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Abstract. Let F = K(X) be the function field of a smooth projective curve over a p-adic field
K. To each rank one discrete valuation of F one may associate the completion Fv. Given an
F -variety Y which is a homogeneous space of a connected reductive group G over F , one may
wonder whether the existence of Fv-points on Y for each v is enough to ensure that Y has an
F -point. In this paper we prove such a result in two cases :

(i) Y is a smooth projective quadric and p is odd.
(ii) The group G is the extension of a reductive group over the ring of integers of K, and Y

is a principal homogeneous space of G.
An essential use is made of recent patching results of Harbater, Hartmann and Krashen. There

is a connection to injectivity properties of the Rost invariant and a result of Katô.

1. Introduction

Let K be a p-adic field, by which we mean a finite extension of a field Qp. Let A be its ring of
integers. Let X/K be a smooth, projective, geometrically integral curve. Let F = K(X) be the
function field of X. This is a field of cohomological dimension 3. Let Ω denote the set of discrete
valuations (of rank one) on the field F . Given v ∈ Ω we let Fv denote the completion of F at v.

We wonder whether in this context there is a local-global principle for the existence of rational
points on homogeneous spaces of connected linear algebraic groups over F .

Conjecture 1 Let F = K(X) be as above. Let Y/F be a projective homogeneous space of a
connected linear algebraic group. If Y has points in all completions Fv, then it has an F -rational
point.

Conjecture 2 Let F = K(X) be as above. Let G/F be a semisimple, simply connected group.
If a class ξ in the Galois cohomology set H1(F,G) has trivial image in each H1(Fv, G), then ξ is
trivial. In other words, if a principal homogeneous space under G has points in all completions
Fv, then it has an F -rational point.

It is unlikely that Conjecture 2 holds for an arbitrary connected reductive group G, for instance
for a torus. It definitely fails for G a finite constant group, see §6.

As we explain in Section 5 (Theorem 5.4), Conjecture 2 may be proved for most quasisplit
simply connected groups by using a combination of properties of the Rost invariant and a result
of Katô [20].

In their recent paper [15], Harbater, Hartmann and Krashen have developed the patching
technique of [14] to the point where they get local-global theorems for homogeneous spaces.
Their main local-global theorems refer to some other families of overfields of F than the family
{Fv} we consider here. But they manage to apply the technique to the extent that they give a
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radically new proof of the theorem by Parimala and Suresh [31] that any quadratic form in at
least 9 variables over K(X) (K as above, nondyadic, X a curve over K) has a nontrivial zero.

Their techniques apply more generally to complete discrete valuation rings with arbitrary
residue field.

In the present paper, we use the method and theorems of Harbater, Hartmann and Krashen
to prove the following results.

1) For smooth quadrics of dimension at least 1, which are projective homogeneous spaces
under the associated special orthogonal group, under the assumption that the characteristic of
the residue field of K is not 2, we prove Conjecture 1. We actually prove the more general result
(Theorem 3.1) :

Let A be a complete discrete valuation ring with fraction field K and residue field k of char-
acteristic different from 2. Let X be a smooth, projective, geometrically integral curve over K.
Let F = K(X) be the function field of X. Let q be a nondegenerate quadratic form over F in at
least 3 variables. If for each discrete valuation of F , the form q is isotropic over the completion
of F with respect to this valuation, then q is isotropic over F .

2) We show (Theorem 4.8) that the statement of Conjecture 2 holds for any (fibrewise con-
nected) reductive A-group G.

This relies on the following general result (Theorem 4.3) :
Let A be a complete discrete valuation ring, K its field of fractions and k its residue field.

Let X/A be a projective, flat curve over Spec A. Assume that X is connected and regular. Let
F be the function field of X. Let Ω be the set of all discrete valuations on F . Let G/A be a
(fibrewise connected) reductive group. If there exists a connected linear algebraic group H/F such
that the F -group (G×A F )×F H is an F -rational variety, then the restriction map with respect
to completions H1(F,G)→

∏
v∈ΩH

1(Fv, G) has a trivial kernel.
As mentioned above, an independent argument, which builds upon injectivity properties of

the Rost invariant (which themselves rely on a case by case proof) and upon a theorem of Katô,
yields a proof of Conjecture 2 for quasisplit, absolutely simple, simply connected groups over F
with no E8-factor.

In the final Theorem 5.5, we revert the process: we use Theorem 4.8 together with Bruhat-
Tits theory to discuss the triviality of the kernel of the Rost invariant for split simply connected
groups over a function field in one variable over a p-adic field. The result is classificationfree; in
particular, it applies to E8.

Throughout this paper, when we write “discrete valuation ring”, we mean “discrete valuation
ring of rank one”, and when we write discrete valuation we mean valuation with value group Z.

2. Why the u-invariant should behave well for function fields over the p-adics

The u-invariant of a field is the maximal dimension of anisotropic quadratic forms over that
field. Let us start with some reminders from the paper [21] by Katô and Kuzumaki.

Let r ≥ 1 be an integer. We say that a field F is a C0
r field if the following condition holds :

For any finite field extension F ′ of F and any integers d ≥ 1 and n > dr, for any homogeneous
form over F ′ of degree d in n variables, the g.c.d. of the degrees of finite field extensions F ′′/F ′

over which the form acquires a nontrivial zero is 1.
The condition amounts to requiring that the F ′-hypersurface defined by the form contain a

zero-cycle of degree 1 over F ′.
Assume char(F ) = 0. For each prime l, let Fl be the fixed field of a pro-l-Sylow subgroup of

the absolute Galois group of F . Any finite subextension of Fl/F is of degree prime to l.
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The field F is C0
r if and only if each of the fields Fl is Cr in the usual sense ([21, Lemma 1]).

A finite field extension of a C0
r -field is C0

r . The following easy lemma does not appear in [21].

Lemma 2.1. Let F be a field of characteristic zero. If F is C0
r then a function field E = F (X)

in s variables over F is C0
r+s.

Proof. Let E′ be a finite field extension of E. After replacing F by a finite extension, which
by assumption is still C0

r , we may assume that E′ is the function field F (X) of a geometrically
integral F -variety X. The field Fl is Cr, hence by the classical transitivity properties (Lang,
Nagata), the field Fl(X), function field of X ×F Fl, is a Cr+s-field. Thus any form of degree d
over F (X) in n > dr+s variables has nontrivial solutions in Fl(X), hence in a finite extension of
F (X) of degree prime to l. As this applies to each prime l, this concludes the proof. �

It is an open question whether p-adic fields have the C0
2 -property. An equicharacteristic zero

analogue of that statement is proven in [6].

Proposition 2.2. Assume that p-adic fields have the C0
2 -property. Then over any function field

K(X) of transcendance degree r over a p-adic field K, any quadratic form in strictly more than
22+r variables has a nontrivial zero.

Proof. By the previous lemma, such a quadratic form has a nontrivial zero in an extension of
odd degree of the field K(X). By a theorem of Springer [23, VII, Thm. 2.3] this implies that the
quadratic form has a nontrivial zero in K(X). �

3. A local-global principle for isotropy of quadratic forms

Theorem 3.1. Let A be a complete discrete valuation ring with fraction field K and residue field
k of characteristic different from 2. Let X be a smooth, projective, geometrically integral curve
over K. Let F = K(X) be the function field of X. Let q be a nondegenerate quadratic form over
F in at least 3 variables. If for each discrete valuation of F , the form q is isotropic over the
completion of F with respect to this valuation, then q is isotropic over F .

Proof. Suppose we are given a diagonal quadratic form q =< a1, · · · , an > over F = K(X) which
is isotropic over the field of fractions of the completion of any discrete valuation ring of F .

Let us recall basic notation from [14] and [15].
Let t denote a uniformizing parameter for A.
One may choose a regular proper model X/A of X/K such that there exists a reduced divisor

D with strict normal crossings which contains both the support of the divisor of the ai’s and the
components of the special fibre of X/A. Let Y = X ×A k denote the special fibre.

For the generic point xi of an irreducible component Yi of Y , there is an affine Zariski neigh-
bourhood Wi of xi in X such that the restriction of Yi to Wi is a principal divisor.

Let S0 be a finite set of closed points of the special fibre containing all singular points of D
and all points which lie on some Yi but not in the corresponding Wi.

Choose a finite A-morphism f : X → P1
A as in [14, Prop. 6.6]. In particular, we have the

following three properties. The set S0 is contained in S, the inverse image under f of the point
at infinity of the special fibre P1

k. All the intersection points of two components Yi are in S. Each
component Yi contains at least one point of S.

Let U ⊂ Y run through the reduced, irreducible components of the complement of S in Y .
Each U is a regular affine irreducible curve over k. Let k[U ] be the ring of regular functions
on this curve. This is a Dedekind domain. We thus have U = Spec k[U ]. Let k(U) denote the
fraction field of k[U ].
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Since X is separated over SpecA, the intersection of the affine open set Wi with the affine
open set f−1(A1

A) in X is an affine scheme SpecB ⊂ X . The ring B is an integral, noetherian,
regular ring of dimension 2. There exists s ∈ B such that U = Spec(B/s) and t = u.sr ∈ B for
some integer r ≥ 1 and u a unit in B×.

Let C be the localisation of B with respect to the multiplicative system S of elements of B
which do not vanish at any point of U . We obviously have C ⊂ B. Let us show C = RU . Since
every point of U is in SpecB, the local ring OX ,x of a point x in U is the local ring Bx, the
localisation of B at the point x. Thus RU which is the intersection of the rings OX ,x as x varies
in U is also the intersection of the localisations of B at maximal ideals defining the points of U .
If a is an element of RU , there exist finitely many points xi in U and open neighbourhoods Vi of
xi in U , the Vi covering U , and functions gi in B nonvanishing on Vi such that a = fi/gi, fi ∈ B.
Going modulo s, one concludes that there exist functions hi ∈ B such that g =

∑
i hi.gi is one

modulo s, hence does not vanish on U . Then a = (
∑

i hi.fi)/g, hence a belongs to C.
Since RU = C is a localisation of B, it is a regular, noetherian, regular ring. The inclusion

B ⊂ C induces an isomorphism B/s ' C/s.
Let m be a maximal ideal in C. Assume s /∈ m. Then m+ C.s = C. Thus there exists c ∈ C

and d ∈ m with 1 = d + c.s. Then d = 1 − c.s does not vanish on U . Write d = f/g with
f, g ∈ B and g invertible on U . Then f does not vanish on U , hence d is invertible in C, which
is a contradiction. Thus s and t = u.sr belong to each maximal ideal of C = RU . By EGA IV
7.8.3 one concludes that the t-adic completion R̂U , which is also the s-adic completion of RU , is
a regular domain ([15, Notation 3.3]).

By definition, FU is the field of fractions of R̂U . We have k[U ] = RU/s = R̂U/s.

For P ∈ S, the completion R̂P of the local ring RP of X at P is a domain ([15], Notation 3.3).

By definition, the field FP is the field of fractions of R̂P .
For p = (U,P ) a pair with P ∈ S in the closure of an irreducible component U of the

complement of S in Y , one lets Rp be the complete discrete valuation ring which is the completion

of the localisation of R̂P at the height one prime ideal corresponding to U . By definition, the
field Fp is the field of fractions of Rp.

By [14, Prop. 6.3], the field F is the inverse limit of the finite inverse system of fields
{FU , FP , Fp}.

Let us show that q is isotropic over each field FU .
Each diagonal entry ai of the form q is supported only along U in SpecRU , thus is of the form

u.sj where u is a unit in RU . Hence the quadratic form q over F is isomorphic to a quadratic
form over F of the shape

< b1, · · · , bρ, s.c1, · · · , s.cσ >

where bi and cj are units in RU .
By hypothesis, q is isotropic over the field of fractions of the completed local ring of X at the

generic point of U . By a theorem of Springer [23, VI, Prop. 1.9 (2)], this implies that the image
of at least one of the two forms q1 =< b1, · · · , bρ > or q2 =< c1, · · · , cσ > under the composite
homomorphism RU → k[U ] ↪→ k(U) is isotropic over k(U).

Since the residue characteristic is not 2, each of the forms q1 and q2 defines a smooth quadric
over RU . In particular each of them defines a smooth quadric over k[U ]. Since k[U ] is a Dedekind
domain, if such a projective quadric has a point over k(U), it has a point over k[U ]. Since the

quadric is smooth over RU , a k[U ]-point lifts to an R̂U -point (compare the discussion after [15,
Lemma 4.5]). Thus q has a nontrivial zero over FU .
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Let us show that q is isotropic over each field FP . Let P ∈ S. The local ring RP of X at P is
regular. Its maximal ideal is generated by two elements (x, y) with the property that any ai is
the product of a unit, a power of x and a power of y. Thus over the fraction field F of RP , the
form q is isomorphic to a form

q1 ⊥ x.q2 ⊥ y.q3 ⊥ xy.q4

where each qi is a nondegenerate diagonal quadratic form over RP . Let Ry be the localization
of RP at the prime ideal (y). This is a discrete valuation ring with fraction field F and with
residue field E the field of fractions of the discrete valuation ring RP /(y). By hypothesis, the
form (q1 ⊥ x.q2) ⊥ y.(q3 ⊥ xq4) is isotropic over the field of fractions of the completion of
Ry. By Springer’s theorem [23, VI, Prop. 1.9 (2)], this implies that over E the reduction of
either (q1 ⊥ x.q2) or (q3 ⊥ xq4) is isotropic. Since x is a uniformizing parameter for RP /(y), by
Springer’s theorem [23, VI, Prop. 1.9 (2)], this last statement implies that over the residue field
of RP /(y), the reduction of one of the forms q1, q2, q3, q4 is isotropic. But then one of these forms

is isotropic over R̂P , hence over the field FP which is the fraction field of R̂P .

The quadric Z/F defined by the vanishing of q is a homogeneous space of the group SO(q)
over F , which since q is of rank at least 3 is a connected group. By Witt’s result, for any field
L containing F , the group SO(q)(L) acts transitively on Z(L). The F -variety underlying SO(q)
is F -rational (Cayley parametrization). We have Z(FU ) 6= ∅ for each U and Z(FP ) 6= ∅ for each
P ∈ S. By [15, Thm. 3.7], we get Z(F ) 6= ∅. �

Remark 3.2. Note that in the proof the only discrete valuation rings which are used are the
local rings at a point of codimension 1 on a suitable regular proper model X of X. See however
Remark 3.6.

Remark 3.3. The theorem does not extend to forms in 2 variables. See Remark 4.4 and Section
6.

The following corollary is a variant of a theorem of Harbater, Hartmann and Krashen [15,
Thm. 4.10].

Corollary 3.4. Let A be a complete discrete valuation ring with fraction field K and residue
field k of characteristic different from 2. Let r ≥ 1 be an integer. Assume that any quadratic
form in strictly more than 2r variables over any function field in one variable over k is isotropic.

Then any quadratic form in strictly more than 4r variables over the function field F = K(X)
of a curve X/K is isotropic.

Proof. Let L be a finite field extension of K. This is a complete discrete value field with residue
field a finite extension l of k. The hypothesis made on quadratic forms over function fields in
one variable over k, in particular quadratic forms over the field l(t), and Springer’s theorem ([23,
VI, Cor. 1.10]) applied to the field l((t)) imply that any quadratic form in strictly more than
r variables over l has a zero. Another application of Springer’s theorem then implies that any
quadratic form in strictly more than 2r variables over L is isotropic.

Let q be a quadratic form in n variables over F with n > 4r. By Theorem 3.1 and Remark 3.2,
to prove the corollary it suffices to show that q is isotropic over Fv for every discrete valuation v
with residue field either a function field in one variable over k or a finite extension of K. By the
hypothesis, the preceding paragraph and Springer’s theorem, the quadratic form q is isotropic
over such an Fv. �

Corollary 3.4 in its turn is a generalization of the main result of [31]:
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Corollary 3.5. If K is a nondyadic p-adic field, any quadratic form in at least 9 variables over
a function field in one variable over K has a nontrivial zero.

Remark 3.6. In Theorem 3.1, it is not enough to consider the discrete valuation rings corre-
sponding to the codimension 1 points of a given regular proper model X/A.

Let p be an odd prime and a a unit in Zp which is not a square. Rowen, Sivatski, Tignol
[33, Cor. 5.3] (see also [19]) have shown that the tensor product D = (a, p) ⊗ (t, a(p − t)) of
quaternion algebras over F = Qp(t) is a division algebra. The tensor product (a, b)⊗ (c, d) of two
quaternion algebras over a field F (char F 6= 2) is a division algebra, i.e. has index 4, if and only
if the associated Albert form < −a,−b, ab, c, d,−cd > is anisotropic over F . Thus the quadratic
form q =< −a,−p, ap, t, a(p− t),−at(p− t) > is a 6-dimensional anisotropic quadratic form over
F = Qp(t).

Let X = P1
Zp

be the projective line over Zp. The codimension one points v of X are given

by irreducible monic polynomials in Qp[t], by 1/t and by the height one prime ideal of Zp[t]
generated by p. Let F = Qp(t), and let Fv denote the completion of F at a discrete valuation v
of F .

The residue field at a point v of codimension 1 of X is either a p-adic field or Fp(t). Any
quadratic form in at least 5 variables over such a field is isotropic. At any prime v of codimension
1 of X different from p, t, (p− t), 1/t, the form q therefore has a zero over Fv. At v = t, one of the
residue forms is < −a,−p, ap, ap > which is isotropic over the residue field Qp, since < −1, a, a >
is. At v = t−p, one of the residue forms of q is < −a,−p, ap, p > and this form is clearly isotropic.
At v = (1/t), one of the residue forms of q is < −a,−p, ap, a > which is clearly isotropic. At
v = p, one of the residue forms over the field Fp(t) is < −a, t,−at, a > which again is clearly
isotropic. Thus the quadratic form q is isotropic over each field Fv corresponding to a point of
codimension 1 on X .

Theorem 3.1 and the result of [33] show that there must exist another completion Fv, corre-
sponding to a codimension 1 point on another model of P1

Zp
, at which the form is anisotropic.

Note that on P1
Zp

, the divisor associated to the quadratic form does not have normal crossings

at the point defined by the ideal (p, t) ⊂ Zp[t] (compare the proof of Theorem 3.1). It is thus
natural to blow up the corresponding point. In practice, one introduces a new variable x and one
sets t = px. The quadratic form q now reads < −a,−p, ap, px, ap(1 − x),−ax(1 − x) >. At the
prime ideal p of Zp[x], with residue field Fp(x), the two residue forms are < −a,−ax(1−x) > and
< −1, a, x, a(1−x) >. Since x(x−1) is not a square in Fp(x), the first form is clearly anisotropic.
As for the second one, the two residue forms of < −1, a, x, a(1 − x) > at the valuation of Fp(x)
with uniformizing parameter 1/x are anisotropic over Fp, because a is not a square.

At any closed point of P1
Zp

different from the point defined by (p, t) ⊂ Zp[t] the form q admits

a reduction of the shape < a,−a >, hence it is isotropic over the fraction field of the complete
local ring at such a point. The Zp-homomorphism Zp[t]→ Zp[x] sending t to px sends the ideal
(p, t) of Zp[t] to the ideal p of Zp[x]. It induces an injective homomorphism of the corresponding
complete local rings, hence an embedding of their fraction fields. The above argument shows
that q is anisotropic over the bigger fraction field. It is is thus anisotropic over the fraction field
of the completion of Zp[t] at the maximal ideal (p, t).

Remark 3.7. The following question was raised by D. Harbater. Let A,K,X and F = K(X)
be as in Theorem 3.1. Suppose a projective homogeneous variety Z over F under an F -rational
connected linear algebraic group has points in the field of fractions of the completions at closed
points of all possible regular proper models of X over A. Does Z admit a rational point over F?
The following example gives a negative answer to this question, already with Z a quadric.
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Let p be an odd prime, let X/Zp be a smooth curve over Zp of relative genus at least 1. Let
X/Qp be its generic fibre and let Y/Fp be its special fibre. There exist two quaternion division
algebras H1 and H2 over the function field Fp(Y ) whose ramification loci on Y are disjoint. Let
q1 and q2 be the reduced norms attached to these two quaternion division algebras. Let q1, q2 be
lifts of these quadratic forms to the local ring R of the generic point of Y on X . Consider the
quadratic form q = q1 ⊥ p.q2 over the function field F = Qp(X). This form is isotropic over the
fraction field of the local ring of any closed point P ∈ X . Indeed at any such point either the
form q1 or the form q2 has good reduction.

On the other hand, the form q is anisotropic over F since both q1 and q2 are anisotropic over
the p-adic completion of the local ring R, whose uniformizing parameter is p.

Since the genus of X is at least 1, by a well known result of Shafarevich [37] and Lichtenbaum
[24], the curve X/Zp is an absolute minimal model of X over Zp. Thus if X ′/Zp is another
model, there is a birational Zp-morphism X ′ → X . The argument given above then shows that
q is isotropic on the fraction field of the local ring of any closed point of X ′.

Remark 3.8. Let F be a function field in one variable over a p-adic field k.
For quadratic forms in 3 or 4 variables, there is a refined local-global principle for isotropy

of quadratic forms : one only needs to take into account discrete valuations which are trivial
on K. The case of 3 variables is a consequence of a theorem of Lichtenbaum [25], based on
Tate’s duality theorem for abelian varieties over a p-adic field : for X/K a smooth projective
geometrically connected curve X over a p-adic field K, if an element of the Brauer group of
X vanishes after evaluation at each closed point of X, then it is zero. The case of forms in 4
variables follows from the case of 3 variables by passing over to the discriminant extension of the
4-dimensional form. This should be compared with Theorem 3.1. As Remark 3.6 shows, such a
refined local-global principle does not hold for forms in 6 variables. It actually does not hold for
forms in 5, 6, 7 or 8 variables, as the following argument shows.

Let K be a p-adic field. Suppose we are given a smooth complete intersection Y of two quadrics
given by a system of two quadratic forms f = g = 0 in projective space PnK such that Y (K) = ∅.
By a theorem due independently to Amer (unpublished) and to Brumer [3], the quadratic form
f + tg in n+ 1 variables over the field K(t) then does not have a nontrivial zero. The hypothesis
of smoothness of Y ensures that over any completion Fv of F = K(t) at a place trivial on K, the
form f + tg contains a good reduction subform of rank at least n. Since K is p-adic, for n ≥ 5,
such a form has a nontrivial zero. Hence for n ≥ 5, that is from 6 variables onwards, the form
f + tg over F = K(t) has a nontrivial zero in each completion of F at a place trivial on K. It
remains to exhibit such systems of forms as above. By a classical compacity argument, to prove
the existence of such a smooth Y , it is enough to produce an arbitrary complete intersection of two
quadrics in PnK with no K-point. But that is easy. Let f(x1, x2, x3, x4) be the norm form of the
nontrivial quaternion algebra over K. Then the system f(x1, x2, x3, x4) = 0, f(x5, x6, x7, x8) = 0
defines such a complete intersection in P7, and one gets suitable systems in lower dimensional
projective space by letting some variables vanish. With f as above, m a suitable integer, and
h1 and h2 suitable diagonal quadratic forms, one can produce a smooth complete intersection
without K-point of the shape

f(x1, x2, x3, x4) + pmh1(x5, x6, x7, x8) = 0, pmh2(x1, x2, x3, x4) + f(x5, x6, x7, x8) = 0.

There also exist smooth intersections of two quadrics

f(x1, x2, x3, x4, x5) = g(x1, x2, x3, x4, x5) = 0

in P4
K such that at any completion Fv of F = K(t) at a place trivial on K the form f + tg has an

Fv-point but has no F -point. Here is one example. Let p be a prime, p ≡ 1 mod 4. Let K = Qp,
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u ∈ Z∗p a unit which is not a square and s ≥ 2 an integer. Then take

f = x2
1 + ux2

2 + px2
3 + up2sx2

4 + p2s−2x2
5

and

g = p4s+1x2
1 + p4sx2

2 + up2sx2
3 + x2

4 + px2
5.

One immediately checks that this defines a smooth complete intersection Y in P4
Qp

. The system

f = g = 0 has no primitive solution modulo p2, hence Y has no rational point over Qp. Let v be
a place of F trivial on K. If f + tg has good reduction at v, then its reduction has rank 5 over
the residue field, hence is isotropic. The places v at which f + tg has bad reduction are 5 distinct
rational points of SpecQp[t]. At each of these completions, f + tg has a good reduction subform
whose reduction is isotropic of rank 4 over Qp.

4. A local-global principle for principal homogeneous spaces under certain
linear algebraic groups

Given a scheme X and a smooth X-group scheme G, we let H1(X,G) denote the first Čech
cohomology set for the étale topology on X.

The following lemma is known ([16, Lemma 4.1.3]).

Lemma 4.1. Let A be a discrete valuation ring, K its fraction field, Â its completion and K̂
the field of fractions of Â. Let G/A be a reductive group (with connected fibres). Then the fibre

product of H1(K,G) and H1(Â, G) over H1(K̂,G) is H1(A,G).

Proof. Let G ⊂ GLn,A be a closed embedding of A-groups and let Z/A denote the quotient
GLn,A/G (see [8, Cor. 6.12]). For any local A-algebra B, by [13, III, 3.2.4 and 3.2.5] we have an
exact sequence of pointed sets

GLn(B)→ Z(B)→ H1(B,G)→ 1.

More precisely, the natural map Z(B) → H1(B,G) induces a bijection between the quotient of
Z(B) by the left action of GLn(B) and the set H1(B,G). That the natural map H1(A,G) →
H1(K,G) is injective is a theorem of Nisnevich [29]: there it is proven that the kernel is trivial
for any reductive A-group G, a known twisting argument (an étale cohomology variant of [35]
§5.4 p. 47, or [22] 28.9 p. 367) then implies that the map is injective. Let x ∈ Z(K) be a lift of

ξ ∈ H1(K,G). If the image of ξ in H1(K̂,G) comes from H1(Â, G), then there exists y ∈ Z(Â)

and ρ ∈ GLn(K̂) such that ρ.x = y ∈ Z(K̂). The set GLn(K) is dense in GLn(K̂), the map

GLn(K̂)→ Z(K̂) is continuous, and Z(Â) is open in Z(K̂). We may thus find g ∈ GLn(K) close

enough to ρ that g.x lies in Z(Â). Now g.x lies in Z(K) ∩ Z(Â) = Z(A). �

Unramified classes

Given G/A as above, and ξK ∈ H1(K,G), one says that ξK is unramified at A if it lies
in the image of H1(A,G). By the above lemma, it then comes from a well defined element
ξA ∈ H1(A,G). By the same lemma, the condition is equivalent to requiring that the image of

ξK in H1(K̂,G) comes from a well defined element ξÂ ∈ H
1(Â, G). Let k denote the residue class

field of A and Â. If a class ξK ∈ H1(K,G) is unramified, one may then consider its evaluation
ξk ∈ H1(k,Gk). It is given by the image of ξA, or of ξÂ, in H1(k,Gk).
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Theorem 4.2. Let A be a complete discrete valuation ring, K its field of fractions and k its
residue field. Let X/A be a projective, flat curve over Spec A. Assume that X is connected and
regular. Let F be the function field of X . Let G/A be a (fibrewise connected) reductive group.
Let ξF ∈ H1(F,G) be a class which is unramified at all codimension 1 points of X .

(i) There exists ξ ∈ H1(X , G) whose image in H1(F,G) is ξF .
(ii) If moreover the (reduced) components of the special fibre are regular, and for any such

component Y the image ξk(Y ) in H1(k(Y ), G) is trivial, then at any point P of codimension 1 or

2 of X , with residue field κ(P ), the image ξP ∈ H1(κ(P ), G) is trivial.
(iii) If moreover there exists a connected linear algebraic group H/F such that the F -group

(G×A F )×F H is an F -rational variety, then ξF = 1 ∈ H1(F,G).

Proof. (i) By definition of an unramified class, for each point P of codimension 1 on X there exists
ξP ∈ H1(OX ,P , G) with image ξF over the fraction field F of OX ,P . By Nisnevich’s theorem [29],
the class ξP is uniquely defined.

There then exists a Zariski open set V ⊂ X which contains all points of dimension 1 of X
and an element of H1(V,G) with image ξ in H1(F,G) (see the proof of [8, Prop. 6.8]). Since X
is regular and of dimension 2, [8, Thm. 6.13] shows that one may take V = X . We thus have
a class ξ ∈ H1(X , G) with image ξF in H1(F,G). In other terms, we have a torsor E over X
under the X -group scheme GX = G×AX , whose restriction over the generic point of X has class
ξF ∈ H1(F,G).

(ii) Let P be a closed point of the special fibre. Let k(P ) denote the residue field at P . Let Y
be a component of the special fibre which contains P . Since we assumed the components to be
regular, the local ring OY,P is a discrete valuation ring. The image of the class of ξ in H1(OY,P , G)
is now trivial because its image in H1(k(Y ), G) is trivial (easy case of [29]). Hence the image of
ξ in H1(k(P ), G) is trivial.

Now let P be a closed point of the generic fibre. Let B denote the integral closure of A ⊂ K in
the residue field K(P ). This is a complete discrete valuation ring. There exists an A-morphism
SpecB → X which extends the inclusion of P in X. The image of the special point of SpecB is
a point in the special fibre of X/A, hence it lies on some component Y . By the above argument,
the evaluation of ξ at that point is trivial. Thus the inverse image of ξ on SpecB is a G-torsor
with trivial special fibre. By Hensel’s lemma on the complete local ring B, this inverse image is
trivial. Hence ξP is trivial at P , which is the generic point of SpecB.

(iii) The hypothesis in (ii) ensures that for each component Y of the special fibre there exists
a dense open set UY ⊂ Y such that the restriction of ξ to UY is trivial.

We may assume that each UY meets no component but Y . The complement of the union of
UY ’s in the special fibre is a finite set S of points.

By Proposition 6.6 of [14], there exists a finite A-morphism f : X → P1
A with S ⊂ f−1(∞k).

One now replaces the family of UY ’s by the family U of irreducible components of f−1(A1
k). This

replaces each UY by a nonempty affine open set of UY and one replaces S by f−1(∞k).
By (ii), for each closed point P of the special fibre, for E as in (i) we have E(k(P )) 6= ∅. Since

E/X is smooth, this implies E(R̂P ) 6= ∅, hence E(FP ) 6= ∅ (notation as in Theorem 3.1 and as
in [14]).

For each open set U = UY , the restriction of E over U is a trivial GU -torsor. Since E/X is

smooth, this implies E(R̂U ) 6= ∅ hence E(FU ) 6= ∅.
Since E ×X F is a principal homogeneous space under the F -algebraic group G×A F , for any

field extension L of F , the group G(L) acts transitively on E(L). An application of [15, Theorem
3.7 and Corollary 3.8] now yields E(F ) 6= ∅, i.e. ξ = 1 ∈ H1(F,G). �
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Theorem 4.3. Let A be a complete discrete valuation ring, K its field of fractions and k its
residue field. Let X/A be a projective, flat curve over Spec A. Assume that X is connected and
regular. Let F be the function field of X . Let Ω be the set of all discrete valuations on F .

(i) Let G/A be a (fibrewise connected) reductive group. If there exists a connected linear
algebraic group H/F such that the F -group (G ×A F ) ×F H is an F -rational variety, then the
restriction map with respect to completions H1(F,G)→

∏
v∈ΩH

1(Fv, G) has a trivial kernel.
(ii) The restriction map of Brauer groups Br F →

∏
v∈Ω Br Fv has a trivial kernel.

Proof. Statement (i) immediately follows from the previous theorem. As for statement (ii), it
follows from (i) applied to the projective linear groups PGLn. �

Remark 4.4. Using totally split unramified coverings of models of Tate curves over a p-adic field
(see [34]), one sees that Theorem 4.3 (i) does not in general hold for nonconnected groups, for
example for G = Z/2. A concrete example is given by the ellliptic curve E with affine equation
y2 = x(1−x)(x−p) over the p-adic field Qp (p odd). The rational function 1−x is not a square in
the function field F = Qp(E), but it becomes a square in each completion Fv of F . This example
is discussed in the appendix to this paper (Section 6). This implies that the patching results of
[15] in general do not extend to nonconnected groups.

Lemma 4.5. Let A be the ring of integers of a p-adic field K, let k be its residue field. Let G/A
be a (fibrewise connected) reductive group. Then there exists a connected linear algebraic group
H/K such that the K-group (G×A K)×K H is K-rational.

Proof. Let Z/A be the A-scheme of Borel subgroups of G. This is a proper and smooth scheme
over SpecA. The special fibre G0 = G×A k is a connected reductive group over the finite field k.
Any such k-group is quasisplit ([35, Chap. III, §2.2, Thm. 1]). Thus Z(k) 6= ∅, hence Z(A) 6= ∅
by Hensel’s lemma. There thus exists a Borel A-subgroup B ⊂ G. Let T ⊂ B be its maximal
A-torus. Over K, the K-group GK = G ×A K contains the open set U+ ×K U− ×K (T ×A K),
where U+ ⊂ BK is the unipotent radical of BK and U− is the unipotent radical of the opposite
K-Borel subgroup of BK ⊂ GK . Each of these unipotent radicals is K-isomorphic to an affine
space over K.

Let the k-torus T0 = T ×A k be split by a Galois field extension k′/k. There exists an exact
sequence of k-tori split by k′/k

1→ Q0 → P0 → T0 → 1,

where P0 is a quasitrivial k-torus and Q0 is a flasque k-torus (Endo and Miyata, Voskresenskĭı,
cf. [7, §1, §5], [9, §0]).

Because k is a finite field, the field extension k′ of k is cyclic. By a theorem of Endo and Miyata
(see [7, Proof of Cor. 3 p. 200]), for any flasque k-torus Q0 split by a cyclic extension k′ of k,
there exists a k-torus Q1 split by k′ such that Q0×k Q1 is k-isomorphic to a quasitrivial k-torus.
If we let K ′/K be the cyclic, unramified extension corresponding to k′/k, and we let A′/A be the
finite, connected, étale Galois cover given by the integral closure of A ⊂ K in K ′, the sequence
of characters associated to the above exact sequence enables us to produce a sequence of A-tori
split by A′/A,

1→ Q→ P → T → 1,

hence in particular a sequence of K-tori split by K ′/K

1→ QK → PK → TK → 1,

with QK a direct factor of a quasitrivial K-torus and PK a quasitrivial K-torus (for basic facts
on tori over arbitrary bases, including quasitrivial and flasque tori, see [9, §0 and §1]).
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Because QK is direct factor of a quasitrivial K-torus, Hilbert’s theorem 90 implies that the
projection PK → TK has a rational section, hence QK ×K TK is K-birational to PK , which is a
K-rational variety. Now the product GK ×K QK is K-birational to U+ ×K U− ×K PK , which is
a K-rational variety. �

Theorem 4.6. Let A be the ring of integers of a p-adic field K, let k be its residue field. Let
X/A be a projective, flat curve over A. Assume that X is connected and regular, and that the
(reduced) components of the special fibre are regular. Let F be the function field of X . Let G/A
be a (fibrewise connected) reductive group.

If a class in H1(F,G) is unramified at points of codimension 1 on X , then it is trivial.

Proof. By Theorem 4.2 (i), there exists ξ ∈ H1(X , G) which restricts to the given class in
H1(F,G). By hypothesis, each component Y of the special fibre is a regular, hence smooth,
projective curve over the finite field k. Let us show that the hypothesis of Theorem 4.2 (ii) is
fulfilled. It is enough to show that for a smooth, projective, connected curve Y/k and Gk a con-
nected reductive group the image of H1(Y,Gk) in H1(k(Y ), Gk) is trivial. There exists a central
extension of algebraic k-groups

1→ Q→ Gsck × P → Gk → 1,

where Gsck is a simply connected semisimple k-group, P is a quasitrivial k-torus and Q is a flasque
k-torus ([5, Prop. 3.1]). As recalled in the proof of Lemma 4.5, because k is finite there exists a
k-torus Q1 such that Q×kQ1 is a quasitrivial k-torus. The Brauer group H2(Y,Gm) of a smooth
projective curve Y over a finite field is zero. Since this holds over any finite extension of k, this
implies H2(Y, T ) = 0 for any quasitrivial k-torus, hence for any k-torus T which is a direct factor
of a quasitrivial k-torus. Thus H2(Y,Q) = 0.

In the commutative diagram of exact sequences of pointed étale cohomology sets

H1(Y,Gsck × P ) −−−−→ H1(Y,Gk) −−−−→ H2(Y,Q)y y y
H1(k(Y ), Gsck × P ) −−−−→ H1(k(Y ), Gk) −−−−→ H2(k(Y ), Q).

we have H1(k(Y ), Gsck ) = 1 (Harder [17, 18]) and H1(k(Y ), P ) = 0 (Hilbert’s theorem 90), and
we have proved H2(Y,Q) = 0. Thus the image of H1(Y,Gk) in H1(k(Y ), Gk) is trivial.

The claimed result now follows from Lemma 4.5 and Theorem 4.2 (iii). �

Remark 4.7. Applying Theorem 4.6 to the projective linear groups PGLn, one recovers a proof
of Grothendieck’s theorem that the Brauer group of a regular proper model X/A is trivial. That
in its turn is closely related to the statement that an element of the Brauer group of X which
vanishes at each closed point of X is trivial (Lichtenbaum [25]).

Theorem 4.8. Let A be the ring of integers of a p-adic field K, let k be its residue field. Let
X/K be a smooth, projective, geometrically integral curve. Let F be the function field of X. Let
Ω be the set of all discrete valuations on F . Let G/A be a (fibrewise connected) reductive group.
The restriction map with respect to completions H1(F,G)→

∏
v∈ΩH

1(Fv, G) has a trivial kernel.

Proof. One knows that X/K admits a model X/A as in Theorem 4.6. Let ξ ∈ H1(F,G) be in
the kernel of the above restriction map. By Lemma 4.1, the class ξ is unramified at points of
codimension 1 on X . We conclude by an application of Theorem 4.6. �

Remark 4.9. For any integer n and the A-group G = PGLn, in the above theorem one may
replace Ω by the set ΩF/K of discrete valuations on F which are trivial on K : this is just a
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reinterpretation of Lichtenbaum’s theorem [25]. That this is not so for arbitrary G is shown by
the following example.

Let p be an odd prime andK = Qp. Let u be a unit in Qp which is not a square. LetX/K be the
elliptic curve y2 = x(x+ 1)(x− p). Let F = K(X). For a ∈ F ∗, let (a) ∈ F ∗/F ∗2 = H1(F,Z/2).
Since the divisor of x ∈ F ∗ on X is divisible by 2, the cup-product α = (x)∪(u)∪(p) ∈ H3(F,Z/2)
is unramified at places v of F trivial on K, hence is trivial in the completion Fv at such a place.
The prime p defines a place on F , the residue field is the function field Fp(Y ), where Y is the
curve defined by y2 = x2(x+ 1) over Fp, which is birational to the curve z2 = x+ 1.The residue
of α at that place is (z2 − 1) ∪ (u) ∈ H2(Fp(Y ),Z/2), and this class is nonzero, since it has a
nontrivial residue at z = 1.

This implies : for G the split group of type G2, the restriction map

H1(F,G)→
∏

v∈ΩF/K

H1(Fv, G)

has a nontrivial kernel.
Lichtenbaum’s theorem also implies that for any central simple algebra over D over K, and G

the F -group PGLD, the above map has a trivial kernel. The above example shows that this is
not so for the K-group G = SLD, where D is the quaternion algebra (u, p) over K = Qp.

Remark 4.10. Let A be the ring of integers of a p-adic field K. Let G/A be a (connected)
reductive group. Let F = K(X) be the function field of a smooth geometrically integral curve
over K. Let X be a regular model of X over A. Assume that the fibres of G→ SpecA are simply
connected (this is equivalent to the assumption that the K-group G×A K is simply connected).
Then for ξ ∈ H1(F,G) and x a point of codimension 1 on X , defining a valuation v on F with
associated completion Fv, the conditions

(i) ξ is unramified at x (as in Theorem 4.6)
(ii) ξ has trivial image in H1(Fv, G) (as in Theorem 4.3 (i) and Theorem 4.8)

are equivalent.
Indeed, for any point x of codimension 1 on a regular model X , with complete local ring Âx and

residue class field κ(x), we have H1(Âx, G) ' H1(κ(x), G) (Hensel’s lemma) and H1(κ(x), G) = 1
whether x lies on the generic fibre of X/A (Kneser, Bruhat-Tits) or x is a generic point of a
component of the special fibre of X/A (Harder [17, 18]).

5. Connection to Rost’s invariant and a theorem of Katô

For any simply connected, absolutely almost simple semisimple group G over a field F of
characteristic zero, we have Rost’s invariant (see [22, Chapter VII, Section 31]) :

RG : H1(F,G)→ H3(F,Q/Z(2)).

In a number of cases, this map has a trivial kernel. Such is the case if G = SL(D) for D/F
a central simple algebra of squarefree index (Merkurjev–Suslin). Such is the case for quasisplit
groups of type 3,6D4 ([22, 40.16], [4, Thm. 6.14]) or of type E6, E7 (Garibaldi [10, Theorem 0.1],
see also [4, Thm. 6.1]). Such is the case for the split group G2 ([36, Thm. 9]). Such is the case for
the split group F4 ([36, §9.4]). It is not reasonable to hope for a positive answer for an arbitrary
such G, as examples with G = Spin(q) show.

For fields of cohomological dimension at most 2, the triviality of the kernel of the Rost invariant
RG is none other than Serre’s conjecture II for G, which in this generality is still unknown for G
of type E8.
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Remark 5.1. For fields of cohomological dimension 3 and G arbitrary, RG may have a nontrivial
kernel, as shown by the following example due to Merkurjev, and which we publish with his kind
permission. There exists a field k of characteristic 0 and of cohomological dimension 2 over which
there exist a central simple division algebra A = H1 ⊗k H2 with H1 and H2 quaternion algebras
([27, Teorem 4]). Let F be either k(t) or k((t)). Then F has cohomological dimension 3. The
reduced norm of A is a homogeneous form of degree 4 without a zero over k. Thus t2 ∈ F
is not a reduced norm of A ⊗k F . That is, the class of t2 in F ∗/Nrd(A∗F ) = H1(F,G), with
G = SL1(A), is nontrivial. Let [A] ∈ H2(k, µ4) ⊂ Br k be the class of A. By [22, p. 437]
(for more details, see [26, p. 138]), the Rost invariant RG sends t2 ∈ H1(F,GF ) to the cup-
product t2 ∪ [A] ∈ H3(F, µ⊗2

4 ) ⊂ H3(F,Q/Z(2)) (here t2 is taken in F ∗/F ∗4 = H1(F, µ4)). Since
2[A] = 0 ∈ Br k, this cup-product is zero.

When G is quasisplit, not of type E8, the situation is much better. The following proposition
is certainly known to specialists.

Proposition 5.2. Let F be a field of characteristic not 2 and of 2-cohomological dimension at
most 3. Let q0 be a quadratic form over F which is isotropic and of dimension at least 5. Let
G = Spin(q0). Then the kernel of the Rost map H1(F,G)→ H3(F,Q/Z(2)) is trivial.

Proof. Let

1→ µ2 → Spin(q0)→ SO(q0)→ 1

be the central isogeny from the Spin group to the special orthogonal group. This gives rise to an
exact sequence of pointed Galois cohomology sets

SO(q0)(F )
δ0→ H1(F, µ2)

i→ H1(F,Spin(q0))
j→ H1(F,SO(q0)).

For ξ ∈ H1(F,Spin(q0)), the class j(ξ) corresponds to a quadratic form q1 with dimension
dim(q0) = dim(q1), discriminant disc(q0) = disc(q1) and Clifford invariant c(q0) = c(q1). Then
in the Witt group W (F ) the class q1 ⊥ −q0 lies in the third power I3(F ) of the fundamental
ideal and its Arason invariant e3(q1 ⊥ −q0) ∈ H3(F, µ2), which coincides with the Rost invari-
ant of ξ ([22, Page 437]), is zero. Now the hypothesis cd2(F ) ≤ 3 implies that H4(F, µ2) = 0,
I4(F ) = 0 and that e3 : I3(F ) → H3(F, µ2) is an isomorphism ([28], [32], [1, Cor. 4, Thm. 2]).
The two forms q0 and q1 have the same dimension. By Witt simplification they are isomor-
phic. Thus j(ξ) = 1 hence ξ = i(η) for some η ∈ H1(F, µ2). Since q0 is isotropic, the con-
necting map δ0 : SO(q0) → H1(F, µ2) = F ∗/F ∗2, which is the spinor map, is onto. Thus
ξ = 1 ∈ H1(F,Spin(q0)).

�

Theorem 5.3. Let F be a field of characteristic zero and of cohomological dimension at most 3.
Let G/F be an absolutely almost simple, simply connected, quasisplit semisimple group. Assume
that G is not of type E8. Then the kernel of the Rost map H1(F,G)→ H3(F,Q/Z(2)) is trivial.

Proof. The cases 1An and Cn are trivial, since in these cases H1(F,G) = 1 over any field F .
For quasisplit groups of type 3,4D4, E6, E7, G2 and F4 the kernel is trivial over any field F of
characteristic zero (see references above).

Let G be of type 2An, quasisplit, n ≥ 2. There is a quadratic extension L/F and an L/F–
hermitian form h of dimension n+ 1 such that G = SU(h). Further G quasisplit implies that G
is isotropic ([2, 20.6 (ii), p. 225]), which in turn implies that the hermitian form h is isotropic
([2, 23.8, p. 264]). Let V be the underlying space of h. Then the map q : V → F given by
q(v) = h(v, v) is a quadratic form of dimension 2n + 2 over F which is isotropic. Further there
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is a homomorphism α : SU(h)→ Spin(q) such that the composite map

H1(F,SU(h)→ H1(F,Spin(q)→ H3(F,Q/Z(2)),

is the Rost invariant for SU(h) where the first map is induced by α and the second one is the
Rost invariant for Spin(q) ([22, 31.44, p. 438]). The triviality of the kernel of the Rost invariant
in this case follows from Proposition 5.2.

Let G be of type Bn, n ≥ 2, or 1Dn or 2Dn, n ≥ 3, which is quasisplit. Then G is isomorphic
to Spin(q) for some quadratic form q over F of dimension at least 5; further, G quasisplit implies
that G is isotropic, which in turn implies that the quadratic form q is isotropic ([2, 23.4, p. 256]).
In this case the triviality of the kernel of the Rost invariant follows from Proposition 5.2.

This completes the proof of the triviality of the kernel of the Rost invariant for all quasisplit
groups not of type E8. �

By combining Theorem 5.3 and a theorem of Katô, one gets a proof of Conjecture 2 of the
introduction for quasisplit groups without E8-factors. That proof is independent of the other
sections of the present paper.

Theorem 5.4. Let K be a p-adic field. Let X/K be a smooth, projective, geometrically integral
curve. Let F = K(X) be the function field of X. Let Ω denote the set of discrete valuations on the
field F . Given v ∈ Ω we let Fv denote the completion of F at v. Let G/F be a quasisplit, simply
connected, absolutely almost simple group without E8 factor. Then the kernel of the diagonal map
H1(F,G)→

∏
v∈ΩH

1(Fv, G) is trivial.

Proof. The field F = K(X) is of cohomological dimension 3. The result immediately follows from
the combination of Theorems 5.3 and a theorem of Katô [20]: For X/K as in the statement of
the theorem, the kernel of the diagonal restriction map

H3(F,Q/Z(2))→
∏
v∈Ω

H3(Fv,Q/Z(2))

is trivial (here it is enough to consider the v’s associated to the codimension 1 points on a regular
proper model of X over the ring of integers of K). �

The hypotheses of the above theorem should be compared with those of Theorem 4.8, whose
proof builds upon the work of Harbater, Hartmann and Krashen.

Using Theorem 4.8 together with Bruhat-Tits theory, we now show that Theorem 5.3 also
holds for groups of type E8 over F (X).

Theorem 5.5. Let A be the ring of integers of a p-adic field K. Let X/K be a smooth, projective,
geometrically integral curve. Let F = K(X) be the function field of X. Let G be an absolutely
almost simple, simply connected semisimple group over A. If G is of type E8, assume that the
residue characteristic is different from 2, 3 and 5. Then the kernel of the Rost map H1(F,G)→
H3(F,Q/Z(2)) is trivial.

Proof. As explained in the proof of Lemma 4.5, the group G/A is automatically quasisplit.
We may restrict the set of places under consideration to the set of points of codimension 1 on

a regular proper model X/A. Let Ov be the ring of integers in Fv. The residue field κ = κv at
such a place is either a p-adic field or a function field in one variable over a finite field.

Let Fnrv be the maximal unramified extension of Fv. At a prime l different from the residue
characteristic, the l-cohomological dimension of Fnrv is 1, at the residue characteristic it is at
most 2 ([35, chap. II, §4.3, Prop. 12 p. 95]).
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From this we deduce H1(Fnrv , G) = 1 if the residue characteristic is not a torsion prime of
G; this would hold even if the connected group G was not simply connected, as follows from
Steinberg’s theorem, see [36, Thm. 4”].

In the general case, i.e. when the residue characteristic is a torsion prime and the quasisplit
group G is simply connected and not of type E8, we resort to the known (case by case) theorem
that for such a group over a field L of characteristic zero and of cohomological dimension 2, we
know H1(L,G) = 1 (Merkurjev and Suslin, Bayer-Fluckiger and Parimala, Gille, Chernousov,

see [36] and [12]). Under our hypotheses, we thus have H1(Fnrv /Fv, G)
'→ H1(Fv, G).

By Theorem 4.8, to prove the theorem it is enough to show that for any v as above the kernel
of the map H1(Fv, G)→ H3(Fv,Q/Z(2)) is trivial.

Let ξ ∈ H1(Fnrv /Fv, G). Since G/A is a reductive A-group, Bruhat-Tits theory, as developed
in Gille’s paper [11, Thm. 3’, Thm. 4’] shows that there exist a parahoric subgroup P over Ov
and a class η ∈ H1(Ov, P ) with the following properties.

The image of η under the natural map H1(Ov, P )→ H1(Fnrv /Fv, G) is ξ.
The reductive quotient M/κ of P ×Ov κ is part of an exact sequence of reductive groups over

the field κ:
1→ Gm →M ′ →M → 1,

where M ′/κ is the product of a simply connected semisimple group and a torus which is a direct
factor of a quasitrivial torus.

Let us consider the composite map

H1(Fnrv /Fv, G)→ Ker[H3(Fv,Q/Z(2))→ H3(Fnrv ,Q/Z(2))]→ H2(κ,Q/Z(1))
'→ Br(κ),

where the map from H3 to H2 is the usual residue map for primes different from the residue
characteristic, and the Katô residue map in general. The image of ξ under this composite map
coincides with the image of η under the composite map

H1(Ov, P )
'→ H1(κ, P ×Ov κ)

'→ H1(κ,M)→ H2(κ,Gm) = Br(κ),

where the map H1(κ,M)→ H2(κ,Gm) is the boundary map from the above sequence.
Since κ is either a p-adic field or a function field in one variable over a finite field, H1(κ,M ′) = 0.

Hence the map H1(κ,M)→ Br(κ) has trivial kernel.
If the image of ξ ∈ H1(Fv, G) = H1(Fnrv /Fv, G) in H3(Fv,Q/Z(2)) is zero, we conclude that

η = 1 hence that ξ = 1. �

6. Appendix

In this appendix we present a down-to-earth computation for the phenomenon mentioned in
Remarks 3.3 and 4.4. Let p be an odd prime. Let E be the elliptic curve over Qp defined by the
affine equation

y2 = x(1− x)(x− p). (A1)

Let F = Qp(E) be its function field. We clearly have

x+ (1− x) = 1; x− (x− p) = p; (1− x) + (x− p) = 1− p. (A2)

Let A ⊂ F be a proper discrete valuation ring, let v denote the valuation, Av the completion of
A and Fv the fraction field of Av, i.e. the completion of F at v. Let k be the residue field of
A. Let π be uniformizing parameter for A. If v(p) = 0, the field k is a finite extension of Qp. If
v(p) 6= 0 then v induces on Qp a proper valuation and v(p) > 0. In both cases, 1− p is a square
in k hence is a unit which is a square in Av.

Claim : The function 1− x is not a square in F , but it is a square in each completion Fv.
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That (1 − x) is not a square is proved by considering the quadratic extension F/Qp(x) : the
kernel of the restriction map on square classes is Z/2, spanned by the class of x(1− x)(x− p).

Assume v(1− x) < 0. Then v(x) = v(1− x) = v(x− p) hence (A1) gives that each of these is
even. Let x = u/π2n with u ∈ A∗ and n > 0. From (A1) we get that −u3, hence −u is a square
in Av. Now 1− x = (π2n − u)/π2n is a square in Kv. Assume v(1− x) > 0. Then v(x) = 0 and
v(x − p) = 0. From (A1) we get 1 − x = uπ2n with u a unit and n > 0. Then from (A2) we
get that x and x− p are squares in Av. But then (A1) shows that 1− x is a square in Kv. Now
assume v(1− x) = 0. If v(x) > 0 or v(x− p) > 0, then (A2) implies that 1− x is a square in Av.
We are reduced to the case where v(1− x) = v(x) = v(x− p) = 0. If v(p) > 0, then x(x− p) is a
square in Av. From (A1) we deduce that 1− x is a square in Av.

We are reduced to the case v(1 − x) = v(x) = v(x − p) = 0, hence v(y) = 0, and v(p) = 0.
That is, the valuation v corresponds to a closed point M on the elliptic curve E over Qp (the
trivial valuation is excluded). The ring A is the local ring of E at that point. The point M lies
on the affine curve y2 = x(1 − x)(x − p). Let k/Qp be the corresponding finite field extension.
Thus k is the residue field of Av. Let B be the ring of integers of k. The reductions of x and
y modulo the maximal ideal of A give rise to elements a, b ∈ k with b(1 − b)(b − p) 6= 0 and
a2 = b(1 − b)(b − p) 6= 0. The element 1− x is a square in Av if and only if 1 − b is a square in
k. To show that this is indeed the case, we do exactly the same computations in k, with respect
to the valuation w of k, which satisfies w(p) > 0, as we had done in F . The computation is
identical, it stops at the analogue of the end of the previous paragraph.
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