Errata for
The rationality problem for fields of invariants under linear algebraic groups

Page 121
Remark 1 after Lemma 2.2 should read:
The above argument shows that if G is connected and has no nontrivial character, then A^G is a UFD.
The statement is wrong in the nonconnected case, as the example of $G = \mathbb{Z}/2 = \{1, t\}$ acting on
$A = k[x, y]$ by $(x, y) \mapsto (-x, -y)$ shows. Here $A^G = k[x^2, y^2, xy]$. (FU Lie, 18 Jan 2010)

Page 128
l. - 5, in the statement of Theorem 3.6, read: closed points of Y

Page 166
l. -10 In the proof of Lemma 9.2, H is not normal in GL_{N+n}. However G normalizes H and this is
enough for the proof. (Bruno Kahn, 11 Feb. 2010)