\bullet}$ and $z i g^{\bullet}$ are essentially exchanged by the involution swap:
$\operatorname{swap}\left(\mathrm{zig}^{\bullet}\right)\left\{\begin{array}{l}=\mathrm{zag}^{\bullet} \times \mathrm{mana}^{\bullet} \\ =\operatorname{gari}\left(\mathrm{zag}^{\bullet}, \text { mana }^{\bullet}\right) \\ =\operatorname{gari}\left(\text { mana }^{\bullet}, \mathrm{zag}^{\bullet}\right)\end{array} \quad\right.$ with $\quad\left\{\begin{array}{l}\mathrm{zag}^{\bullet} \in \mathrm{GARI}^{\mathrm{as} / \mathrm{as}} \\ \mathrm{zig}^{\bullet} \in \mathrm{GARI}^{\mathrm{as} / \mathrm{is}} \\ \text { mana } \bullet \in \operatorname{center}(\mathrm{GARI})\end{array}\right.$
The corrective term is an elementary, u_{i}-independent bimould mana ${ }^{\bullet}$ whose only non-zero components are expressible in terms of monozetas:
$1+\sum_{r \geqslant 2} \operatorname{mana}\left(\begin{array}{c}\left(\begin{array}{c}u_{1}, \ldots, u_{r} \\ 0\end{array}, \ldots, 0_{0}\right.\end{array}\right) t^{r}:=\exp \left(\sum_{s \geqslant 2}(-1)^{s-1} \zeta(s) \frac{t^{s}}{s}\right)$
The above relations amount to an exact rephrasing of multizeta dimorphy in the more flexible $A R I / G A R I$ framework.

Multizeta parsing and canonical irreducibles.

The generating series $z a g^{\bullet}$ neatly factors as:

$$
\mathrm{zag}^{\bullet}=\operatorname{gari}\left(\mathrm{zag}_{\mathrm{I}}^{\bullet}, \mathrm{zag}_{\mathrm{II}}^{\bullet}, \mathrm{zag}_{\mathrm{III}}^{\bullet}\right) \quad \text { with } \quad\left\{\begin{array}{l}
\mathrm{zag}_{\mathrm{I}}^{\bullet} \in \operatorname{GARI}_{\mathrm{e} . \mathrm{ws}}^{\mathrm{as}} / \mathrm{ss} \\
\mathrm{zag}_{\mathrm{II}}^{\bullet} \in \operatorname{GARI}_{\mathrm{e} . \mathrm{ws}}^{\mathrm{Is}} \\
\mathrm{zag}_{\mathrm{III}}^{\bullet} \in \operatorname{GARI}_{\mathrm{IS} . \mathrm{w} .}^{\mathrm{as} / \mathrm{is}}
\end{array}\right.
$$

with factors $z a g_{\mathrm{I}}^{\bullet}, z a g_{I I}^{\bullet}$ (even weights), $\mathrm{zag}_{\mathrm{III}}^{\bullet}$ (odd weights) that break down to:

$$
\begin{aligned}
\mathrm{zag}_{\mathrm{I}}^{\bullet} & \left.\left.=\text { gari }\left(\text { tal }^{\bullet}, \text { invgari }\left(\text { pal } \mathbf{l}^{\bullet}\right), \text { expari(roma}\right)^{\bullet}\right)\right) \\
\operatorname{act}\left(\mathrm{zag}_{\mathrm{II}}^{\bullet}\right) & =1+\sum \operatorname{irr}_{\mathrm{II}}^{s_{1}, \ldots, s_{r}} \operatorname{act}\left(\tau^{s_{1}} \operatorname{lom} a^{\bullet}\right) \ldots \operatorname{act}\left(\tau^{s_{r}} \operatorname{loma}{ }^{\bullet}\right) \\
\operatorname{act}\left(\mathrm{zag}_{\mathrm{III}}^{\bullet}\right) & =1+\operatorname{irI}_{\mathrm{III}}^{s_{1}, \ldots, s_{r}} \operatorname{act}\left(\tau^{s_{1}} \operatorname{lom} a^{\bullet}\right) \ldots \operatorname{act}\left(\tau^{s_{r}} \operatorname{lom} a^{\bullet}\right)
\end{aligned}
$$

If for simplicity we limit ourselves to uncoloured multizetas (i.e. $\epsilon_{i} \equiv 0$), then:

- loma ${ }^{\bullet}$, roma ${ }^{\bullet}$ are elements of $A R I^{a l / i l}$ with rational coefficients
- τ^{s} is the projector $M^{\binom{u_{1}, \ldots, u_{r}}{v_{1}, \ldots, v_{r}}} \mapsto M^{\binom{u_{1}, \ldots, u_{r}}{v_{1}, \ldots, v_{r}}} \|_{u_{\text {-part of degree } s-r}}$
- In both sums \sum, the indices s_{i} run through all odd integers $\geqslant 3$
- "act" is any transitive action of $A R I / G A R I$ in $B I M U-$ no matter which.
- Together with $\operatorname{irr}_{I}^{2}=\sim$ " $\pi^{2} "$, the symmetral moulds $\mathrm{irr} \mathrm{III}^{\bullet}$ and $\mathrm{irr}_{\mathrm{III}}^{\bullet}$

$$
\begin{cases}\operatorname{irr}_{\mathrm{II}}^{\bullet}=\left\{\operatorname{irr}^{s_{1}, s_{2}, \ldots, s_{r}} \in \mathbb{C} ;\right. & \text { with } \left.r \in\{2,4,6 \ldots\} \text { and } s_{i} \in\{3,5,7,9 \ldots\}\right\} \\ \operatorname{irr}_{\mathrm{III}}^{\bullet}=\left\{\operatorname{irr}_{1_{1}, s_{2}, \ldots, s_{r}} \in \mathbb{C} ;\right. & \text { with } \left.r \in\{1,2,3 \ldots\} \text { and } s_{i} \in\{3,5,7,9 \ldots\}\right\}\end{cases}
$$

jointly constitute a system, complete and free, of multizeta irreducibles.

Perinomal algebra:

A function $\rho: \mathbb{N}^{*} \rightarrow \mathbb{Z}$ is perinomal of degrees $d_{i, j}$ if each $f\left(x_{1}, . ., x_{i}+k x_{j}, . ., x_{r}\right)$ is polynomial in k of degree $d_{i, j}$. The irreducibles $i r r^{\bullet}$, irr $_{\mathrm{II}}^{\bullet}, i r r_{\mathrm{III}}^{\bullet}$ are perinomal numbers $\rho^{\#}$ attached to remarkable perinomal functions ρ via the series:

$$
\rho^{\#}\left(s_{1}, \ldots, s_{r}\right) \stackrel{e s s}{=} \sum_{n_{i} \in \mathbb{N}^{*}} \rho\left(n_{1}, \ldots, n_{r}\right) n_{1}^{-s_{1}} \ldots n_{r}^{-s_{r}}
$$

N.B. Bimould symmetries (simple or double):

A bimould A^{\bullet} is symmetral,-el,-il (resp. alternal,-el,--il) if for all $\boldsymbol{w}^{1}, \boldsymbol{w}^{2}$:

$$
\sum_{\boldsymbol{w}} A^{\boldsymbol{w}} \equiv\left\{\begin{array} { l l }
{ A ^ { \boldsymbol { w } ^ { \mathbf { 1 } } } A ^ { \boldsymbol { w } ^ { \mathbf { 2 } } } } \\
{ \text { resp 0 } }
\end{array} \quad \left\{\begin{array}{ll}
\text { symmetral, alternal }: & \boldsymbol{w} \in \operatorname{sha}\left(\boldsymbol{w}^{\mathbf{1}}, \boldsymbol{w}^{2}\right) \\
\text { symmetrel, alternel }: & \boldsymbol{w} \in \operatorname{she}\left(\boldsymbol{w}^{\mathbf{1}}, \boldsymbol{w}^{2}\right) \\
\text { symmetril, alternil: } & \boldsymbol{w} \in \operatorname{shi}\left(\boldsymbol{w}^{\mathbf{1}}, \boldsymbol{w}^{2}\right)
\end{array}\right.\right.
$$

Here $\operatorname{sha}\left(\boldsymbol{w}^{\mathbf{1}}, \boldsymbol{w}^{\mathbf{2}}\right)$ (resp. she $\left.\left(\boldsymbol{w}^{\mathbf{1}}, \boldsymbol{w}^{\mathbf{2}}\right)\right)$ denotes the set of all ordinary (resp. contracting) shufflings of the sequences $\boldsymbol{w}^{1}, \boldsymbol{w}^{2}$. Under ordinary/contracting shufflings, adjacent indices w_{i}, w_{j} stemming from different sequences are forbidden/allowed to merge into $w_{i}+w_{j}$. In the case symmetril/alternil, the
straightforward addition $\left(w_{i}, w_{j}\right) \mapsto w_{i}+w_{j}$ makes way for the subtler contractions:

$$
\left(A^{\left(\cdots, u_{i}, \ldots\right)}, A^{\left(\cdots, v_{j}, \ldots, \ldots\right)}\right) \mapsto \frac{1}{v_{i}-v_{j}}\left(A^{\left(\cdots, u_{i}+u_{j}, \ldots\right)} \underset{v_{j}, \ldots}{\left(\cdots, \ldots, v_{j}, \ldots, u_{i}+u_{j}, \ldots\right)}\right)
$$

A bimould is said to be of type $a s / a s$ or $a s / i s$ (resp. al/al or al/il) if it is symmetral with a symmetral or symmetril swappee (resp. alternal with an alternal or alternil swappee).

The sets $G A R I^{\underline{a s} / \underline{a s},}$,GARI $I^{a s / i s}$ of all even bimoulds of type $a s / a s$ or $a s / i s$ are subgroups of GARI.

The sets $A R I^{\underline{a l} / \underline{a l},} A R I^{\underline{a l} / \underline{i l}}$ of all even bimoulds of type $a l / a l$ or $a l / i l$ are subalgebras of $A R I$.
(An even bimould is of course one that verifies $M^{-\boldsymbol{w}} \equiv M^{\boldsymbol{w}}$ for all \boldsymbol{w}. Bialternality or bisymmetrality automatically imply parity for components of depth $r \geqslant 2$ but not for $r=1$).

