Low degree unramified cohomology of generic diagonal hypersurfaces

J.-L. Colliot-Thélène and A.N. Skorobogatov

March 30, 2024

Abstract

We prove that the i-th unramified cohomology group of the generic diagonal hypersurface in the projective space of dimension $n \geq i+1$ is trivial for $i \leq 3$.

1 Introduction

Let k be a field with separable closure k_{s} and absolute Galois group $\Gamma=\operatorname{Gal}\left(k_{\mathrm{s}} / k\right)$. Let μ be a finite commutative group k-scheme of order not divisible by $\operatorname{char}(k)$. The datum of such a group k-scheme μ is equivalent to the datum of the finite Γ-module $\mu\left(k_{\mathrm{s}}\right)$ of order not divisible by $\operatorname{char}(k)$. For an integer $m \geq 2$ let μ_{m} be the group k-scheme of m-th roots of unity. If N is a positive integer not divisible by $\operatorname{char}(k)$ such that $N \mu=0$, then $\mu(-1)$ denotes the commutative group k-scheme $\operatorname{Hom}_{k-\mathrm{gps}}\left(\mu_{N}, \mu\right)$. The Galois module $\mu(-1)\left(k_{\mathrm{s}}\right)$ is $\operatorname{Hom}_{\mathbb{Z}}\left(\mu_{N}\left(k_{\mathrm{s}}\right), \mu\left(k_{\mathrm{s}}\right)\right)$ with the natural Galois action.

Let X be a smooth integral variety over k. We denote by $X^{(n)}$ the set of points of X of codimension n. In this paper, the unramified cohomology group $\mathrm{H}_{\mathrm{nr}}^{i}(X, \mu)$, where i is a positive integer, is defined as the intersection of kernels of the residue maps

$$
\partial_{x}: \mathrm{H}^{i}(k(X), \mu) \rightarrow \mathrm{H}^{i-1}(k(x), \mu(-1)),
$$

for all $x \in X^{(1)}$. For equivalent definitions, see [CT95, Thm. 4.1.1]. Restriction to the generic point of X gives rise to a natural map

$$
\mathrm{H}_{\mathrm{ett}}^{i}(X, \mu) \rightarrow \mathrm{H}_{\mathrm{nr}}^{i}(X, \mu) .
$$

Purity for étale cohomology implies that it is an isomorphism for $i=1$ and a surjection for $i=2$, see [CT95, §3.4]. In the case $i=2$ with $\mu=\mu_{m}$, where m is not divisible by $\operatorname{char}(k)$, this gives a canonical isomorphism

$$
\operatorname{Br}(X)[m] \xrightarrow{\sim} \mathrm{H}_{\mathrm{nr}}^{2}\left(X, \mu_{m}\right),
$$

see [CT95, Prop. 4.2.1 (a), Prop. 4.2.3 (a)]. If X / k is smooth, proper, and integral, then $\mathrm{H}_{\mathrm{nr}}^{i}(X, \mu)$ does not depend on the choice of X in its birational equivalence class, see [CT95, Prop. 4.1.5] and [R96, Remark (5.2), Cor. (12.10)].

Let $n \geq 2$ and let $K=k\left(a_{1}, \ldots, a_{n}\right)$ be the field of rational functions in the variables a_{1}, \ldots, a_{n}. Let $X_{K} \subset \mathbb{P}_{K}^{n}$ be the hypersurface with equation

$$
x_{0}^{d}+a_{1} x_{1}^{d}+\ldots+a_{n} x_{n}^{d}=0
$$

where d is not divisible by $\operatorname{char}(k)$. In this paper, for $i=1,2,3$ and $n \geq i+1$, we prove that the natural map

$$
\mathrm{H}^{i}(K, \mu) \rightarrow \mathrm{H}_{\mathrm{nr}}^{i}\left(X_{K}, \mu\right)
$$

is an isomorphism, see Theorem 4.8. In the case when $i=2$ and $\mu=\mu_{m}$ with $m \geq 2$, this gives that the natural map of Brauer groups $\operatorname{Br}(K) \rightarrow \operatorname{Br}\left(X_{K}\right)$ induces an isomorphism of subgroups of elements of order not divisible by char (k), see Corollary 4.9. In the case when k has characteristic zero, this result was obtained in [GS, Thm. 1.5] by a completely different method, using the topology of the Fermat surface as a complex manifold.

In this paper we use the formalism proposed by M. Rost in [R96] which applies inter alia to Galois cohomology [R96, Remarks (1.11), (2.5)]. We do not use the Gersten conjecture for étale cohomology [BO74].

Let us describe the structure of this note. In Section 2 we recall some basic facts about unramified cohomology including a functoriality property of the Bloch-Ogus complex with respect to faithfully flat morphisms with integral fibres. In Section 3 we show that for smooth complete intersections $X \subset \mathbb{P}_{k}^{n}$ there are canonical isomorphisms $\mathrm{H}^{i}(k, \mu) \xrightarrow{\sim} \mathrm{H}_{\mathrm{nr}}^{i}(X, \mu)$ for $i=1,2$ when $\operatorname{dim}(X) \geq i+1$. Generic diagonal hypersurfaces are studied in Section 4. The easy proof of the main theorem in the case $i=1$ is given in Section 4.1. This is used in the proof for $i=2,3$ in Section 4.3, after some preparations in Section 4.2. Finally, in Section 5 we use a similar idea to give a short proof of the triviality of the Brauer group of certain surfaces in $\mathbb{P}_{k(t)}^{3}$ defined by a pair of polynomials with coefficients in k. See Theorem 5.1, which was proved in [GS] in the case when $\operatorname{char}(k)=0$.

Our proof in this note develops a geometric idea suggested by Mathieu Florence during the second author's talk at the seminar "Variétés rationnelles" in November 2022. The authors are very grateful to Mathieu Florence for his suggestion.

2 Functoriality of the Bloch-Ogus complex

For any smooth integral variety X over k and any $i \geq 2$ there is a complex

$$
0 \longrightarrow \mathrm{H}^{i}(k(X), \mu) \xrightarrow{\left(\partial_{x}\right)} \bigoplus_{x \in X^{(1)}} \mathrm{H}^{i-1}(k(x), \mu(-1)) \xrightarrow{\left(\partial_{y}\right)} \bigoplus_{y \in X^{(2)}} \mathrm{H}^{i-2}(k(y), \mu(-2)),
$$

which we call the Bloch-Ogus complex. The maps in this complex are defined in [R96, (2.1.0)]. (The map ∂_{x} is the residue defined for discrete valuation rings by Serre [S03], see also [CTS21, Def. 1.4.3].) The proof that the resulting sequence is a complex is given in [R96, Section 2]. If $y \in X^{(2)}$ is a regular point of the closure of $x \in X^{(1)}$, then the map

$$
\partial_{y}: \mathrm{H}^{i-1}(k(x), \mu(-1)) \rightarrow \mathrm{H}^{i-2}(k(y), \mu(-2))
$$

is the residue map for the local ring of y in the closure of x, which is a discrete valuation ring.

The unramified cohomology group $\mathrm{H}_{\mathrm{nr}}^{i}(X, \mu)$ is the homology group of this complex at the term $\mathrm{H}^{i}(k(X), \mu)$, i.e., the intersection of $\operatorname{Ker}\left(\partial_{x}\right)$ for all $x \in X^{(1)}$.

Let $p: X \rightarrow Y$ be a faithfully flat morphism of smooth integral k-varieties with integral fibres. By [R96, Section (3.5); Prop. (4.6)(2)], there is a chain map of complexes

The middle vertical map is the natural one if $p(x)=y$, otherwise it is zero, and similarly for the right-hand vertical map.

The morphism $X \rightarrow Y$ is called an affine bundle if Zariski locally on Y, it is isomorphic to $Y \times_{k} \mathbb{A}^{n} \rightarrow Y$ with affine transition morphisms. In this case the vertical maps in the above diagram induce isomorphisms on the left-hand and middle homology groups, see [R96, Prop. (8.6)]. In particular, we have an isomorphism

$$
\begin{equation*}
\mathrm{H}_{\mathrm{nr}}^{i}(X, \mu) \cong \mathrm{H}_{\mathrm{nr}}^{i}(Y, \mu) \tag{1}
\end{equation*}
$$

Combined with [R96, Cor. (12.10)], this implies that $\mathrm{H}_{\mathrm{nr}}^{i}(X, \mu)$ is a stable birational invariant of smooth and proper integral k-varieties.

3 Low degree unramified cohomology of complete intersections

For a variety X over a field k we write $X^{\mathrm{s}}=X \times_{k} k_{\mathrm{s}}$. By a k-group of multiplicative type we understand a group k-scheme M such that M^{s} is a group k_{s}-subscheme of $\left(\mathbb{G}_{m, k_{\mathrm{s}}}\right)^{n}$, for some $n \geq 0$. Such a k-group M is smooth if and only if $\operatorname{char}(k)$ does not divide the order of the torsion subgroup of the finitely generated abelian group $\operatorname{Hom}_{k_{s}-\mathrm{gps}}\left(M^{\mathrm{s}}, \mathbb{G}_{m, k_{\mathrm{s}}}\right)$. A finite commutative group k-scheme of order not divisible by $\operatorname{char}(k)$ is a k-group of multiplicative type.

Proposition 3.1 Let X be a smooth, projective, geometrically integral variety over a field k such that the natural map $\operatorname{Pic}(X) \rightarrow \operatorname{Pic}\left(X^{\mathrm{s}}\right)$ is an isomorphism of finitely generated free abelian groups. Then for any smooth k-group of multiplicative type M the natural map

$$
\mathrm{H}^{2}(k, M) \rightarrow \mathrm{H}^{2}(k(X), M)
$$

is injective.
Proof. We have a commutative diagram with exact rows and natural vertical maps

The abelian group $\operatorname{Pic}(X)$ is free, so the homomorphism $\operatorname{Div}(X) \rightarrow \operatorname{Pic}(X)$ has a section. Then our assumption implies that the map of Γ-modules $\operatorname{Div}\left(X^{\mathrm{s}}\right) \rightarrow \operatorname{Pic}\left(X^{\mathrm{s}}\right)$ has a section. By definition, the elementary obstruction $e(X) \in \operatorname{Ext}_{k}^{2}\left(\operatorname{Pic}\left(X^{\mathrm{s}}\right), k_{\mathrm{s}}^{\times}\right)$ is the class of the 2 -extension of Γ-modules given by the upper row of (2). Thus we have $e(X)=0$. The result now follows from [CTS87, Prop. 2.2.5].

For injectivity results for the map $\mathrm{H}^{2}(k, M) \rightarrow \mathrm{H}^{2}(k(X), M)$ in the case of integral, smooth k-varieties with a k-point see [CT95, Lemma 2.1.5] and [CT95, Thm. 3.8.1]. Note that the map $\mathrm{H}^{2}\left(k, \mathbb{G}_{m, k}\right) \rightarrow \mathrm{H}^{2}\left(k(X), \mathbb{G}_{m, k}\right)$ is not injective when X is a conic without a k-point.

Lemma 3.2 Let $X \subset \mathbb{P}_{k}^{n}$ be a complete intersection. Let μ be a finite commutative group k-scheme of order not divisible by $\operatorname{char}(k)$.
(a) If $\operatorname{dim}(X) \geq 2$, then the natural map $\mathrm{H}^{1}(k, \mu) \rightarrow \mathrm{H}_{\mathrm{ett}}^{1}(X, \mu)$ is an isomorphism.
(b) If $\operatorname{dim}(X) \geq 3$, then the natural map $\mathrm{H}_{\hat{\mathrm{ex}} \mathrm{t}}^{2}\left(\mathbb{P}_{k}^{n}, \mu\right) \rightarrow \mathrm{H}_{\mathrm{e} t}^{2}(X, \mu)$ is an isomorphism.

Proof. A combination of the weak Lefschetz theorem with Poincaré duality gives that the map $\mathrm{H}_{\mathrm{ett}}^{i}\left(\mathbb{P}_{k_{\mathrm{s}}}^{n}, \mu\right) \rightarrow \mathrm{H}_{\text {êt }}^{i}\left(X^{\mathrm{s}}, \mu\right)$ is an isomorphism for $i<\operatorname{dim}(X)$, see [K04, Cor. B.6]. In particular, if $\operatorname{dim}(X) \geq 2$, then $H_{e ́ t}^{1}\left(X^{\mathrm{s}}, \mu\right)=0$. Then the spectral sequence

$$
E_{2}^{p, q}=\mathrm{H}^{p}\left(k, \mathrm{H}_{\mathrm{et}}^{q}\left(X^{\mathrm{s}}, \mu\right)\right) \Rightarrow \mathrm{H}_{\mathrm{et}}^{p+q}(X, \mu)
$$

implies the first claim.
If $\operatorname{dim}(X) \geq 3$, then $\mathrm{H}_{\text {ét }}^{2}\left(\mathbb{P}_{k_{s}}^{n}, \mu\right) \rightarrow \mathrm{H}_{\text {ét }}^{2}\left(X^{\mathrm{s}}, \mu\right)$ is an isomorphism of Γ-modules. The above spectral sequence gives rise to the following commutative diagram with exact rows

By the 5-lemma we deduce that $\mathrm{H}_{\mathrm{ett}}^{2}\left(\mathbb{P}_{k}^{n}, \mu\right) \rightarrow \mathrm{H}_{\mathrm{ett}}^{2}(X, \mu)$ is an isomorphism.
Proposition 3.3 Let $X \subset \mathbb{P}_{k}^{n}$ be a smooth complete intersection of dimension $\operatorname{dim}(X) \geq 3$. Let μ be a finite commutative group k-scheme of order not divisible by $\operatorname{char}(k)$. Then the natural map

$$
\mathrm{H}^{2}(k, \mu) \rightarrow \mathrm{H}_{\mathrm{nr}}^{2}(X, \mu)
$$

is an isomorphism.
Proof. The map $\mathbb{Z} \cong \operatorname{Pic}\left(\mathbb{P}_{k_{\mathrm{s}}}^{n}\right) \rightarrow \operatorname{Pic}\left(X^{\mathrm{s}}\right)$ is an isomorphism by [H70, Ch. IV, Cor. 3.2], hence $\operatorname{Pic}(X) \rightarrow \operatorname{Pic}\left(X^{\mathrm{s}}\right)$ is an isomorphism. By Proposition 3.1 it is thus enough to prove that the map $\mathrm{H}^{2}(k, \mu) \rightarrow \mathrm{H}_{\mathrm{nr}}^{2}(X, \mu)$ is surjective.

Choose an affine subspace $\mathbb{A}_{k}^{n} \subset \mathbb{P}_{k}^{n}$ such that $X \cap \mathbb{A}_{k}^{n} \neq \emptyset$. Our map is the composition of maps in the top row of the following natural commutative diagram:

In the top row, the middle map is an isomorphism by Lemma 3.2 (b), and the righthand map is surjective, as was recalled in the introduction. Thus any $a \in \mathrm{H}_{\mathrm{nr}}^{2}(X, \mu)$ can be lifted to an element $b \in H_{\text {ett }}^{2}\left(\mathbb{P}_{k}^{n}, \mu\right)$. The image of b in $H_{\text {ét }}^{2}\left(\mathbb{A}_{k}^{n}, \mu\right)$ comes from a unique element $c \in \mathrm{H}^{2}(k, \mu)$. The commutativity of the diagram gives that the image of c in $\mathrm{H}^{2}(k(X), \mu)$ is equal to the image of a. But the right-hand vertical map is injective, hence c is a desired lifting of a to $\mathrm{H}^{2}(k, \mu)$.

4 Generic diagonal hypersurfaces

Let Π_{1} (respectively, Π_{2}) be the projective space with homogeneous coordinates x_{0}, \ldots, x_{n} (respectively, t_{0}, \ldots, t_{n}). Write $K=k\left(\Pi_{2}\right)$. Let $X \subset \Pi_{1} \times \Pi_{2}$ be the hypersurface

$$
\begin{equation*}
t_{0} x_{0}^{d}+\ldots+t_{n} x_{n}^{d}=0 \tag{3}
\end{equation*}
$$

where d is coprime to the characteristic exponent of k. Let p be the projection $X \rightarrow \Pi_{1}$, and let f be the projection $X \rightarrow \Pi_{2}$. The generic fibre X_{K} of f is a smooth diagonal hypersurface of degree d in the projective space $\left(\Pi_{1}\right)_{K} \cong \mathbb{P}_{K}^{n}$.

Lemma 4.1 With notation as above, the following statements hold.
(i) The fibres of f at codimension 1 points of Π_{2} are integral if $n \geq 2$ and geometrically integral if $n \geq 3$.
(ii) The fibres of f at codimension 2 points of Π_{2} are integral if $n \geq 3$ and geometrically integral if $n \geq 4$.

Proof. One only needs to check this for the singular fibres, which are the fibres above the generic points of the projective subspaces given by $t_{i}=0$ or by $t_{i}=t_{j}=0$.

4.1 Unramified cohomology in degree 1

Lemma 4.2 Let $f: X \rightarrow Y$ be a proper, dominant morphism of smooth and geometrically integral varieties over a field k. Write $K=k(Y)$ and let X_{K} be the generic fibre of f. Assume that the fibres of f over the points of Y of codimension 1 are integral and X_{K} is geometrically integral. Let $m \geq 2$ be an integer. Then the map $f^{*}: \operatorname{Pic}(Y) / m \rightarrow \operatorname{Pic}(X) / m$ is injective if and only if $\operatorname{Pic}(X)[m] \rightarrow \operatorname{Pic}\left(X_{K}\right)[m]$ is surjective.

Proof. In our situation we have an exact sequence

$$
\begin{equation*}
0 \rightarrow \operatorname{Pic}(Y) \xrightarrow{f^{*}} \operatorname{Pic}(X) \rightarrow \operatorname{Pic}\left(X_{K}\right) \rightarrow 0 . \tag{4}
\end{equation*}
$$

Exactness at $\operatorname{Pic}\left(X_{K}\right)$: since X is smooth, the Zariski closure in X of a Cartier divisor in X_{K} is a Cartier divisor in X. Exactness at $\operatorname{Pic}(X)$: if $D \in \operatorname{Div}(X)$ restricts to a principal divisor in X_{K}, then D is the sum of a principal divisor in X and a divisor D^{\prime} contained in the fibres of f. Since the fibres of f over the points of Y of codimension 1 are integral, we have $D^{\prime} \in f^{*} \operatorname{Div}(Y)$. Exactness at $\operatorname{Pic}(Y)$: if $D \in \operatorname{Div}(Y)$ is such that $f^{*} D=\operatorname{div}_{X}(\phi)$, where $\phi \in k(X)^{\times}$, then the restriction of ϕ to X_{K} is a regular function. Since X_{K} is proper and integral, ϕ is contained in the algebraic closure of K in $K(X)$, which is K itself because X_{K} is geometrically integral, see [P17, Prop. 2.2.22]. Thus we have $\phi \in K^{\times}$. Then $D-\operatorname{div}_{Y}(\phi) \in \operatorname{Div}(Y)$ goes to zero in $\operatorname{Div}(X)$, so $D=\operatorname{div}_{Y}(\phi)$ is a principal divisor in Y.

From (4) we get a commutative diagram

Applying the snake lemma to this diagram, we prove the lemma.
Proposition 4.3 Let $m \geq 2$ be an integer. Let k be a field of characteristic exponent coprime to m. Let $f: X \rightarrow Y$ be a proper, dominant morphism of smooth and geometrically integral varieties over k such that
(i) the fibres of f over the codimension 1 points of Y are integral and the generic fibre X_{K}, where $K=k(Y)$, is geometrically integral;
(ii) $\operatorname{Pic}(X)[m]=0$;
(iii) $f^{*}: \operatorname{Pic}(Y) / m \rightarrow \operatorname{Pic}(X) / m$ is injective.

Then $\mathrm{H}^{1}\left(K, \mu_{m}\right) \rightarrow \mathrm{H}_{\text {êt }}^{1}\left(X_{K}, \mu_{m}\right)$ is an isomorphism.
Proof. The Kummer sequence gives rise to an exact sequence

$$
0 \rightarrow K^{\times} / K^{\times m} \rightarrow \mathrm{H}_{e ̂ t}^{1}\left(X_{K}, \mu_{m}\right) \rightarrow \operatorname{Pic}\left(X_{K}\right)[m] \rightarrow 0 .
$$

By Lemma 4.2 we have $\operatorname{Pic}\left(X_{K}\right)[m]=0$.

Theorem 4.4 Let μ be a finite commutative group k-scheme of order not divisible by $\operatorname{char}(k)$. Let $n \geq 2$. Let $\Pi_{1}, \Pi_{2}, X, K=k\left(\Pi_{2}\right)$ be as above. Then the map $\mathrm{H}^{1}(K, \mu) \rightarrow \mathrm{H}_{\text {êt }}^{1}\left(X_{K}, \mu\right)$ is an isomorphism.

Proof. Let us first prove the statement for $\mu=\mu_{m}$ with m not divisible by char (k). Let us check the assumptions of Proposition 4.3 for $f: X \rightarrow \Pi_{2}$. By Lemma 4.1, assumption (i) is satisfied. The projection $p: X \rightarrow \Pi_{1}$ is a projective bundle over Π_{1}. Therefore we have a commutative diagram with exact rows

The right-hand vertical map is induced by the inclusion of a projective hyperplane in a projective space, so it is an isomorphism. Hence (ii) holds and the restriction map $\operatorname{Pic}\left(\Pi_{1} \times \Pi_{2}\right) \rightarrow \operatorname{Pic}(X)$ is an isomorphism. It follows that $\operatorname{Pic}\left(\Pi_{2}\right) \rightarrow \operatorname{Pic}(X)$ is split injective, hence (iii) holds.

Let E / k be a finite Galois extension, with Galois group G, such that $\mu_{E}=\mu \times{ }_{k} E$ is isomorphic to a finite product of groups $\mu_{m, E}$ where m is coprime to char (k). Let L be the compositum of the linearly disjoint field extensions K / k and E / k. We have $\mu(E)=\mu(L)=\mathrm{H}_{\mathrm{ett}}^{0}\left(X_{L}, \mu\right)$. The Hochschild-Serre spectral sequence gives rise to the following commutative diagram with exact rows

Since the result is already proved for μ_{m}, all vertical maps, except possibly the map $\mathrm{H}^{1}(K, \mu) \rightarrow \mathrm{H}_{\text {ett }}^{1}\left(X_{K}, \mu\right)$, are isomorphisms. Hence so is this map.

Remark 4.5 The geometric argument based on the projective bundle structure of $X \subset \Pi_{1} \times \Pi_{2}$ over Π_{1} in the proof of Theorem 4.4 is needed only in the case $n=2$, that is, when the hypersurface $X_{K} \subset \mathbb{P}_{K}^{2}$ is a smooth curve of degree d. When $n \geq 3$ and $X \subset \mathbb{P}_{K}^{n}$ is an arbitrary smooth hypersurface, we have $\mathrm{H}^{1}(K, \mu) \cong \mathrm{H}^{1}\left(X_{K}, \mu\right)$ by Lemma 3.2 (a).

4.2 Basic diagram

We now assume that $n \geq 3$ and $i \geq 2$, keeping the assumption that μ is a finite commutative group k-scheme of order not divisible by $\operatorname{char}(k)$. Recall the BlochOgus complex from Section 2:

$$
\mathrm{H}^{i}(k(X), \mu) \xrightarrow{\left(\partial_{x}\right)} \bigoplus_{x \in X^{(1)}} \mathrm{H}^{i-1}(k(x), \mu(-1)) \rightarrow \bigoplus_{x \in X^{(2)}} \mathrm{H}^{i-2}(k(x), \mu(-2)) .
$$

Since the fibres $X_{y}=f^{-1}(y)$ over $y \in \Pi_{2}^{(1)}$ are integral (which holds for $n \geq 2$, see Lemma 4.1) we obtain a complex

$$
\mathrm{H}_{\mathrm{nr}}^{i}\left(X_{K}, \mu\right) \xrightarrow{\left(\partial_{y}\right)} \bigoplus_{y \in \Pi_{2}^{(1)}} \mathrm{H}^{i-1}\left(k\left(X_{y}\right), \mu(-1)\right) \rightarrow \bigoplus_{x \in X^{(2)}} \mathrm{H}^{i-2}(k(x), \mu(-2)) .
$$

To simplify notation, in what follows we do not write the coefficients of cohomology groups. One should bear in mind that there is a change of twist when the codimension of points increases.

Since this is a complex, the image of ∂_{y} is unramified over the smooth locus of X_{y}. If X_{y} is smooth we write $X_{y}^{\prime}=X_{y}$. In the opposite case, X_{y} is the projective cone over the hyperplane section of X given by some $t_{i}=0$, and then we denote by X_{y}^{\prime} this hyperplane section, which is geometrically integral and smooth since $n \geq 3$. In this case, the smooth locus $X_{y, \mathrm{sm}} \subset X_{y}$ is an affine bundle over X_{y}^{\prime}, so we have $\mathrm{H}_{\mathrm{nr}}^{i-1}\left(X_{y, \mathrm{sm}}\right) \cong \mathrm{H}_{\mathrm{nr}}^{i-1}\left(X_{y}^{\prime}\right)$ by (1). Thus $\operatorname{Im}\left(\partial_{y}\right)$ is contained in $\mathrm{H}_{\mathrm{nr}}^{i-1}\left(X_{y}^{\prime}\right)$. Since the fibres X_{y} over $y \in \Pi_{2}^{(2)}$ are integral (note that they need not be geometrically integral if $n=3$), from the diagram in Section 2 we obtain a commutative diagram of complexes

where the vertical maps are induced by f. Note that since X is a projective bundle over the projective space Π_{1}, the map $\mathrm{H}^{i}(k) \rightarrow \mathrm{H}^{i}(k(X))$ is injective. So is the map $\mathrm{H}^{i}(k) \rightarrow \mathrm{H}^{i}(K)=\mathrm{H}^{i}\left(k\left(\Pi_{2}\right)\right)$.

Let $Y=\mathbb{A}_{k}^{n} \subset \Pi_{2}$ be the affine space given by $t_{0} \neq 0$. From the previous diagram we then get a commutative diagram of complexes

Since $Y \cong \mathbb{A}_{k}^{n}$, the bottom complex is exact by [R96, Prop. 8.6].
The homology group of the top complex at the first term is $\mathrm{H}_{\mathrm{nr}}^{i}\left(X_{Y}\right) / \mathrm{H}^{i}(k)$, where $X_{Y}=f^{-1}(Y) \subset X$. Let us show that this group is zero. The fibres of $p: X \rightarrow \Pi_{1}$ are hyperplanes in Π_{2}. The map $p: X_{Y} \rightarrow U$ is an affine bundle, and $p\left(X_{Y}\right)=U$, where $U=\mathbb{P}_{k}^{n} \backslash\{(1: 0: \ldots: 0)\}$. By (1) the map $p^{*}: \mathrm{H}_{\mathrm{nr}}^{i}(U) \rightarrow \mathrm{H}_{\mathrm{nr}}^{i}\left(X_{Y}\right)$ is an isomorphism. Since U is the complement to a k-point in $\Pi_{1} \cong \mathbb{P}_{k}^{n}$, and $n \geq 2$, we have

$$
\mathrm{H}^{i}(k, \mu) \cong \mathrm{H}_{\mathrm{nr}}^{i}\left(\Pi_{1}, \mu\right) \cong \mathrm{H}_{\mathrm{nr}}^{i}(U, \mu)
$$

The following lemma is proved by a straightforward diagram chase.

Lemma 4.6 Suppose that we have a commutative diagram of abelian groups

where i is injective, b is an isomorphism, c is injective, the top row is a complex, and the bottom row is exact. Then a is an isomorphism.

From Lemma 4.6 we conclude:
Proposition 4.7 With notation as above, if the middle vertical map in diagram (5) is an isomorphism and the right-hand vertical map is injective, then $f^{*}: \mathrm{H}^{i}(K, \mu) \rightarrow$ $\mathrm{H}_{\mathrm{nr}}^{i}\left(X_{K}, \mu\right)$ is an isomorphism.

4.3 Unramified cohomology in degrees 2 and 3

The main result of this paper is the following
Theorem 4.8 Let Π_{1} (respectively, Π_{2}) be the projective space with homogeneous coordinates x_{0}, \ldots, x_{n} (respectively, t_{0}, \ldots, t_{n}). Write $K=k\left(\Pi_{2}\right)$. Let $X \subset \Pi_{1} \times \Pi_{2}$ be the hypersurface

$$
\begin{equation*}
t_{0} x_{0}^{d}+\ldots+t_{n} x_{n}^{d}=0 \tag{6}
\end{equation*}
$$

where d is coprime to the characteristic exponent of k. Let $f: X \rightarrow \Pi_{2}$ be the natural projection, and let X_{K} be the generic fibre of f. Let μ be a finite commutative group k-scheme of order not divisible by char (k).
(i) If $n \geq 3$, then $f^{*}: \mathrm{H}^{2}(K, \mu) \rightarrow \mathrm{H}_{\mathrm{nr}}^{2}\left(X_{K}, \mu\right)$ is an isomorphism.
(ii) If $n \geq 4$, then $f^{*}: \mathrm{H}^{3}(K, \mu) \rightarrow \mathrm{H}_{\mathrm{nr}}^{3}\left(X_{K}, \mu\right)$ is an isomorphism.

Proof. (i) Consider diagram (5) for $i=2$. Then the middle vertical map of the diagram is an isomorphism. This follows from Theorem 4.4 when X_{y} is singular, which happens exactly when the codimension 1 point y is given by $t_{i}=0$ for some $i=1, \ldots, n$. (Note that if $n=3$ we then need Theorem 4.4 in the case $n=2$.) If X_{y} is smooth, the isomorphism follows from Lemma 3.2 (a). By Lemma 4.1, each fibre X_{y} at a codimension 2 point y is integral, hence the right hand vertical map is injective. By Proposition 4.7, this proves (i).
(ii) Consider diagram (5) for $i=3$. For $y \in Y^{(1)}$ such that X_{y} is singular, the vertical map $\left.\mathrm{H}^{2}(k(y)), \mu(-1)\right) \rightarrow \mathrm{H}_{\mathrm{nr}}^{2}\left(X_{y}^{\prime}, \mu(-1)\right)$ is an isomorphism by (i). For $y \in Y^{(1)}$ such that X_{y} is smooth, the map $\mathrm{H}^{2}(k(y), \mu(-1)) \rightarrow \mathrm{H}_{\mathrm{nr}}^{2}\left(X_{y}, \mu(-1)\right)$ is an isomorphism by Proposition 3.3. For $y \in \Pi_{2}^{(2)}$ the fibre X_{y} is geometrically integral over $k(y)$ by Lemma 4.1, hence $k(y)$ is separably closed in $k\left(X_{y}\right)$. Thus the restriction map $\mathrm{H}^{1}(k(y), \mu(-2)) \rightarrow \mathrm{H}^{1}\left(k\left(X_{y}\right), \mu(-2)\right)$ is injective, so the right-hand vertical map in the diagram is injective. By Proposition 4.7, this proves (ii).

Corollary 4.9 For $n \geq 3$, the map $\operatorname{Br}(K) \rightarrow \operatorname{Br}\left(X_{K}\right)$ induces an isomorphism of subgroups of elements of order not divisible by $\operatorname{char}(k)$.

Proof. This follows from Theorem 4.8 (i) by taking $\mu=\mu_{m}$ for each integer m not divisible by char (k).

Remark 4.10 Only the case $n=3$ of this corollary requires the above proof. For $n \geq 4$ and any smooth hypersurface in \mathbb{P}^{n}, we have the general Proposition 3.3.

5 Pairs of polynomials

In this section we give a short elementary proof that the Brauer group of the surface given by the equation (7) below over the field of rational functions $K=k(\tau)$, where $\tau=\lambda / \mu$, is naturally isomorphic to $\operatorname{Br}(K)$ away from p-primary torsion if $\operatorname{char}(k)=p$. The motivation for this comes from the recent paper [GS], where the same result was proved in the case when $\operatorname{char}(k)=0$ (combine [GS, Thm. 1.1 (i)] and [GS, Thm. 1.4]).

Theorem 5.1 Let k be a field. Let d be a positive integer. Let $f(x, y)$ and $g(z, t)$ be products of d pairwise non-proportional linear forms. Let $X \subset \mathbb{P}_{k}^{1} \times_{k} \mathbb{P}_{k}^{3}$ be the hypersurface given by

$$
\begin{equation*}
\lambda f(x, y)=\mu g(z, t) \tag{7}
\end{equation*}
$$

where $(\lambda: \mu)$ are homogeneous coordinates in \mathbb{P}_{k}^{1} and $(x: y: z: t)$ are homogeneous coordinates in \mathbb{P}_{k}^{3}. Let $K=k\left(\mathbb{P}_{k}^{1}\right)$ and let X_{K} be the generic fibre of the projection $f: X \rightarrow \mathbb{P}_{k}^{1}$. Then the natural map $\operatorname{Br}(K) \rightarrow \operatorname{Br}\left(X_{K}\right)$ induces an isomorphism of subgroups of elements of order not divisible by $\operatorname{char}(k)$.

Proof. The singular locus $X_{\text {sing }}$ is contained in the union of fibres of f above $\lambda=0$ and $\mu=0$. The fibre above $\mu=0$ is given by $f(x, y)=0$. It is a union of d planes in \mathbb{P}_{k}^{3} through the line $x=y=0$. The intersection of $X_{\text {sing }}$ with the fibre above $\mu=0$ is the zero-dimensional scheme given by $x=y=g(z, t)=0$. The situation above $\lambda=0$ is entirely similar. Let $Y=X \backslash X_{\text {sing }}$ be the smooth locus of X / k. The projection $p: X \rightarrow \mathbb{P}_{k}^{3}$ is a birational morphism which restricts to an isomorphism $Y_{V} \xrightarrow{\sim} V$ on the complement V to the curve in \mathbb{P}_{k}^{3} given by $f(x, y)=g(z, t)=0$. We have

$$
\operatorname{Br}(k) \cong \operatorname{Br}\left(\mathbb{P}_{k}^{3}\right) \cong \operatorname{Br}(V) \cong \operatorname{Br}\left(Y_{V}\right),
$$

where the first isomorphism is by [CTS21, Thm. 6.1.3] and the second one is by purity for the Brauer group [CTS21, Thm. 3.7.6]. Since $Y(k) \neq \emptyset$, we have $\operatorname{Br}(k) \subset$ $\operatorname{Br}(Y) \subset \operatorname{Br}\left(Y_{V}\right)$ where the second inclusion is by [CTS21, Thm. 3.5.5]. We conclude that $\operatorname{Br}(Y) \cong \operatorname{Br}(k)$.

Let $m \geq 2$ be an integer not divisible by $\operatorname{char}(k)$. If a closed fibre $X_{M}=f^{-1}(M)$ is smooth, then X_{M} is a smooth surface in $\mathbb{P}_{k(M)}^{3}$, thus we have

$$
\begin{equation*}
\mathrm{H}_{\text {êt }}^{1}\left(X_{M}, \mathbb{Z} / m\right) \cong \mathrm{H}^{1}(k(M), \mathbb{Z} / m) \tag{8}
\end{equation*}
$$

by Lemma 3.2 (a). The smooth locus of the fibre of f above $\mu=0$ is a disjoint union of d affine planes \mathbb{A}_{k}^{2}. We have

$$
\begin{equation*}
\mathrm{H}_{\text {ét }}^{1}\left(\mathbb{A}_{k}^{2}, \mathbb{Z} / m\right) \cong \mathrm{H}^{1}(k, \mathbb{Z} / m) \tag{9}
\end{equation*}
$$

since $\operatorname{char}(k)$ does not divide m.
Without loss of generality we can write

$$
f(x, y)=c \prod_{i=1}^{d}\left(x-\xi_{i} y\right), \quad g(z, t)=c^{\prime} \prod_{j=1}^{d}\left(z-\rho_{j} t\right)
$$

where $c, c^{\prime} \in k^{\times}$and $\xi_{i}, \rho_{j} \in k$ for $i, j=1, \ldots, d$. We note that for each pair (i, j) the $\operatorname{map} s_{i j}:(\lambda: \mu) \rightarrow\left((\lambda: \mu),\left(\xi_{i}: 1: \rho_{j}: 1\right)\right)$ is a section of the morphism $f: X \rightarrow \mathbb{P}_{k}^{1}$.

Each section $s_{i j}$ gives a K-point of X_{K}. Thus the natural map $\operatorname{Br}(K) \rightarrow \operatorname{Br}\left(X_{K}\right)$ is injective.

Let $\alpha \in \operatorname{Br}\left(X_{K}\right)[m]$. Evaluating α at the K-point of X_{K} given by $s_{1,1}$ gives an element $\beta \in \operatorname{Br}(K)[m]$. We replace α by $\alpha-\beta$.

Note that each section $s_{i j}\left(\mathbb{P}_{k}^{1}\right)$ meets every closed fibre of f at a smooth point. The new element $\alpha \in \operatorname{Br}\left(X_{K}\right)[m]$ has trivial residue on the irreducible component of the smooth locus of every fibre of f that $s_{1,1}\left(\mathbb{P}_{k}^{1}\right)$ intersects. Indeed, by (8) and (9) this residue is constant, but specialises to zero at the intersection point with $s_{1,1}\left(\mathbb{P}_{k}^{1}\right)$. In particular, α has trivial residues at the smooth fibres of f, as well as at the affine plane given by $x-\xi_{1} y=0$ in the fibre $\mu=0$ and the affine plane given by $z-\rho_{1} t=0$ in the fibre $\lambda=0$.

We now evaluate α at the K-point of X_{K} given by $s_{1, j}$, where $j=2, \ldots, d$. The result is an element of $\operatorname{Br}(K)$ which is unramified everywhere except possibly at the k-point of \mathbb{P}_{k}^{1} given by $\lambda=0$. By Faddeev reciprocity [GS17, Thm. 6.9.1], the residue at that point must be zero, too. This implies that α is unramified at the smooth locus of the fibre at $\lambda=0$. A similar argument using sections $s_{i, 1}$ for $i=2, \ldots, d$ shows that α is unramified at the smooth locus of the fibre at $\mu=0$.

We see that the residue of α at every codimension 1 point of Y is zero. By the purity for the Brauer group, α belongs to $\operatorname{Br}(Y)$. We have proved earlier that the natural map $\operatorname{Br}(k) \rightarrow \operatorname{Br}(Y)$ is an isomorphism, hence $\alpha \in \operatorname{Br}(k)$. It follows that $\operatorname{Br}(K)[m] \rightarrow \operatorname{Br}\left(X_{K}\right)[m]$ is an isomorphism.

References

[BO74] S. Bloch and A. Ogus. Gersten's conjecture and the homology of schemes. Ann. Sci. École Norm. Sup. (4) 7 (1974), 181-201 (1975).
[CT95] J.-L. Colliot-Thélène. Birational invariants, purity and the Gersten conjecture. K-theory and algebraic geometry: connections with quadratic forms and division algebras (Santa Barbara, 1992), Proc. Sympos. Pure Math. 58, Part 1, Amer. Math. Soc., 1995, pp. 1-64.
[CTS87] J.-L. Colliot-Thélène and J.-J. Sansuc. La descente sur les variétés rationnelles, II. Duke Math. J. 54 (1987) 375-492.
[CTS21] J.-L. Colliot-Thélène and A.N. Skorobogatov. The Brauer-Grothendieck group. Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Band 71, Springer, 2021.
[GS17] P. Gille and T. Szamuely. Central simple algebras and Galois cohomology. 2nd ed. Cambridge Studies in Advanced Mathematics 165, Cambridge University Press, 2017.
[GS] D. Gvirtz-Chen and A.N. Skorobogatov. Surfaces defined by pairs of polynomials. arXiv:2305. 08632
[H70] R. Hartshorne. Ample subvarieties of algebraic varieties. Lecture Notes in Mathematics 156, Springer-Verlag, 1970.
[K04] N.M. Katz. Applications of the Weak Lefschetz Theorem. Appendix to: B. Poonen and J.F. Voloch. Random Diophantine equations. Arithmetic of higher-dimensional algebraic varieties (Palo Alto, 2002), Progress in Mathematics 226, 175-184, Birkhäuser, 2004.
[P17] B. Poonen. Rational points on varieties. Graduate Studies in Mathematics 186. American Mathematical Society, 2017.
[R96] M. Rost. Chow groups with coefficients. Doc. Math. 1 (1996) 319-393.
[S03] J.-P. Serre. Cohomological invariants, Witt invariants, and trace forms. Notes by S. Garibaldi. Cohomological invariants in Galois cohomology, University Lecture Series 28, American Mathematical Society, 2003, pp. 1-100.

Université Paris-Saclay, CNRS, Laboratoire de mathématiques d'Orsay, 91405, Orsay, France.
jean-louis.colliot-thelene@universite-paris-saclay.fr
Department of Mathematics, South Kensington Campus, Imperial College London, SW7 2BZ England, U.K. - and - Institute for the Information Transmission Problems, Russian Academy of Sciences, 19 Bolshoi Karetnyi, Moscow, 127994 Russia
a.skorobogatov@imperial.ac.uk

