Index and exponent: Lichtenbaum's theorems for curves over p-adic fields.
The following text is a variation on Lichtenbaum's paper Duality Theorems for curves over p-adic fields.
Let k be perfect field, \bar{k} an algebraic closure, $G=G a l(\bar{k} / k)$ and X / k smooth, projective, geometrically integral curve.

One has the exact sequence

$$
0 \rightarrow \operatorname{Pic}(X) \rightarrow \operatorname{Pic}(\bar{X})^{G} \rightarrow \operatorname{Br}(k) \rightarrow \operatorname{Br}(X)
$$

Let $B(X / k): \operatorname{Ker}[\operatorname{Br}(k) \rightarrow \operatorname{Br}(X)]$.
Let ∂ denote the map $\operatorname{Pic}(\bar{X})^{G} \rightarrow \operatorname{Br}(k)$ which factorizes through the surjection $\operatorname{Pic}(\bar{X})^{G} \rightarrow B(X / k)$.
If there is a rational point, then $\partial_{k}=0$.
By definition, the index $I=I(X / k)$ is the gcd of the degrees of closed points.
One has $I . B(X)=0 \subset \operatorname{Br}(k)$.
The degree map induces a Galois equivariant map $\operatorname{Pic}(\bar{X}) \rightarrow \mathbf{Z}$. One defines the period $P=P(X / k)$ as the positive generator of the image of $\operatorname{Pic}(\bar{X})^{G} \rightarrow \mathbf{Z}$.

Lemma 1. Let k be a perfect field, let $\pi: X \rightarrow Y$ be a finite morphism of degree d of smooth projective geometrically connected curves.
(i) The period P_{X} divides $d P_{Y}$.
(ii) If Y is a conic, then P_{X} divides d.

Proof. The pull-back map $\pi^{*}: \operatorname{Pic}(\bar{C}) \rightarrow \operatorname{Pic}(\bar{X})$ is g-equivariant and induces multiplication by d on \mathbf{Z} after taking degree maps. This gives (i). As for (ii), for a smooth conic Y one has $\operatorname{Pic}(\bar{Y})=\mathbf{Z}$ with trivial action, hence $P_{Y}=1$. QED

Let $J_{X}=\operatorname{Pic}_{X / k}^{0}$. One has the exact sequence

$$
0 \rightarrow J_{X} \rightarrow \operatorname{Pic}(\bar{X}) \rightarrow \mathbf{Z} \rightarrow 0
$$

This induces an exact sequence

$$
\operatorname{Pic}(\bar{X})^{G} \rightarrow \mathbf{Z} \rightarrow H^{1}\left(k, J_{X}\right)
$$

The image of $1 \in \mathbf{Z}$ in $H^{1}\left(k, J_{X}\right)$ is the class of $\operatorname{Pic}_{X / k}^{1}$ and $P(X)$ is the order of the image of 1 in $H^{1}\left(k, J_{X}\right)$.
Since the sequence

$$
0 \rightarrow J_{X} \rightarrow \operatorname{Pic}(\bar{X}) \rightarrow \mathbf{Z} \rightarrow 0
$$

is G-split if $I(X)=1$, one sees that in general P divides I.
Let $L \in \operatorname{Pic}(\bar{X})^{G}$. By [BGG, Thm. 7.1.15, p. 190], one has $\chi(L) . \partial(L)=0 \in B(X) \subset \operatorname{Br}(k)$. Let $d=\operatorname{deg}(L)$. The Riemann-Roch theorem on the curve X gives $\chi(L)=d+1-g$. We thus have

$$
(d+1-g) \cdot \partial(L)=0 \in B(X) \subset \operatorname{Br}(k)
$$

Let K be the canonical bundle. Note that $2 g-2=\operatorname{deg}(K)$ is a multiple of the index I and I annihilates $\partial(L) \in B(X)$. Thus $(d+1-g, 2 g-2)$ annihilates $\partial(L)$.

The image of $\operatorname{Pic}(\bar{X})^{G} \rightarrow \mathbf{Z}$ is $\mathbf{Z} . P$. Since one may find an element of $\operatorname{Pic}(\bar{X})^{G}$ of degree P, any element of $\operatorname{Pic}(\bar{X})^{G}$ may be written as

$$
L=\sum_{i} L_{i}-\sum L_{j}
$$

with each L_{i} and L_{j} of degree P.
This implies that

$$
\partial(L)=\sum_{i} \partial\left(L_{i}\right)-\sum \partial\left(L_{j}\right) \in B(X)
$$

is annihilated by $(P+1-g, 2 g-2)$. Recall that $B(X)$ is annihilated by I, which is a multiple of P. To summarize:

Theorem (Lichtenbaum). Let X be a smooth projective geometrically connected curve over a field k. Let g be its genus, I its index, and P its period. The period P divides the index I. Let $I=r P$. The group

$$
B(X)=\operatorname{Ker}[\operatorname{Br}(k) \rightarrow \operatorname{Br}(X)]
$$

is annihilated by $(P, g-1)$ if r is odd, and it is annihilated by $(2 P, P+1-g)$ if r is even.
Proof. One has $I=r P$ for some integer r. The group $B(X)$ is annihilated by $(r P, P+1-g, 2 g-2)$. Now

$$
(r P, P+1-g, 2 g-2)=(r P, P+1-g, 2 P, 2 g-2)
$$

If r is odd, this is equal to $(P, 1-g)$. If r is even, this is equal to $(2 P, P+1-g)$. QED
One thus gets:
If $g=0$, then X is a smooth conic. In this case $P=1$ and I is 1 or 2 .
If $g=1$, then in all cases one finds $P . B(X)=0$.
For arbitrary g, one has $2 P \cdot B(X)=0$.
Suppose X is a hyperelliptic curve of genus g. Then $I(X)$ is 1 or 2. Then $2 \cdot B(X)=0$ and $P(X)$ is 1 or 2. If $I(X)=1$ then $B(X)=0$. Suppose $I(X)=2$. If $P(X)=1$ and g is odd, then $B(X)=0$. If $P(X)=2$ and g is even, then $B(X)=0$.

For more results for k arbitrary, see Theorem 8 of Lichtenbaum's paper.
For the rest of the note, let k be a p-adic field. Then we have the isomorphism $\operatorname{Br}(k) \simeq \mathbf{Q} / \mathbf{Z}$.
Theorem (Roquette, Lichtenbaum) For X a smooth, projective, geometrically connected curve over a p-adic field, the group $B(X) \subset \operatorname{Br}(k) \simeq \mathbf{Q} / \mathbf{Z}$ is isomorphic to $\mathbf{Z} / I \subset \mathbf{Q} / \mathbf{Z}$.

Proof. This is Lichtenbaum's Theorem 3. This theorem may be obtained as a combination of an index computation for varieties of arbitrary dimension over a p-adic field ([BGG], Thm. 10.5.8) and a specific theorem for curves over the field of fractions of a complete discrete valuation ring ([BGG], Thm. 10.3.1).

One now concludes that I divides $(P+1-g, 2 g-2)$ hence I divides $2 P$. Thus P divides I which divides $2 P$.

If $g=0$ then $P=1$ and I is 1 or 2.
If $g=1$ then I divides P so $I=P$.
Let g be arbitrary. Then $I=P$ or $I=2 P$. Recall that I divides $2 g-2$. If $I=2 P$ then P divides $g-1$. If $I=P$ then $B(X)$ is annihilated by $(P, P+1-g)$ hence by $g-1$, and then the Roquette-Lichtenbaum theorem gives that I divides $g-1$, hence P also divides $g-1$.

All these results are contained in Lichtenbaum's Theorem 7. He also mentions the implication: If $I=2 P$, then $(g-1) / P$ is odd.

Here are curious corollaries of the property $I=P$ for curves of genus one over a p-adic field.
Proposition 1. Let k be a p-adic field. Let $X \subset \mathbf{P}_{k}^{3}$ be a smooth complete intersection of two quadrics given by the vanishing of of two quadratic forms.

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=0=g\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=0 .
$$

If there exists a rational point on the curve C of genus one given by the equation $y^{2}=\operatorname{det}(\lambda f+\mu g)$, then there exists a rational point or a closed point of degree 2 on X.

Proof. By Theorem 2.25 of Wang [W], over any field, the assumption on the curve C implies that the period of X is 1 or 2 . Since $I=P$ for curve of genus one over a p-adic field, the result follows. QED

Here is a special case, for which we offer an alternate proof.

Proposition 2. Let k be a p-adic field. Let $X \subset \mathbf{P}_{k}^{3}$ be a smooth complete intersection of two quadrics given by the vanishing of of two quadratic forms, one of which is of rang 3:

$$
f\left(x_{1}, x_{2}, x_{3}\right)=0=g\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=0
$$

Then there exists a rational point or a closed point of degree 2 on X.
Proof. Sending $\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ to $\left(x_{1}, x_{2}, x_{3}\right)$ makes X into a double cover $\pi: X \rightarrow C$ of the conic C with equation $f\left(x_{1}, x_{2}, x_{3}\right)=0$. Lemma 1 gives that $P=P(X)$ divides 2. Using Lichtenbaum's theorem over the p-adics, one concludes that the index of X is 1 or 2 , which for the genus one curve X ensures the existence of a rational point or a closed point of degree 2. QED

Challenge: Give a down-to-earth proof of the second Proposition, purely in terms of quadratic forms.

References
[BGG] JLCT et A. N. Skorobogatov, The Brauer-Grothendieck group, Springer Ergebnisse, 2021.
[L] S. Lichtenbaum, Duality Theorems for Curves over p-adic Fields, Invent. math. 7 (1969) 120-136.
[W] Xiaoheng Wang, Maximal linear spaces contained in the base loci of pencils of quadrics. Alg. Geom. 5 (3) (2018) 359-397.

Bures, 21st April 2022

