Examen de Mathématiques - Corrigé des exercices

EXERCICE 1

1a. Soit A un réel strictement supérieur à 2. Par intégration par parties, on obtient :

$$\begin{split} \int_2^A \frac{\sin t}{(\ln t)^\alpha} dt &= \left[\frac{-\cos t}{(\ln t)^\alpha} \right]_2^A - \int_2^A \frac{\alpha \cos t}{t (\ln t)^{\alpha+1}} dt \\ &= \frac{-\cos A}{(\ln A)^\alpha} - \frac{\cos 2}{(\ln 2)^\alpha} - \int_2^A \frac{\alpha \cos t}{t (\ln t)^{\alpha+1}} dt. \end{split}$$

Comme $\alpha > 0$, le premier terme tend vers 0 et l'intégrale $\int_2^\infty \frac{\cos t}{t(\ln t)^{\alpha+1}} dt$ est absolument convergente. En effet, $|\cos t| \leq 1$ et $\int_2^\infty \frac{1}{t(\ln t)^{\alpha+1}} dt$ est une intégrale de Bertrand convergente. Par conséquent, pour $\alpha > 0$, l'intégrale I est convergente. $(1,5 \ pt)$

1b. Pour tout entier $k \ge 1$ et tout réel t compris entre x_k et y_k , on a $\sin t \ge \frac{1}{2}$. De plus, comme $\alpha \le 0$, la fonction $t \mapsto \frac{1}{(\ln t)^{\alpha}}$ est croissante. Comme $x_1 = \frac{\pi}{6} + 2\pi \ge e$, on obtient pour tout $t \in [x_k, y_k]$, $\frac{\sin t}{(\ln t)^{\alpha}} \ge \frac{1}{2}$. Ainsi, pour tout entier $k \ge 1$, on obtient :

$$\int_{x_k}^{y_k} \frac{\sin t}{(\ln t)^{\alpha}} dt \geqslant \frac{\pi}{3} \text{ et donc, Inf } \left\{ \int_{x_k}^{y_k} \frac{\sin t}{(\ln t)^{\alpha}} dt, k \in \mathbb{N}^* \right\} \geqslant \frac{\pi}{3} > 0. \ (0.75 \text{ pt})$$

Si l'intégrale I était convergente, les suites de termes généraux $\int_2^{x_k} \frac{\sin t}{(\ln t)^{\alpha}} dt$ et $\int_2^{y_k} \frac{\sin t}{(\ln t)^{\alpha}} dt$ seraient convergentes de même limite. Mais alors la suite de terme général $\int_{x_k}^{y_k} \frac{\sin t}{(\ln t)^{\alpha}} dt$ devrait tendre vers 0 quand k tend vers l'infini. Ce qui est impossible car cette suite est minorée par $\frac{\pi}{3}$, donc l'intégrale I diverge si $\alpha \leqslant 0$. (0,75~pt)

EXERCICE 2

- 2a. Après calcul, le polynôme caractéristique vaut : $P(\lambda) = -\lambda(\lambda^2 4\lambda + 4 ab)$. (0,5 pt) Le nombre de racines réelles de ce polynôme dépend du discriminant du polynôme $\lambda^2 4\lambda + 4 ab$. Comme ce discriminant vaut $\Delta = 4ab$, on étudie les différentes valeurs possibles de ab.
 - (1er cas) Si ab < 0, le polynôme caractéristique n'est pas scindé sur \mathbb{R} et $g_{a,b}$ n'est pas trigonalisable (et donc pas diagonalisable). Dès que $ab \ge 0$, $g_{a,b}$ est trigonalisable. (0,5 pt)
 - (2e cas) Si ab > 0, comme ab ≠ 4, les racines de P(λ) sont réelles et distinctes, g_{a,b} est donc diagonalisable. (0,5 pt)
 - Si ab = 0, les valeurs propres sont 0 de multiplicité 1 et 2 de multiplicité 2. Déterminons la dimension du sous-espace propre E₂. Pour cela, il suffit de déterminer le rang de la matrice :

$$C_{a,b} - 2I = \left(\begin{array}{ccc} -1 & -1 & b \\ -1 & -1 & 0 \\ a & -a & 0 \end{array} \right)$$

(3° cas) si
$$b \neq 0$$
 et $ab = 0$, alors $\operatorname{rg}(C_{a,b} - 2I) = 2$ (car $\begin{vmatrix} -1 & b \\ -1 & 0 \end{vmatrix} = b \neq 0$). Donc $\dim E_2 = 1$ et $g_{a,b}$ n'est pas diagonalisable. $(0,5 \ pt)$

(4e cas) si
$$a \neq 0$$
 et $ab = 0$, alors $\operatorname{rg}(C_{a,b} - 2I) = 2$ (car $\begin{vmatrix} -1 & -1 \\ a & -a \end{vmatrix} = 2a \neq 0$). Donc dim $E_2 = 1$ et $g_{a,b}$ n'est pas diagonalisable. $(0,5 \ pt)$

(5e cas) si a = b = 0, alors $rg(C_{a,b} - 2I) = 1$, donc dim $E_2 = 2$ et $g_{0,0}$ est bien diagonalisable. (0,5 pt)

En conclusion, l'endomorphisme $g_{a,b}$ est donc trigonalisable si et seulement si $ab \ge 0$. De plus, elle est diagonalisable si et seulement si a = 0 = b ou si ab > 0 et $ab \ne 4$.

2b. Un vecteur de coordonnées (x, y, z) appartient à E₂ si et seulement si x + y = 0. Les deux vecteurs u₂ = e₁ - e₂ et u₃ = e₃ forment donc une base de E₂ (car E₂ est de dimension 2). De plus, on montre facilement que le vecteur u₁ = e₁ + e₂ engendre le sous-espace propre E₀, car a = 0. Les vecteurs u₁, u₂, u₃ constituent une base de R³ constituée de vecteurs propres de g_{0,0}. Donc une base de l'ensemble des solutions du système différentiel X' = C_{0,0}X est (u₁, e^{2t}u₂, e^{2t}u₃). (1 pt) La solution générale s'écrit donc :

$$X = \left(egin{array}{c} A + Be^{2t} \\ A - Be^{2t} \\ Ce^{2t} \end{array}
ight), \qquad \mbox{où } A,B,C \mbox{ sont des réels.}$$

Il reste à déterminer les constantes A, B et C en fonction des conditions initiales, on a : $x_1(0) = 1 = A + B, x_2(0) = 0 = A - B, x_3(0) = 1 = C$. D'où la solution recherchée :

$$X = \begin{pmatrix} \frac{1}{2} + \frac{e^{2t}}{2} \\ \frac{1}{2} - \frac{e^{2t}}{2} \\ e^{2t} \end{pmatrix} . (0,5 pt)$$

2c. On sait déjà que $f_1=e_1+e_2$ forme une base de E_0 et que $f_2=e_1-e_2$ forme une base de E_2 . Soit $xe_1+ye_2+ze_3$ le troisième vecteur de la base recherchée. Il doit vérifier l'équation $g_{0,2}(xe_1+ye_2+ze_3)=2(xe_1+ye_2+ze_3)+(e_1-e_2)$. En résolvant le système d'équations linéaires précédent, on trouve que le vecteur $f_3=e_1+e_3$ convient. La matrice de passage de $\mathfrak B$ à $\mathfrak B'=(f_1,f_2,f_3)$ est alors :

$$P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, (0.5 \text{ pt}) \qquad \text{d'inverse } P^{-1} = \frac{1}{2} \begin{pmatrix} 1 & 1 & -1 \\ 1 & -1 & -1 \\ 0 & 0 & 2 \end{pmatrix}, (0.5 \text{ pt})$$

et la matrice de $g_{0,2}$ dans la base \mathfrak{B}' est bien B. On peut écrire B=D+N, où

$$D = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{array} \right) \qquad \text{et} \qquad N = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array} \right).$$

On a DN=ND et $N^2=0$. On peut donc appliquer la formule du binôme de Newton :

$$B^n = D^n + nND^{n+1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2^n & n2^{n-1} \\ 0 & 0 & 2^n \end{pmatrix} .(0.5 pt)$$

Par conséquent, $C_{0,2} = PBP^{-1}$, $C_{0,2}^n = PBP^{-1}$, et on obtient

$$C_{0,2}^{n} = \begin{pmatrix} 2^{n-1} & -2^{n-1} & 2^{n-1}(n+1) \\ -2^{n-1} & 2^{n-1} & 2^{n-1}(1-n) \\ 0 & 0 & 2^{n} \end{pmatrix} . (0,5 \text{ pt})$$

2d. On montre par récurrence que $Y_n = C_{0,2}^n Y_0$, donc :

$$Y_n = \begin{pmatrix} 2^{n-1} & -2^{n-1} & 2^{n-1}(n+1) \\ -2^{n-1} & 2^{n-1} & 2^{n-1}(1-n) \\ 0 & 0 & 2^n \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2^{n-1}(n+1) \\ 2^{n-1}(1-n) \\ 2^n \end{pmatrix}.$$

Par conséquent, $\lim_{n\to\infty} \frac{u_n}{v_n} = \lim_{n\to\infty} \frac{1+n}{1-n} = -1$ et on a bien u_n équivalent à $-v_n$. (1 pt)

EXERCICE 3

- 3a. On a, pour tout entier n, $f_n(0) = \frac{\pi}{2} \arctan 1 = \frac{\pi}{4}$. De plus, pour tout réel x > 0, 1 + nx tend vers $+\infty$ quand n tend vers l'infini. La suite $(f_n)_{n\geqslant 0}$ converge donc simplement vers la fonction f telle que $f(0) = \frac{\pi}{4}$ et f(x) = 0 pour tout réel x > 0. (0,5 pt)
- 3b. Comme chaque fonction f_n est continue sur $[0, +\infty[$ et comme f n'est pas continue sur $[0, +\infty[$, la suite de fonctions f_n ne converge pas uniformément sur $[0, +\infty[$. (0,5 pt) Soit b > 0. Comme la fonction arctan est croissante, chaque fonction f_n est décroissante. Ainsi, on a :

$$\sup_{x \in [b, +\infty[} |f_n(x) - f(x)| = |f_n(b)| \xrightarrow[n \to \infty]{} 0.$$

Ainsi, la suite (f_n) converge uniformément sur tout intervalle de la forme $[b, +\infty[$ avec b > 0.(0.5 pt)

3c. Comme a > 0, on a pour tout réel $y \ge a$:

$$\frac{1}{1 + 2y + y^2} \leqslant \frac{1}{1 + y^2} \leqslant \frac{1}{y^2}.$$

En intégrant cette inégalité entre a et ∞ , on obtient l'inégalité requise. $(0,5\ pt)$ De plus, la fonction $\arctan y$ est une primitive de $\frac{1}{1+y^2}$ et on déduit donc l'encadrement suivant :

$$\frac{1}{1+a} \leqslant \frac{\pi}{2} - \arctan a \leqslant \frac{1}{a},$$

d'où l'inégalité suivante pour tout $n \in \mathbb{N}^-$ et $x \geqslant 0$:

$$\frac{1}{2+nx} \leqslant f_n(x) \leqslant \frac{1}{1+nx}.(0.5 \text{ pt})$$

3d. Pour tout x > 0, l'inégalité de la question précédente montre que $u_n(x) \le \frac{1}{n+n^2x} \le \frac{1}{n^2x}$. Comme $\sum \frac{1}{n^2}$ est une série de Riemann convergente, la série de fonctions $\sum u_n$ converge simplement sur $|0, +\infty|$. $(0, 75 \ pt)$

Comme chaque fonction f_n est décroissante, chaque fonction u_n est décroissante. Il en est donc de même pour chaque somme partielle et la somme u de la série est décroissante sur $]0, +\infty[.(0,5 pt)]$

3e. Soit b > 0, comme u_n est décroissante, on a : $\sup_{x \in [b, +\infty[} |u_n(x)| = u_n(b)$. Comme la série

 $\sum u_n(b)$ est convergente, la série $\sum u_n$ est normalement convergente sur $[b, +\infty[$. (0,5)

Chacune des fonctions u_n est continue et dérivable. Comme $\sum u_n$ converge uniformément sur chaque intervalle $[b, +\infty[$, la somme u est continue sur chaque intervalle $[b, +\infty[$, et donc sur $]0, +\infty[.(0,25\ pt)$ D'autre part, la dérivée de u_n vaut $u'_n(x) = \frac{-1}{n^2x^2+2nx+2}$. Comme $|u'_n(x)| \leq \frac{1}{n^2x^2}$, la série $\sum u'_n(x)$ converge simplement. De plus, $|u'_n(x)|$ est décroissante, de sorte que $\sum u'_n$ est normalement convergente sur tout intervalle $[b, +\infty[$ (comme ci-dessus). En appliquant le théorème de dérivation term à terme sur un segment [b,c] avec b < c, on en déduit que u est dérivable sur tout segment [b,c] avec 0 < b < c, donc sur $[0,+\infty[$. $(1\ pt)$

3f. D'après l'inégalité obtenue à la question 3c, on a : $|f_n(1)z^n| \leq \frac{|z|^n}{n+1}$. Cette suite est donc bornée si et seulement si $|z| \leq 1$.

La série entière $\sum f_n(1)z^n$ diverge donc si |z| > 1, elle converge absolument si |z| < 1. Le rayon de convergence est donc égal à 1. Il reste à étudier la convergence de la série pour |z| = 1. (1 pt)

Pour z=1, d'après la question 3c, on a : $f_n(1) \geqslant \frac{1}{2+n}$ et la série $\sum f_n(1)1^n$ diverge.

Pour $z \neq 1$, on peut écrire $z = e^{i\theta}$. Comme la suite $f_n(1)$ est decroissante et tend vers 0, on peut appliquer le critère d'Abel à la série $\sum f_n(1)e^{i\theta}$, qui est donc semi-convergente. (1 pt)

Pour prouver la dernière question, montrons que la série $\sum_{n=0}^{\infty} f_n(1)x^n$ converge uniformément sur [-1,0]. Soit $t \in [0,1]$, et considérons la série alternée $\sum f_n(1)t^n(-1)^n$. D'après le critère des séries alternées, le reste de la série satisfait la majoration suivante : $|\sum_{k=n+1}^{\infty} f_k(1)t^k(-1)^k| \leq f_{n+1}(1)t^{n+1} \leq f_{n+1}(1)$. On en déduit donc la majoration : $\sup_{t \in [0,1]} |\sum_{k=n+1}^{\infty} f_k(1)t^k(-1)^k| \leq f_{n+1}(1)$. Comme $f_n(1)$ tend vers 0, on a prouvé que la $t \in [0,1]$

série $\sum_{n=0}^{\infty} f_n(1)x^n$ converge uniformément sur [-1,0]. Comme toutes les fonctions u_n sont continues en -1, il en est de même pour la somme de la série et on a bien :

$$\lim_{x \to -1} v(x) = \sum_{n=0}^{\infty} f_n(1) (-R)^n . (1 pt)$$