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Abstract

We prove that the i-th unramified cohomology group of the generic diagonal
hypersurface in the projective space of dimension n > ¢+ 1 is trivial for ¢ < 3.

1 Introduction

Let k be a field with separable closure ks and absolute Galois group I' = Gal(ks/k).
Let 1 be a finite étale commutative group k-scheme of order not divisible by char (k).
The datum of such a group k-scheme pu is equivalent to the datum of the finite I'-
module (k). For an integer m > 2 we denote by p,, the group k-scheme of m-th
roots of unity. If N is a positive integer not divisible by char(k) such that Ny = 0,
then p(—1) denotes the commutative group k-scheme Homy_gps(pn, ). In terms
of Galois modules, p(—1) is Homg(pn(ks), p(ks)) with the natural Galois action.

Let X be a smooth integral variety over k. We denote by X the set of points
of X of codimension n. In this paper, the unramified cohomology group H (X, 1),
where 7 is a positive integer, is defined as the intersection of kernels of the residue
maps

Op: H'(K(X), 1) — H' ™ (k(2), n(-1)),

for all z € XM, For equivalent definitions, see [CT95, Thm. 4.1.1]. Restriction to
the generic point of X gives rise to a natural map

HL (X, 1) — HLL(X, ).

Purity for étale cohomology implies that it is an isomorphism for ¢« = 1 and surjective
for i =2, see [CT95, §3.4]. In the case i = 2 with p = p,,, where m is not divisible
by char(k), this gives a canonical isomorphism

Br(X) [m]——=H, (X, ),
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see [CT95, Prop. 4.2.1 (a), Prop. 4.2.3 (a)]. If X/k is smooth, proper, and integral,
then H! (X, u) does not depend on the choice of X in its birational equivalence
class, see [CT95, Prop. 4.1.5] and [R96, Remark (5.2), Cor. (12.10)].

Let n > 2 and let K = k(aq,...,a,) be the field of rational functions in the
variables ay, ..., a,. Let Xx C P}% be the hypersurface with equation

d d d
Ty + a2y + ...+ ayz, =0,

where d is not divisible by char(k). In this paper, for i = 1,2,3 and n > i + 1, we
prove that the natural map

is an isomorphism, see Theorem 4.8. In the case when ¢ = 2 and u = p,, with
m > 2, this gives that the natural map of Brauer groups Br(K) — Br(Xg) is an
isomorphism of subgroups of elements of order not divisible by char(k), see Corollary
4.9. In the case when k has characteristic zero, this result was obtained as [GS,
Thm. 1.5] by a completely different method, using results on the topology of the
Fermat surface as a complex manifold.

In this paper we use the formalism proposed by M. Rost in [R96] which applies
inter alia to Galois cohomology [R96, Remarks (1.11), (2.5)]. We do not use the
Gersten conjecture for étale cohomology [BOT74].

Let us describe the structure of this note. In Section 2 we recall some basic facts
about unramified cohomology including a functoriality property of the Bloch—-Ogus
complex with respect to faithfully flat morphisms with integral fibres. In Section
3 we show that for smooth complete intersections X C PP} there are canonical
isomorphisms H'(k, ) — H! (X, u) for i = 1,2 when dim(X) > i + 1. Generic
diagonal hypersurfaces are studied in Section 4. The easy proof of the main theorem
in the case i = 1 is given in Section 4.1. This is used in the proof in the case i = 2
in Section 4.3, after some preparations in Section 4.2. Finally, in Section 5 we use
a similar idea to give a short proof of the triviality of the Brauer group of certain
surfaces in Pi(t) defined by a pair of polynomials with coefficients in k, see Theorem
5.1, which was proved in [GS] when char(k) = 0.

Our proof in this note develops a geometric idea suggested by Mathieu Florence
during the second author’s talk at the seminar “Variétés rationnelles” in November
2022. The authors are very grateful to Mathieu Florence for his suggestion.

2 Functoriality of the Bloch—Ogus complex

For any smooth integral variety X over k and any ¢ > 2 there is a complex

0 — H(k(X), 1) 3 @ H 7 (h(a), u(-1) ™ O H2(k(y), n(~2)),

zex @) yeX ()



which we call the Bloch—Ogus complex. The maps in this complex are defined in
[R96, (2.1.0)]. (The map 0, is the residue defined for discrete valuation rings by
Serre [S03], see also [CTS21, Def. 1.4.3].) The proof that the resulting sequence is
a complex is given in [R96, Section 2]. If y € X is a regular point of the closure
of z € XU then the map 9,: H' " (k(z), u(—1)) — H2(k(y), u(—2)) is the residue
map for the local ring of y in the closure of x, which is a discrete valuation ring.

The unramified cohomology group H! (X, 1) is the homology group of this com-
plex at the term H*(k(X), ), i.e., the intersection of Ker(d,) for all z € X1,

Let p: X — Y be a faithfully flat morphism of smooth integral k-varieties with
integral fibres. By [R96, Section (3.5); Prop. (4.6)(2)], there is a chain map of
complexes

0 — H'(K(X), 1) — Dexo HTH (k(x), p(—1)) —= B exe H(k(2), n(-2))

| | |

0 —=H'(k(Y), ) —= By B (k(y), 1(—1)) —= D ey H2(k(y), n(-2))

The middle vertical map is the natural one if p(z) = y, otherwise it is zero, and
similarly for the right-hand vertical map.

The morphism X — Y is called an affine bundle if Zariski locally on Y, it is
isomorphic to Y x, A" — Y with affine transition morphisms. In this case the
vertical maps in the above diagram induce isomorphisms on the left-hand and middle
homology groups, see [R96, Prop. (8.6)]. In particular, we have an isomorphism

Hi (X, ) = HL (Y, ). (1)

Combined with [R96, Cor. (12.10)], this implies that H? (X, i) is a stable birational
invariant of smooth and proper integral k-varieties.

3 Low degree unramified cohomology of complete
intersections

For a variety X over a field k we write X® = X Xy, k.

Proposition 3.1 Let X be a smooth, projective, geometrically integral variety over
a field k such that the natural map Pic(X) — Pic(X®) is an isomorphism of finitely
generated free abelian groups. Then for any k-group of multiplicative type M the
natural map

H?(k, M) — H*(k(X), M)

18 injective.



Proof. We have a commutative diagram with exact rows and natural vertical maps

0 — kX — ky(X)* —= Div(X*) —= Pic(X®) —=0

N

0 —= kX — k(X)* — Div(X) — Pic(X) —=0

The abelian group Pic(X) is free, so the homomorphism Div(X) — Pic(X) has a sec-
tion. Then our assumption implies that the map of I'-modules Div(X?®) — Pic(X?®)
has a section. By definition, the elementary obstruction e(X) € Ext;(Pic(Xz), k)
is the class of the 2-extension of [-modules given by the upper row of (2). Thus we
have e(X) = 0. The result now follows from [CTS87, Prop. 2.2.5]. O

Lemma 3.2 Let X C P} be a complete intersection.
(a) If dim(X) > 2, then the natural map H' (k, p) — HL (X, u) is an isomorphism.
(b) If dim(X) > 3, then the natural map HZ (P}, ) — HZ (X, i) is an isomor-
phism.

Proof. A combination of the weak Lefschetz theorem with Poincaré duality gives
that the map HY (P}, u) — Hi (X®, 1) is an isomorphism for 7 < dim(X), see [K04,
Cor. B.6]. In particular, if dim(X) > 2, then H} (X® ) = 0. Then the spectral
sequence

By = HP (k, HE (X7, 1) = HE™(X, 1)

implies the first claim.

If dim(X) > 3, then HZ (P, ) — HZ (X5, p) is an isomorphism of I'-modules.
The above spectral sequence gives rise to the following commutative diagram with
exact rows

O—>H2(ka:u) —>H?>t(X> :u) _>H02t(XS’IU)F —>H3(k>ﬂ)

STy

00— H2(k7 M) - Hgt(sz :U’) - Hgt(Pst :U’)F - Hg(kv :U’)
By the 5-lemma we deduce that HZ (P}, u) — HZ (X, 1) is an isomorphism. O

Proposition 3.3 Let X C P} be a smooth complete intersection of dimension
dim(X) > 3. Then the natural map

H?(k, p) — H2.(X, )

s an isomorphism.



Proof. The map Z = Pic(P;) — Pic(X®) is an isomorphism by [H70, Ch. IV,
Cor. 3.2], hence Pic(X) — Pic(X®) is an isomorphism. By Proposition 3.1 it is thus
enough to prove that the map H?(k, u) — H2 (X, u) is surjective.

Choose an affine subspace A} C P} such that X N A} # . Our map is the
composition of maps in the top row of the following natural commutative diagram:

o

H2(k>ﬂ) —>H?>t(]P)Zhu) H?gt(X’ :u)

A | |

H2(k, p1) — H2, (A}, 1) — H2,(X N AL, p) — H2(k(X), )

H2 (X, 1)

In the top row, the middle map is an isomorphism by Lemma 3.2 (b), and the right-
hand map is surjective, as was recalled in the introduction. Thus any a € H2 (X, p)
can be lifted to an element b € HZ (P?, 1). The image of b in H% (A7, 1) comes from
a unique element ¢ € H?(k, ). The commutativity of the diagram gives that the
image of ¢ in H?(k(X), i) is equal to the image of a. But the right-hand vertical
map is injective, hence c is a desired lifting of a to H?(k, ). O

4 Generic diagonal hypersurfaces

Let II; (respectively, Il;) be the projective space with homogeneous coordinates
xg, ..., T, (respectively, to,...,t,). Write K = Ek(Ily). Let X C II; x IIy be the
hypersurface

toxd 4 .. Ftaal = 0. (3)

Let p be the projection X — Iy, and let f be the projection X — Il;. The generic
fibre Xk of f is a smooth diagonal hypersurface of degree d in the projective space

(IL) x = Pk

Lemma 4.1 With notation as above, the following statements hold.

(i) The fibres of f at codimension 1 points of Ily are integral if n > 2 and geo-
metrically integral if n > 3.

(ii) The fibres of f at codimension 2 points of Iy are integral if n > 3 and
geometrically integral if n > 4.

Proof. One only needs to check this for the singular fibres, which are the fibres above
the generic points of the projective subspaces given by t;, =0 or by t; =¢; =0. O
4.1 Unramified cohomology in degree 1

Lemma 4.2 Let f: X — Y be a proper, dominant morphism of smooth and geomet-
rically integral varieties over a field k. Write K = k(Y') and let Xy be the generic



fibre of f. Assume that the fibres of f over the points of Y of codimension 1 are
integral and X is geometrically integral. Let m > 2 be an integer. Then the map
f*: Pie(Y)/m — Pic(X)/m is injective if and only if Pic(X)[m] — Pic(Xg)[m]| is

surjective.
Proof. In our situation we have an exact sequence
0 — Pic(Y) L5 Pic(X) — Pic(Xx) — 0. (4)

Exactness at Pic(Xk): since X is smooth, the Zariski closure in X of a Cartier
divisor in Xg is a Cartier divisor in X. Exactness at Pic(X): if D € Div(X)
restricts to a principal divisor in X, then D is the sum of a principal divisor in X
and a divisor contained in the fibres of f, which by our assumption is contained in
f*Div(Y). Exactness at Pic(Y): if D € Div(Y) is such that f*D = divx(¢), where
¢ € k(X)*, then the restriction of ¢ to X is a regular function. Since X proper
and geometrically integral, we must have ¢ € K*. Then D — divy(¢) € Div(Y)
goes to zero in Div(X), so D = divy(¢) is a principal divisor in Y.

Applying the snake lemma to the commutative diagram obtained from (4) and
multiplication by m, proves the lemma. 0J

Proposition 4.3 Letm > 2 be an integer. Let k be a field of characteristic exponent
coprime to m. Let f: X — Y be a proper, dominant morphism of smooth and
geometrically integral varieties over k such that

(i) the fibres of f over the points of Y of codimension 1 are integral and the generic
fibre Xy is geometrically integral (where K = k(Y'));

(i) Pic(X) is torsion-free;

(iii) f*: Pic(Y)/m — Pic(X)/m is injective.
Then HY(K, p) — HE (Xke, fm) i an isomorphism.
Proof. The Kummer sequence gives rise to an exact sequence

0— K*/K*™ — H} (Xk, ttm) — Pic(Xx)[m] — 0.

By Lemma 4.2 we have Pic(Xg)[m] = 0. O

Theorem 4.4 Let n > 2. Let 1, Iy, X, K = k(Ily) be as above. Then the map
HY(K, p) — H (Xk, p) is an isomorphism.

Proof. Let us first prove the statement for = p,, with m not divisible by char(k).
Let us check the assumptions of Proposition 4.3 for f: X — Il,. By Lemma 4.1,
assumption (i) is satisfied. The projection p: X — II; is a projective bundle over
IT,. We have a commutative diagram with exact rows

Pic(P} ) —0

0 —— Pic(IL,) Pic(X) e

L

0 — Pic(Il;) — Pic(Tly x ITy) — Pic((Ily)xa1,)) —=0

6



The right-hand vertical map is induced by the inclusion of a projective hyperplane
in a projective space, so it is an isomorphism. Hence (ii) holds and the restriction
map Pic(Il; x IIy) — Pic(X) is an isomorphism. It follows that Pic(Ily) — Pic(X)
is split injective, hence (iii) holds.

For an arbitrary group p, let E//k be a finite Galois extension, with Galois group
G, such that pp = pu X £ is isomorphic to a finite product of groups p,, g where m is
coprime to char(k). Let L be the compositum of the linearly disjoint field extensions
K/k and E/k. We have pu(E) = u(L) = H% (X, ). The Hochschild-Serre spectral

sequence gives rise to the following commutative diagram with exact rows

0—=HY(G, p(L)) — Hg (X, p) —= Hg (Xp, p)¢ —=H*(G, u(L))

L

0—>H1(G7M(L>>—>H1(K7 :U’) Hl(L7M>G—>H2(G7M(L>>

Since the result is already proved for p,,, all vertical maps, except possibly the map
HY(K, p) — H (Xk, ), are isomorphisms. Hence so is this map. O

Remark 4.5 The geometric argument based on the projective bundle structure of
X C II; x II, over II; in the proof of Theorem 4.4 is needed only in the case n = 2,
that is, when the hypersurface X C P2% is a smooth curve of degree d. When n > 3
and X C P} is an arbitrary smooth hypersurface, we have H' (K, u) = H' (X, i)
by Lemma 3.2 (a).

4.2 Basic diagram

We now assume n > 3 and i > 2. Recall the Bloch—Ogus complex from Section 2:

H(k(X), 1) “5 @D W (k) u(=1) = @D H2(k(x), u(-2)).

zeX @ zeX(2)

Since the fibres X, = f~!(y) over y € Hél) are integral (which holds for n > 2, see
Lemma 4.1) we obtain a complex

H (X ) 24 @D B (R(X,), n(—1)) = @D H2(k(x), u(~2)).

yEHgl) zeX ()

To simplify notation, in what follows we do not write the coefficients of cohomol-
ogy groups. One should bear in mind that there is a change of twist when the
codimension of points increases.

Since this is a complex, the image of J, is unramified over the smooth locus of
X,. If X, is smooth we write X; = X,. In the opposite case, X, is the projective
cone over the hyperplane section of X given by some ¢; = 0, and then we denote by

7



X, this hyperplane section, which is smooth since n > 3. In this case, the smooth
locus Xy sm C X, is an affine bundle over X, so we have H} (X, m) = Hi'(X])

by (1). Thus Im(9,) is contained in Hi;'(X]). Since the fibres X, over y € H;z)
are integral (note that they need not be geometrically integral if n = 3), from the
diagram in Section 2 we obtain a commutative diagram of complexes

0 Hi, (X0) [H (k) —— @), o Hiz (X)) —— @, v H2(K(X,)

T T

0 ——= HI(K)/H (k) —— @), o B (k(y) ——= €, 0 H2(k(y))

where the vertical maps are induced by f. Note that since X is a projective bundle
over the projective space Iy, the maps H'(k) — H*(k(X)) is injective. So is the map
H'(k) — H'(K) = H'(k(ILy)).

Let Y = A} C II, be the affine space given by ¢y, # 0. From the previous diagram
we then get a commutative diagram of complexes

0 — H, (Xx)/H' (k) — D ey Hi (X)) —— By H2(k(X,))

| ! ! 5

0 ——H'(K)/H (k) —— Deyw H (E(y)) — Dyeye H2(k(y))

Since Y = A7, the bottom complex is exact by [R96, Prop. 8.6].

The homology group of the top complex at the first term is H' .(Xy)/H'(k), where
Xy = f7}(Y) € X. Let us show that this group is zero. The fibres of p: X — II;
are hyperplanes in Il,. The map p: Xy — U is an affine bundle, and p(Xy) = U,
where U = PP\ {(1:0:...:0)}. By (1) the map p*: H (U) — H! (Xy) is an
isomorphism. Since U is the complement to a k-point in II; = P}, and n > 2, we
have

Hl(kv :U’) = H;r(Hlv :U’) = H;r(Uv M)
The following lemma is proved by a straightforward diagram chase.

Lemma 4.6 Suppose that we have a commutative diagram of abelian groups

A . p_t.

X

where 1 18 injective, b is an isomorphism, c is injective, the top row is a compler,
and the bottom row is exact. Then a is an isomorphism.

From Lemma 4.6 we conclude:

Proposition 4.7 With notation as above, if the middle vertical map in diagram (5)
is an isomorphism and the right-hand vertical map is injective, then f*: H' (K, u) —
H' (Xf, pt) is an isomorphism.



4.3 Unramified cohomology in degrees 2 and 3
The main result of this paper is the following

Theorem 4.8 Let I1; (respectively, 113) be the projective space with homogeneous
coordinates xo, . . ., T, (respectively, to, ..., t,). Write K = k(Ily). Let X C II; x Il
be the hypersurface

toxd + ..+ tyat = 0. (6)
Let f: X — Iy be the natural projection, and let Xk be the generic fibre of f. Let
i be a finite étale commutative group k-scheme of order not divisible by char(k).

(i) If n > 3, then f*: H*(K, u) — H2 (Xg, p) is an isomorphism.
(ii) If n >4, then f*: H3(K,u) — H3 (Xk, ) is an isomorphism.

Proof. (i) Consider diagram (5) for ¢ = 2. Then the middle vertical map of the
diagram is an isomorphism. This follows from Theorem 4.4 when X, is singular,
which happens exactly when the codimension 1 point y is given by t; = 0 for some
i=1,...,n. (Note that if n = 3 we then need Theorem 4.4 in the case n = 2.) If
X, is smooth, the isomorphism follows from Lemma 3.2 (a). By Lemma 4.1, each
fibre X, at a codimension 2 point y is integral, hence the right hand vertical map is
injective. By Proposition 4.7, this proves (i).

(ii) Consider diagram (5) for i = 3. For y € Y such that X, is singular, the
vertical map H?(k(y)), u(—1)) — HZ(X],u(—1)) is an isomorphism by (i). For
y € YW such that X, is smooth, the map H?(k(y), u(—1)) — HZ.(X,, u(=1)) is
an isomorphism by Proposition 3.3. For y € ng) the fibre X, is geometrically
integral over k(y) by Lemma 4.1, hence k(y) is separably closed in k(X,). Thus the
restriction map H'(k(y), u(—2)) — H' (k(X,), u(—2)) is injective, so the right-hand
vertical map in the diagram is injective. By Proposition 4.7, this proves (ii). O]

Corollary 4.9 For n > 3, the map Br(K) — Br(Xg) induces an isomorphism of
subgroups of elements of order not divisible by char(k).

Proof. This follows from Theorem 4.8 (i) by taking p = p,, for each integer m not
divisible by char(k). O

Remark 4.10 Only the case n = 3 of this corollary requires the above proof. For
n > 4 and any smooth hypersurface in P", we have the general Proposition 3.3.

5 Pairs of polynomials

In this section we give a short elementary proof that the Brauer group of the surface
given by the equation (7) below over the field of rational functions K = k(t), with
t = A/ u, is naturally isomorphic to Br(K') (away from p-primary torsion if char(k) =
p). In the case when k has characteristic zero, this follows from more general results
of [GS], namely, the combination of [GS, Thm. 1.1 (i)] and [GS, Thm. 1.4].
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Theorem 5.1 Let k be a field. Let d be a positive integer. Let f(x,y) and g(z,t)
be products of d pairwise non-proportional linear forms. Let X C P} x, P3 be the
hypersurface given by

A (@,y) = ng(z,1), (7)

where (X : p) are homogeneous coordinates in P}, and (z :y: z : t) are homogeneous
coordinates in P3. Let K = k(P}) and let Xk be the generic fibre of the projection
f: X — Pi. Then the natural map Br(K) — Br(Xg) induces an isomorphism of
subgroups of elements of order not divisible by char(k).

Proof. The singular locus Xgne is contained in the union of fibres of f above A =0
and g = 0. The fibre above p = 0 is given by f(x,y) = 0. It is a union of d planes
in P? through the line z = y = 0. The intersection of Xging With the fibre above
i = 0 is the zero-dimensional scheme given by © = y = g(z,t) = 0. The situation
above A = 0 is entirely similar. Let Y = X \ Xy be the smooth locus of X/k. The
projection p: X — P? is a birational morphism which restricts to an isomorphism
Yy——V on the complement V to the curve in P¥ given by f(z,y) = g(z,t) = 0. We

have
Br(k) = Br(P}) = Br(V) = Br(Yy),

where the first isomorphism is by [CTS21, Thm. 6.1.3] and the second one is by
purity for the Brauer group [CTS21, Thm. 3.7.6]. Since Y (k) # (), we have Br(k) C
Br(Y) C Br(Yy) where the second inclusion is by [CTS21, Thm. 3.5.5]. We conclude
that Br(Y) = Br(k).

Let m > 2 be an integer not divisible by char(k). If a closed fibre X, = f~*(M)
is smooth, then X, is a smooth surface in Pi( M) thus we have

Hey (Xar, Z/m) = H' (k(M), Z/m) (8)

by Lemma 3.2 (a). The smooth locus of the fibre of f above u = 0 is a disjoint
union of d affine planes A?. We have

He (AL, Z/m) = H' (k, Z/m) (9)

since char(k) does not divide m.
Without loss of generality we can write

(z = pjt),

d d
=1

fy) =c][x—&y), gz1)={¢ |

i=1 j
where ¢, € k* and &, p; € kfori,j =1,...,d. We note that for each pair (¢, j) the
map s;j: (A:p) = ((A:p), (& :1:pj:1))is asection of the morphism f: X — Pj.

Each section s;; gives a K-point of X. Thus the natural map Br(K) — Br(Xk)
is injective.
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Let o € Br(Xg)[m]. Evaluating a at the K-point of Xk given by s;; gives an
element § € Br(K)[m|. We replace a by a — f.

Note that each section s;;(P}) meets every closed fibre of f at a smooth point.
The new element o € Br(Xg)[m| has trivial residue on the irreducible component
of the smooth locus of every fibre of f that s;;(P}) intersects. Indeed, by (8) and
(9) this residue is constant, but specialises to zero at the intersection point with
s1.1(PL). In particular,  has trivial residues at the smooth fibres of f, as well as at
the affine plane given by x — &y = 0 in the fibre 4 = 0 and the affine plane given
by z — pit = 0 in the fibre A = 0.

We now evaluate « at the K-point of Xk given by s ;, where j = 2,...,d. The
result is an element of Br(K') which is unramified everywhere except possibly at the
k-point of P} given by A = 0. By Faddeev reciprocity, the residue at that point
must be zero, too. This implies that « is unramified at the smooth locus of the fibre
at A = 0. A similar argument using sections s;; for ¢ = 2,...,d shows that « is
unramified at the smooth locus of the fibre at u = 0.

We see that the residue of a at every point of codimension 1 of Y is zero. Thus «
belongs to Br(Y'), hence to Br(k). We conclude that Br(K)[m] — Br(Xg)[m]. O
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