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T. A. Springer (1952) proved :
Let q(x0, . . . , xn), be a quadratic form over a field k. If it has a
nontrivial zero over a field extension K/k of odd degree, then it
has a nontrivial zero over k.
Proof.
May assume K/k simple, K = k[t]/P(t). Then may write

q(R0(t), . . . ,Rn(t)) = P(t)Q(t)

with deg(Ri ) < deg(P), not all zero. Then deg(Q) < deg(P),
then pick up an irreducible factor of Q of odd degree and
reduce modulo this factor.



Exercise in the same spirit.

Let n ≥ 1 et Q(x0, . . . , xn) be a nondegenerate quadratic form over
a field k . Let P(t) ∈ k[t] be a polynomial of degree 2r .
Assume

P(t)− Q(x0, . . . , xn) = 0 (1)

has a solution in an odd degree extension K/k .
Then
– Either the leading coefficients of P is represented by Q over k
(which essentially gives a rational point above t =∞)
– Or equation (1) has a solution in a field extension K/k of odd
degree d ≤ r .



Theorem. If the intersection of two projective quadrics defined by

Φ(x0, . . . , xn) = 0 = Ψ(x0, . . . , xn)

has a rational point over an odd degree extension of k, then it has
a rational point over k.
Special case : del Pezzo surfaces of degree 4 (Coray 1977).

The theorem is an immediate consequence of Springer’s result and
the following theorem (Amer 1976, Brumer 1978, Leep)
Theorem. Let Φ(x0, . . . , xn) et Ψ(x0, . . . , xn) be two quadratic
forms with coefficients in the field k. They have a common
nontrivial zero over k if and only if the quadratic form Φ + tΨ
has a nontrivial zero over the rational function field k(t).



One would like to produce classes of algebraic varieties X with the
property :
(*) If X has a zero-cycle of degree one, i.e. if the gcd of degrees of
the finite field extensions K/k with X (K ) 6= ∅ is one, then
X (k) 6= ∅.

For instance, (*) holds for arbitrary plane cubics in P2
k over any

field k . It holds for principal homogeneous spaces of an abelian
variety A/k , indeed we have norm maps on H1

gal(k,A).

(*) has been proved for principal homogeneous spaces of
connected reductive linear algebraic groups in many cases,
but the general case is open.
There are counterexamples for projective homogeneous spaces
of such groups (Parimala 2005).



(*) is an open question for cubic hypersurfaces (question raised by
Cassels and Swinnerton-Dyer).

In this case, the question reads : if a cubic hypersurface in Pn
k has

a rational point in a finite field extension K/k of degree prime to
3, does it have a rational point in k ?

The question was studied by Daniel Coray (1947-2015) in his thesis
(Cambridge, UK 1974).





There are two main theorems in this thesis.

Theorem (Coray). If k is the field of fractions of a complete DVR
with residue field κ, if Property (*) holds for cubic hypersurfaces
over κ in any dimension, then (*) holds for cubic hypersurfaces
over k in any dimension.

This is proved by a delicate study of possible bad reduction of cubic
hypersurfaces, extending earlier work of Demjanov (1950), Lewis
(1952), Springer (1955), who had proved that over a p-adic field k ,
for any n ≥ 9, any cubic hypersurface in Pn

k has a rational point.

Corollary (Coray). Property (*) holds for arbitrary cubic
hypersurfaces over a p-adic field.
Indeed, (*) for cubic hypersurfaces is easy over a finite field.



This talk is concerned with the second main theorem in Coray’s
thesis.



Theorem A
Let X ⊂ P3

k be a smooth cubic surface. If it has a rational point in
a field extension of degree prime to 3, then it has a rational point
in an extension of degree 1, or of degree 4, or of degree 10.
(“or ”not exclusive)

I shall describe the main points of Coray’s proof. It uses curves of
low genus lying on the surface. One does not know whether the
curves are smooth or even irreducible. One must then envision
possible degeneracy cases.
I shall then explain a general method to dodge this part of the
argument, and, with the added flexibility, produce new results
without much pain.



Zero-cycle on a k-variety X : finite linear combination with integral
coefficients of closed points

∑
P nPP, n ∈ Z

Effective cycle : all nP ≥ 0

Degree of the zero-cycle (over k) :
∑

P nP [k(P) : k] ∈ Z

Rational equivalence on the group Z0(X ) of zero-cycles :
for any proper morphism p : C → X from a normal integral k-curve
and any rational function f ∈ k(C )∗, mod out by p∗(divC (f )).
If X/k is proper, then induced degree map

CH0(X ) = Z0(X )/rat→ Z

from the Chow group of degree zero-cycles to Z.
The image is Z.I (X ) ⊂ Z, where I (X ) is the gcd of degrees of
closed points.
The kernel A0(X ) is the reduced Chow group of zero-cycles.



Curves

Riemann-Roch on a smooth, projective, geometrically connected
curve Γ/k of genus g implies :

• Any zero-cycle of degree at least equal to g on Γ is rationally
equivalent to an effective cycle.

• For g > 1, if there exists a zero-cycle of degree prime to 2g − 2,
then there exist effective zero-cycles of degree g and of degree
g + 1.



Curves on surfaces

Let X be a smooth, projective, geom. connected k-surface. Let K
be the class of the canonical divisor. Let D ⊂ X be an effective
divisor. Let

pa(D) := (D.(D + K ))/2 + 1.

If D ⊂ X is a smooth, projective curve of genus g , then pa(D) = g .



Surfaces

Let X be a smooth, projective, geom. connected k-surface. Let L
be (the class of) an invertible sheaf in Pic(X ).
χ(X , L) := h0(X , L)− h1(X , L) + h2(X , L)
Riemann-Roch :

χ(X , L) = (L.(L− K ))/2 + χ(X ,OX ).

hi (X , L) = h2−i (X ,K − L) (Serre)
If char(k) = 0 and L is ample then h1(X ,−L) = 0 (Kodaira) (not
really needed in the arguments to follow).
If X is geometrically birational to P2, then χ(X ,OX ) = 1.



From now on, to be on the safe side, I assume char(k) = 0.

To follow fashion, I suppose I should write K.



Coray’s method for a smooth cubic surface X ⊂ P3
k .

We assume that X has a closed point of degree d prime to 3. Let
d be the least such integer.
If d = 1, there is nothing to do. If d = 2, then taking the line
through a quadratic point and its conjugate we get a rational
point, thus in fact d = 1.
Let us thus assume d prime to 3 and d ≥ 4. Let P ∈ X be a closed
point of degree d .
On the surface X we find a closed point Q of degree 3 by
intersecting with a line P1

k ⊂ P3
k .



Let n ≥ 1 be the smallest integer such that there exists a surface
Σ ⊂ P3

k of degree n cutting out a curve Γ ⊂ X which contains
both P and Q.
On the surface X we easily compute

h0(X ,OX (n)) = 3n(n + 1)/2 + 1.

Assume that the surface Σ of degree n cuts out a curve
Γ = D ⊂ X which is geometrically irreducible and smooth. On this
curve there is a zero-cycle of degree 1. One computes the genus

g = pa(D) = 3n(n − 1)/2 + 1.



If on the one hand 3n(n + 1)/2− 3 ≥ d then

3n(n + 1)/2 + 1 ≥ d + 3 + 1

and one may find a surface of degree n cutting out a curve Γ
(assumed to be smooth) passing through the closed points P (of
degree d) and Q (of degree 3).
If on the other hand d ≥ 3n(n − 1)/2 + 4, then

d − 3 ≥ 3n(n − 1)/2 + 1 = g(Γ),

thus on the smooth curve Γ, the zero-cycle P − Q is rationally
equivalent to an effective zero-cycle of degree d − 3 < d . Thus
there exists a closed point of degree prime to 3 and smaller than d ,
contradiction.



This argument works for any integer d prime to 3 which lies in an
interval

3n(n + 1)/2− 3 ≥ d ≥ 3n(n − 1)/2 + 4.

For other values of d , a complementary argument is needed.
In particular, for integers of the shape d = 3n(n − 1)/2 + 1, one
uses a curve Γ which is the normalisation of a curve Γ0 ⊂ X cut
out by a surface of degree n passing through P and having a
double point at the point Q of degree 3. The genus of the curve
drops down by 3, and the dimension of the linear system of interest
drops down by 9.



For d = 3n(n − 1)/2 + 1 with n ≥ 4, there is enough room. But
there is not enough room in the case n = 2, d = 4 and in the case
n = 3, d = 10.

CONCLUSION (up to good position argument)

On a smooth cubic surface X/k with a closed point of degree d
prime to 3, the least such d lies in {1, 4, 10}.

45 years old question : Can one eliminate 10, 4, both ?



[A challenge : for any odd integer d , can one produce a field k and
a smooth quartic surface in P3

k which has a closed point in a field
extension of k of odd degree ≥ d but no point in a field extension
of k of odd degree < d ? ]



The above argument for cubic surfaces assumes that the curves Γ
found in the linear system are geometrically irreducible and
smooth. In his paper, Coray then discusses the possible singular
and even reducible curves which may turn up, and manages to go
down to 1, 4 or 10 also in these cases.

It is clear that such cases may occur : consider the simpler
question of finding a smooth plane conic through a closed point of
degree 3 in P2

k . If the closed point happens to lie on a P1
k ⊂ P2

k ,
this is not possible.



I now explain how to avoid such a discussion of degenerate cases.
Ideas :
• When available, use results of the type : if there is a k-rational
point on a k-variety X of the type under study, then the k-rational
points are Zariski dense.
• use the Bertini theorems (not very original !)
• replace k by the “large” field F = k((t)), so that there are many
F -points on whichever smooth variety appears in the process (the
original variety, or some parameter space) as soon as there is at
least one F -point.
• For the problems under consideration here, to prove
a result for a k-variety X , it is enough to prove if for the
k((t))-variety X ×k k((t)).



Theorem (a variation on the Bertini theorems, as found in
Jouanolou’s book)

Let X be a smooth, projective, geom. connected k-variety. Let
f : X → Pn

k be a k-morphism. Assume its image has dimension at
least 2 and generates Pn

k .
Let r ≤ n be an integer. There exists a nonempty open set U ⊂ X r

such that, for any field L containing k and any L-point
(P1, . . . ,Pr ) ∈ U(L), there exists a hyperplane h ⊂ Pn

L whose
inverse image f −1(h) ⊂ XL is a smooth, geometrically integral
L-variety which contains the points {P1, . . . ,Pr}.

Here we just say : “ If there is a point in U(L), then ...”. But for a
given L, U(L) could be empty.



Let X be a smooth k-variety and m > 0 be an integer. Consider
the open set W of Xm consisting of m-tuples (x1, . . . , xm) with
xi 6= xj for i 6= j .

The symmetric group Sm acts on W , the quotient is a smooth
k-variety Symm

sepX . It parametrizes effective zero-cycles of degre m
which are “separable”.



Theorem (zero-cycles version of previous theorem)

Let X be a smooth, projective, geom. connected k-variety. Let
f : X → Pn

k be a k-morphism. Assume its image has dimension at
least 2 and generates Pn

k . Let s1, . . . , st be natural integers such
that

∑
i si ≤ n. There exists a nonempty open set U of the

product Syms1
sepX × · · · × Symst

sepX such that, for any field L
containing k and any L-point of U, corresponding to a family {zi}
of separable effective zero-cycles of respective degrees si , there
exists a hyperplane h ⊂ Pn

L whose inverse image Xh = f −1(h) ⊂ XL

is a smooth, geometrically integral L-variety which contains the
points of the supports of the cycle

∑
i zi .

Same comment as before on U(L) being possibly empty.
Note : Let s = s1 + · · ·+ st . For the proofs of Theorems A,B,C, we
use Syms1

sepX × · · · × Symst
sepX and not only Syms

sepX .



Let k be a field, char(k) = 0. Let X be a smooth, projective,
geom. connected k-variety.

In this talk, we say that X has the density property if it satisfies :
for any finite field extension L/k with X (L) 6= ∅, the set X (L) is
Zariski dense in XL.

R-equivalence on X (k) is the equivalence relation generated by the
elementary relation : A,B ∈ X (k) both lie in the image of P1(k)
under a k-morphism P1

k → X .

In this talk, we say that X has the R-density property if it satisfies :
for any finite field extension L/k and P ∈ X (L), the set of points
of X (L) which are R-equivalent to P on XL is Zariski dense on XL.

Smooth cubic hypersurfaces in Pn
k , n ≥ 3, satisfy both properties.



Theorem (Bertini for varieties with density properties)

Let k be a field, char(k) = 0. Let X be a smooth, projective,
geom. connected k-variety. Let f : X → Pn

k be a k-morphism.
Assume its image has dimension at least 2 and generates Pn

k . Let
P1, . . . ,Pt be closed points of X of respective degrees s1, . . . , st
such that

∑
i si ≤ n.

(a) If X satisfies the density property, then there exists a
hyperplane h ⊂ Pn

k defined over k such that Xh = f −1(h) ⊂ X is
smooth, geom. integral and contains effective zero-cycles z1, . . . , zt
of respective degrees s1, . . . , st .

(b) If X is satisfies the R-density property, then one may moreover
ensure that, for each i , the zero-cycle zi is rationally equivalent to
the zero-cycle Pi .



Definition (F. Pop)
A field F is said to be a large field (in French, corps fertile, in
Russian plodotvornoe pole) if, for any smooth connected variety
X over F , if X (F ) 6= ∅ then the set X (F ) of F -rational points is
Zariski dense in X .

If a field F is large, then any finite field extension of F is large.

Thus any smooth geom. connected variety over a large field
satisfies the density property.

The formal power series field F = k((t)) over any field k is a large
field.



Theorem (Bertini over a large field)

Let F be a large field, char(F ) = 0. Let X be a smooth, projective,
geom. connected F -variety. Let f : X → Pn

F be an F -morphism.
Assume its image has dimension at least 2 and generates Pn

F . Let
P1, . . . ,Pt be closed points of X of respective degrees s1, . . . , st
such that

∑
i si ≤ n.

(a) There exists a hyperplane h ⊂ Pn
F defined over F such that

Xh = f −1(h) ⊂ X is smooth, geom. integral and contains effective
zero-cycles z1, . . . , zt of respective degrees s1, . . . , st .

(b) If X is geometrically rationally connected, then one may
moreover ensure that, for each i , the zero-cycle zi is rationally
equivalent to the zero-cycle Pi .



For the proof of (a) :
The family P1, . . . ,Pt defines an F -point of the smooth, connected
k-variety Syms1

sepX × · · · × Symst
sepX . Since F is large, any

nonempty Zariski open set of that k-variety contains an F -point.

For the proof of (b), one moreover uses a result due to Kollár
(1999) (deformation method) : for any F -point P on a smooth,
projective geometrically (separably) rationally connected variety X
over a large field F , the set of F -points which are R-equivalent to
P, hence in particular are rationally equivalent to P, is Zariski
dense in X .



(Easy) Proposition
Let k be a field and F = k((t)). Let X be a proper k-variety.
(a) The gcd of degrees of closed points coincides for X/k and
XF/F .
(b) For any integer r ≥ 1, the smallest degree of a closed point of
degree prime to r , which is also the smallest degree of an effective
zero-cycle of degree prime to r , coincides for X/k and XF/F .
(c) Let I be a set of natural integers. If the Chow group of
zero-cycles on XF may be generated by the classes of effective
cycles of degree d ∈ I , then the same holds for X .
(d) Let d ≥ 0 be an integer. If every zero-cycle on XF of degree at
least d is rationally equivalent to an effective cycle, then the same
holds for X .



One may then run Coray’s proof using only smooth projective
curves in the linear systems of interest.There are two ways to do
this.

One may use the density property of smooth cubic surfaces and
apply Bertini’s theorem (a) for varieties with this property.

Or one may reduce to the case of large fields F via replacing k by
k((t)), use Bertini theorem (a) for large fields, and then use the
fact that the statement of the theorem for Xk((t)) over k((t))
implies it for X over k .



In any case, an important point has been to be able to move the
effective zero-cycles through which one wants curves of a given
linear system to pass and simultaneously be smooth.

The gained flexibility enables one to prove the next two theorems
by Coray’s method without too much effort.



“Bertini over a large field” (a) is enough to prove :

Theorem B
Let X be a del Pezzo surface of degree 2, i.e. a double cover of P2

k

ramified along a smooth quartic. If there exists a closed point of
odd degree on X , then there exists a closed point of degre 1, or 3,
or 7.

In the proof, just as for cubic surfaces, in certain cases, one needs
to blow up points on X . To apply the Bertini types of results, one
needs to know that certain invertible sheaves are very ample. Here
one may use Reider’s criteria (1988).

For del Pezzo surfaces of degree 2 with a k-rational point not in a
very special situation, k-unirationality is known. But the trick with
large fields enables us to handle our problem without using
k-unirationality. .



Remark (Kollár-Mella 2017). There exist examples of del Pezzo
surfaces of degree 2 with a closed point of degree 3 but no rational
point.

Suppose k is a field with a quadratic field extension k(
√
a)/k , a

cubic field extension and a quintic field extension.
Let C ⊂ P2

k a conic with a smooth k-point.
Let Q ⊂ P2

k be a smooth quartic with Q ∩ C = {A,B}, with A
closed point of degree 3 and B closed point of degree 5.
Let F = k(t) be the smooth del Pezzo surface of degree 2 defined
by the equation

z2 − aC (u, v ,w)2 + tQ(u, v ,w) = 0.

It has obvious points of degree 3 and 5.
However congruences modulo powers of t show it has no F -point.



Using either “Bertini over a large field” (b) or “Bertini for varieties
with the R-density property” (b), one proves :
Theorem C

Let X ⊂ P3
k be a smooth cubic surface and Q ∈ X (k).

(a) Every effective zero-cycle of degree at least 4 on X is rationally
equivalent to an effective zero-cycle z1 + rQ with r ≥ 0 and z1
effective of degree ≤ 3.

(b) Every zero-cycle of degree zero is rationally equivalent to the
difference of two effective cycles of degree 3.

(c) The Chow group of zero-cycles on X is generated by the
classes of rational points and of closed points of degree 3.

(d) Every zero-cycle on X of degree ≥ 10 is rationally equivalent
to an effective zero-cycle.



Let k be a p-adic field.
For cubic surfaces over a p-adic field, using k-unirationality and
symmetries one may prove that the set X (k)/R of R-equivalence
classes is finite.
Since there are only finitely many field extensions of a given degree
for a p-adic field, for X a cubic surface as above, together with
Theorem C (c), this implies that the reduced Chow group A0(X ) is
a finite group.

The finiteness result for X (k)/R holds for any smooth, projective
geometrically rationally connected variety X/k (Kollár 1999).
Hence the interest in trying to prove analogues of Theorem C for
other classes of rationally connected varieties.



However, quite a few results are already known.
For any smooth, projective geometrically rationally connected
variety X/k over a field k, the group A0(X ) is killed by some
positive integer.

Via algebraic K -theory, results on the finiteness of A0(X ) for X
smooth, projective geometrically rationally connected variety over a
p-adic field k are known :

• If X/k is a surface, the group A0(X ) is finite (CT, 1983, proof
based on Merkurjev-Suslin theorem in algebraic K -theory).

• In arbitrary dimension the prime-to-p torsion is finite (special
case of theorem of Saito–Sato 2010 for arbitrary smooth projective
varieties over a p-adic field).

• In the good reduction case, with sep. rat. connected
specialization, A0(X ) = 0 (Kollár 2004).



Analogues of part of Theorem C for the other del Pezzo surfaces ?

(For the next two slides I still have to double-check the details of
the computation.)



Let X/k be a del Pezzo surface of degree 2 with a rational point Q.
(To be written) Every effective zero-cycle of degree d at least 7 on
X is rationally equivalent to an effective zero-cycle z1 + rQ with
r ≥ 0 and z1 effective of degree ≤ 6. Every zero-cycle of degree
zero is rationally equivalent to the difference of two effective
zero-cycles of degree 6.

The cases d = n2 − n + 1, resp. d = n2 − n, require the use of
curves with one, resp. two double rational points.

Since we do not know the R-density property for del Pezzo
surfaces of degree 2, the proof here relies on Bertini over a large
field (b), the combination of the reduction trick from k to k((t))
and Kollár’s result on R-density for geometrically rationally
connected varieties (proved using deformation theory).



Let X/k be a del Pezzo surface of degree 1. Let Q be the fixed
point of the anticanonical system.
(To be written) Every effective zero-cycle of degree at least 16 on
X is rationally equivalent to an effective zero-cycle z1 + rQ with
r ≥ 0 and z1 effective of degree ≤ 15. Every zero-cycle of degree
zero is rationally equivalent to the difference of two effective
zero-cycles of degree 15.

The cases d = n(n − 1)/2 + 1, resp. d = n(n − 1)/2, require the
use of curves with one, resp. two double rational points.

Since we do not know the density property and even less the
R-density property for del Pezzo surfaces of degree 1, the proof
here relies on Bertini over a large field (b), the combination of the
reduction trick from k to k((t)) and Kollár’s result on R-density
for geometrically rationally connected varieties.



The proof of the following result is independent of previous
arguments.
Theorem D
Let X ⊂ P3

k be a smooth cubic surface with X (k) = ∅. If any
closed point of degree 3 on X is cut out by a line P1

k ⊂ P3
k ,

then to a general line P1
k ⊂ P3

k we may associate a del Pezzo
surface W of degree 1 over k such that W (k) is not Zariski
dense in W .

The question whether such cubic surfaces exist was recently raised
by Qixiao Ma.
Whether rational points are always Zariski dense on a del Pezzo
surface of degree 1 is a well known open question.



Idea of the proof

Take a line L ⊂ P3
k . By assumption it cuts out a closed point P of

degree 3 on X . Blow up that point. This gives a fibration Y → P1
k

whose fibres are the sections of X by planes containing L.
If any closed point of degree 3 on X is cut out by a line, then in
particular for any t ∈ P1(k) with smooth fibre Yt , we have
Pic(Yt) = ZP hence Pic0(Yt) = 0
The regular, relatively minimal model g : W → P1

k associated to
the Jacobian of the generic fibre Yη of Y → P1

k is the announced
del Pezzo surface of degree 1. For t ∈ P1(k) with Wt smooth,
any k-point on the elliptic curve Wt is a 3-torsion point. The
k-points of W lie in the union of the singular fibres of g and the
curve which is the closure of the 3-torsion subscheme of Wη.



Conclusion
Theorems A, B, C raise the following problems, essentially solved
in dimension 2, but which already look hard for cubic hypersurfaces
in P4

k and for conic bundles over P2
k .

Let k be a field, char(k) = 0, let k be an algebraic closure.
Let X be a smooth, projective, geom. connected variety over k .
Assume that X = X ×k k is a rationally connected variety.

1. Does there exist an integer n(X ) such that, if X has a zero-cycle
of degree 1, then X has closed points of coprime degrees ≤ n(X ) ?
For quartics in PN , N ≥ 4, there is no such bound independent
of N (Kollár, 2004)

2. Does there exist an integer m(X ) such that the Chow group
CH0(X ) is generated by closed points of degree at most m(X ) ?


