
GROTHENDIECK–LEFSCHETZ FOR VECTOR BUNDLES

KĘSTUTIS ČESNAVIČIUS

Abstract. According to the Grothendieck–Lefschetz theorem from SGA 2, there are no nontrivial
line bundles on the punctured spectrum UR of a local ring R that is a complete intersection of
dimension ě 4. Dao conjectured a generalization for vector bundles V of arbitrary rank on UR: such
a V is free if and only if depthRpEndRpΓpUR,V qqq ě 4. We use deformation theoretic techniques to
settle Dao’s conjecture. We also present examples showing that its assumptions are sharp and draw
consequences for splitting of vector bundles on complete intersections in projective space.
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1. The conjecture of Dao

1.1. The Grothendieck–Lefschetz theorem. A key result in local commutative algebra, proved
by Grothendieck in SGA 2, says that for a Noetherian local ring R that is a complete intersection (in
the sense of §1.6) of dimension ě 4, every line bundle on the punctured spectrum UR is trivial, that
is, PicpURq “ 0 (see [SGA 2new, XI, 3.13 (ii)]). In contrast, nontrivial vector bundles V may exist on
UR even when R is regular. Nevertheless, a conjecture of Hailong Dao [Dao13, 7.2.2] predicts that

if a vector bundle V on UR satisfies depthRpEndRpΓpUR,V qqq ě 4, then V is free, (1.1.1)

in which case the depth in question equals dimpRq. When V is a line bundle, R „
ÝÑ EndRpΓpUR,V qq

(see Lemma 2.2), so the prediction (1.1.1) generalizes the Grothendieck–Lefschetz theorem recalled
above. The main goal of the present paper is to establish Dao’s conjecture in Theorem 2.3 and to
deduce the following consequence for vector bundles on complete intersections in projective space.

Theorem 1.2 (Theorem 4.1). For a field k and a global complete intersection X Ă Pnk of dimension
ě 3, a vector bundle E on X is a direct sum of powers of Op1q if and only if

H1pX,E ndOX
pV qpiqq “ H2pX,E ndOX

pV qpiqq “ 0 for every i P Z. (1.2.1)
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Remark 1.3. Results similar to Theorem 1.2 were obtained for X “ PnC by Luk and Yau in
[LY93, Thm. B], for X “ Pnk by Huneke and Wiegand in [HW97, Thm. 5.2], and for odd-dimensional
hypersurfaces of dimension ě 3 by Dao in [Dao13, 8.3.4]. In these previous results the condition
(1.2.1) is weaker: one does not assume the vanishing of H2.

1.4. The method of proof. Our argument for (1.1.1) is built on the strategy used by Grothendieck
for line bundles and rests on the Lefschetz algebraization theorems from SGA 2. More precisely,
we begin by using local cohomology to show that the depth assumption implies unobstructed
deformations for V and then, after replacing R by its completion, use this to lift V to the formal
completion along a hypersurface of the punctured spectrum of a complete intersection cut out by
fewer hypersurfaces. A Lefschetz theorem from SGA 2 allows us to algebraize the lift and, after taking
care to retain the depth assumption, we proceed inductively to eventually reduce to regular R. To
conclude, we use a theorem of Huneke–Wiegand: if R is regular and depthRpEndRpΓpUR,V qqq ě 3,
then V is free. Examples coming from Knörrer periodicity for maximal Cohen–Macaulay modules
over local hypersurfaces show that the depth assumption in (1.1.1) is optimal, see §3.2.

1.5. A previously known case. When, in addition to depthRpEndRpΓpUR,V qqq ě 4, also
depthRpΓpUR,V qq ě 3, the conjecture (1.1.1) was established by Dao in [Dao13, 7.2.3]. In this case,
the assumption on ΓpUR,V q allows one to transform the depth condition on EndRpΓpUR,V qq into

Ext2RpΓpUR,V q,ΓpUR,V qq “ 0.

Due to the results of Auslander–Ding–Solberg [ADS93], the vanishing of this Ext2 implies that, after
replacing R by its completion, the R-module ΓpUR,V q lifts to a regular ring, and Dao concludes by
using the resulting Tor-rigidity of ΓpUR,V q. In contrast, we bypass any additional hypotheses on
ΓpUR,V q by deforming over UR instead of over R.

1.6. Notation and conventions. A Noetherian local ring pR,mq is a complete intersection if its
m-adic completion is a quotient of a regular local ring by a regular sequence; as is well known, such
an R is Cohen–Macaulay. For a local ring pR,mq, we let UR denote its punctured spectrum:

UR :“ SpecpRqztmu.

We use the definition of the (Sn) condition given in [EGA IV4, 5.7.2]: a finite module M over a
Noetherian ring R is (Sn) if for every prime ideal p Ă R one has

depthRp
pMpq ě minpn, dimpMpqq.

We will mostly use this definition when the support of M is SpecpRq, when dimpMpq “ dimpRpq.

Acknowledgements. I thank Hailong Dao for very helpful correspondence. I thank Ekaterina
Amerik for encouraging me to include Theorem 1.2. I thank the CNRS and the Université Paris-Sud
for support.

2. The Grothendieck–Lefschetz theorem for vector bundles of arbitrary rank

In order to implement our deformation theoretic reduction of Dao’s conjecture (1.1.1) to the case of a
regular R, we need to show that V deforms and that the deformation inherits the depth assumption.
The following lemma uses the Lefschetz theorems from [SGA 2new] to achieve this.

Lemma 2.1. Let p rR, rmq be a complete local ring that is a complete intersection, let f P rm be a
nonzerodivisor, set R :“ rR{pfq, let V be a vector bundle on UR, and consider j : UR ãÑ SpecpRq.
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(a) If dimpRq ě 3 and j˚pE ndpV qq is (S3), then for any lift rV of V to a vector bundle on an
open neighborhood rU of the closed subscheme UR Ă U

rR
, we have

ΓprU,E ndp rV qq{fΓprU,E ndp rV qq
„
ÝÑ ΓpUR,E ndpV qq.

(b) If dimpRq ě 3 and j˚pE ndpV qq is (Sn) with n ě 3, then for any lift rV as in (a), the
pushforward rj˚pE ndp rV qq along rj : rU ãÑ Specp rRq is also (Sn).

(c) If dimpRq ě 4 and j˚pE ndpV qq is (S4), then a lift rV as in (a) exists for some rU .

Proof. By our assumptions, R is a complete intersection of dimension ě 3, and so are its thickenings

Rn :“ rR{pfnq for n ě 1.

By the finiteness theorem [SGA 2new, VIII, 2.3], both j˚pE ndpV qq and rj˚pE ndp rV qq are coherent.

(a) Let Vn :“ rV {fn be the pullback of rV to URn (so that V1 – V ), and let pV – lim
ÐÝn

Vn

be the formal f -adic completion of rV . The formal f -adic completion pE ndp rV qqp is then
identified with lim

ÐÝn
E ndpVnq, and each E ndpVnq is a successive extension of copies of E ndpV q.

Moreover, since the finite R-module ΓpUR,E ndpV qq is of depth ě 3, we have

H1pUR,E ndpV qq – H2
mpR,ΓpUR,E ndpV qqq “ 0, so also H1pURn ,E ndpV qq “ 0 (2.1.1)

for every n ą 0 (see [SGA 2new, III, 3.3 (iv)]). It follows that

ΓpUR, pE ndp rV qqpq{fΓpUR, pE ndp rV qqpq – plimÐÝn ΓpUR,E ndpVnqqq{fplimÐÝn ΓpUR,E ndpVnqqq

– lim
ÐÝn

pΓpUR,E ndpVnqq{fΓpUR,E ndpVnqqq

– ΓpUR,E ndpV qq.

To conclude, we use the local Lefschetz theorem [SGA 2new, X, 2.1 (i)] to obtain

ΓprU,E ndp rV qq
„
ÝÑ ΓpUR, pE ndp rV qqpq.

(b) The complement of rU in U
rR
is a union of finitely many closed points of U

rR
: indeed, the

complement of rU in Specp rRq is of the form Specp rR{Iq with p rR{Iq{fp rR{Iq Artinian, so
dimp rR{Iq ď 1 (see [BouAC, VIII.25, Cor. 2 a)]). Thus, since rR is Cohen–Macaulay and the
finite rR-module ĂM :“ ΓprU,E ndp rV qq is free on rU , we need to show that for every prime
p Ă R outside rU ,

depth
rRp
pĂMpq ě minpn, dimp rRpqq. (2.1.2)

Scaling by f is injective on rj˚pE ndp rV qq because it is so locally over rU , so f is a nonzerodivisor
for ĂM . Moreover, by (a), the R-module ĂM{fĂM is identified with M :“ ΓpUR,E ndpV qq.
Thus, by [EGA IV1, 0.16.4.10 (i)] and the (Sn) assumption on M ,

dimp rRq ´ depth
rR
pĂMq “ dimpRq ´ depthRpMq ď dimpRq ´minpn,dimpRqq. (2.1.3)

The inequality (2.1.2) for p “ rm follows:

depth
rR
pĂMq ě minpn, dimpRqq ` 1 ě minpn, dimp rRqq.

Thus, we may assume that p P Specp rRqzprU Y rmq, so that dimp rRpq “ dimp rRq ´ 1 “ dimpRq.
The upper semicontinuity of codepth [EGA IV2, 6.11.2 (i)] and (2.1.3) then give the desired

depth
rRp
pĂMpq “ dimpRq ´ pdimp rRpq ´ depth

rRp
pĂMpqq ě minpn, dimpRqq “ minpn,dimp rRpqq.

(Alternatively, we could have finished the argument by applying [EGA IV2, 5.12.2].)
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(c) The coherent R-module ΓpUR,E ndpV qq is of depth ě 4, so, analogously to (2.1.1), we have

H2pUR,E ndpV qq – H3
mpR,ΓpUR,E ndpV qqq “ 0. (2.1.4)

Consequently, since f P rR is a nonzerodivisor, there is no obstruction to deforming V to UR2

(see, for instance, [Ill05, 8.5.3 (b)]), to the effect that V lifts to a vector bundle V2 on UR2 .
The obstruction to deforming V2 to UR3 is again controlled by H2pUR,E ndpV qq, so V2 lifts to
a vector bundle V3 on UR3 . Proceeding in this way, we lift V to a vector bundle pV :“ lim

ÐÝn
Vn

on the formal f -adic completion of U
rR
. The local Lefschetz theorem [SGA 2new, X, 2.1 (ii)]

then algebraizes pV to a desired rV . �

Geometrically, the depth condition of (1.1.1) amounts to the (S4) requirement for j˚pE ndpV qq:

Lemma 2.2. For a Noetherian local ring R that is of dimension ě 2 and whose completion pR is
(S2), and for vector bundles V and V 1 on UR,

the R-modules ΓpUR,V q and HomRpΓpUR,V q,ΓpUR,V
1qq are finite and (S2),

with the associated coherent sheaves j˚pV q and j˚pH ompV ,V 1qq, where j : UR ãÑ SpecpRq.

Proof. By [EGA IV2, 5.10.8], the (S2) assumption implies that Specp pRq has no irreducible component
of dimension ď 1. Thus, since the formation of j˚p´q commutes with the flat base change to pR, the
finiteness assertion follows from [SGA 2new, VIII, 2.3 (ii)ô(iv)] (see also [SGA 1new, VIII, 1.10]).
Since R itself is (S2) (see [EGA IV4, 6.4.1 (i)]), the (S2) assertion and the claim about j˚pV q then
follow from [EGA IV2, 5.10.5]. In general, if a finite R-module M is of depth ě 2, then so is any
HomRpM

1,Mq: if f P R is a nonzerodivisor for M , then

HomRpM
1,Mq{f HomRpM

1,Mq Ă HomRpM
1,M{fMq,

so that any g P R that is a nonzerodivisor for M{fM is also a nonzerodivisor for

HomRpM
1,Mq{f HomRpM

1,Mq.

In particular, we conclude that HomRpΓpUR,V q,ΓpUR,V
1qq is of depth ě 2. Then, by loc. cit.,

HomRpΓpUR,V q,ΓpUR,V
1qq

„
ÝÑ ΓpR, j˚pH ompV ,V 1qqq. �

We are ready for the promised extension of the Grothendieck–Lefschetz theorem:

Theorem 2.3. Let pR,mq be a local ring that is a complete intersection of dimension ě 4 and
consider the open immersion j : UR ãÑ SpecpRq. A vector bundle V on UR is free if and only if
j˚pE ndpV qq is (S4) (that is, if and only if depthRpEndRpΓpUR,V qqq ě 4, see Lemma 2.2).

Proof. By Lemma 2.2, both j˚pV q and j˚pE ndpV qq are coherent. If V is free, then so is E ndpV q,
so that j˚pE ndpV qq is a direct sum of copies of OSpecpRq, and hence is (Sn) for any n because R is
Cohen–Macaulay. For the converse, we assume that j˚pE ndpV qq is (S4).

To establish the freeness of V , we will argue that j˚pV q is free. Flat base change to pR commutes with
j˚p´q, preserves the depth assumption, and descends freeness, so we may assume that R is m-adically
complete. Then R – S{pf1, . . . , fnq for a complete regular local ring pS, nq and a regular sequence
f1, . . . , fn P n. We will argue by induction on n, the case n “ 0 being supplied by [HW97, Cor. 2.9].

Suppose that n ě 1 and set rR :“ S{pf1, . . . , fn´1q. By Lemma 2.1, the vector bundle V lifts to a
vector bundle rV defined on some open neighborhood rU of UR in U

rR
and the pushforward rj˚pE ndp rV qq

along rj : rU ãÑ Specp rRq is (S4). We saw in the proof of Lemma 2.1 (b) that the complement of rU in
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U
rR
consists of finitely many prime ideals p Ă rR with dimp rRpq “ dimpRq. The inductive hypothesis

applies to the completion of each such rRp equipped with the restriction of rV to U
rRp
, to the effect that

the restriction of rj˚p rV q to U
rR
is a vector bundle. Another application of the inductive assumption,

this time to rR equipped with prj˚p rV qq|U
rR
, then proves that rj˚p rV q is free. It follows that rV is free as

well, and hence that so is its base change V . �

Remark 2.4. For a further variant of Theorem 2.3, see [Asg19, 8.4].

3. The sharpness of the assumptions

The following examples illustrate the optimality of the assumptions of Theorem 2.3.

3.1. The dimension requirement is sharp. For a field k, consider the local ring

R :“ pkrx, y, z, ts{pxy ´ ztqqpx,y,z,tq

that is a complete intersection of dimension 3. We claim that PicpURq – Z, to the effect that the
dimension ě 4 condition of Theorem 2.3 cannot be weakened to ě 3: indeed, for any line bundle L
on UR, we have OUR

„
ÝÑ E ndpL q, so j˚pE ndpL qq is (Sn) for every n, but L will need not be OUR

.

The equation xy´zt cuts outX :“ P1
kˆP1

k sitting in P3
k via its Segre embedding. Since PicpXq – Z‘Z,

with the hyperplane class spanning the diagonal copy of Z (see [Har77, Eg. II.6.6.2]), we conclude
that the Picard group of the punctured spectrum of the local ring of the vertex of the affine cone over
X Ă P3

k is Z (see [Har77, Ex. II.6.3]). Since this local ring is R, we obtain the claimed PicpURq – Z.

3.2. The (S4) requirement is sharp. For every n ě 1 and every algebraically closed field k of
characteristic different from 2, following a suggestion of Hailong Dao, we will construct a nonfree
finitely generated module Mn over the local, p2n´ 1q-dimensional, complete intersection ring

Rn :“ kJx, y, u1, v1, . . . , un´1, vn´1K{pxy ` u1v1 ` ¨ ¨ ¨ ` un´1vn´1q

such that Mn is Cohen–Macaulay of depth 2n ´ 1 (that is, Mn is “maximal Cohen–Macaulay”)
and the Rn-module EndRnpMnq is (S3). Since URn is regular, the Auslander–Buchsbaum formula
will ensure that Mn defines a vector bundle Vn on URn . For n ě 2, the pushforward pjnq˚pVnq
along jn : URn ãÑ SpecpRnq will be given by Mn (see [EGA IV2, 5.10.5]), so Vn will be nonfree but
pjnq˚pE ndpVnqq will be (S3) (see Lemma 2.2). Thus, for n ě 3 (when dimpRnq ě 4), this will show
that the (S4) requirement in Theorem 2.3 cannot be weakened to (S3) (even when j˚pV q itself is
(Sn) for every n).

For n “ 1, we set M1 :“ kJyK with R1 “ kJx, yK{pxyq, so that M1 is a nonfree maximal Cohen–
Macaulay R1-module, EndR1pM1q is (S3) (equivalently, (S1)), and M1 admits the free resolution

. . .
y
ÝÑ kJx, yK{pxyq x

ÝÑ kJx, yK{pxyq y
ÝÑ kJx, yK{pxyq x

ÝÑ kJx, yK{pxyq.

This resolution shows that

Ext2i´1R1
pM1,M1q “ 0 and Ext2iR1

pM1,M1q – k for i ě 1. (3.2.1)

To construct the remaining Mn from M1, we will use the Knörrer periodicity theorem [Knö87,
Thm. 3.1]: for every n ě 1, the stable category MCMpRnq of maximal Cohen–Macaulay Rn-modules1

1The objects of MCMpRnq are the maximal Cohen–Macaulay Rn-modules and the morphisms are given by
HomMCMpRnqpM,M 1

q :“ HomRnpM,M 1
q{tf : M Ñ M 1 such that f factors through a finite free Rn-moduleu, see

[Buc87, 2.1.1 and 4.2.1] for more details.
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is equivalent to its counterpart MCMpRn`1q. Explicitly, in terms of matrix factorizations

rRan
ϕ
ÝÑ rRan

ψ
ÝÑ rRan with ψ ˝ ϕ “ ϕ ˝ ψ “ xy ` u1v1 ` ¨ ¨ ¨ ` un´1vn´1

with rRn :“ kJx, y, u1, v1, . . . , un´1, vn´1K, Knörrer’s functor maps the maximal Cohen–Macaulay
module Cokerpϕq to Coker

´´

un ψ
ϕ ´vn

¯¯

, where
´

un ψ
ϕ ´vn

¯

is a map in the matrix factorization

rRan`1 ‘
rRan`1

´

un ψ
ϕ ´vn

¯

ÝÝÝÝÝÝÝÑ rRan`1 ‘
rRan`1

´

vn ψ
ϕ ´un

¯

ÝÝÝÝÝÝÝÑ rRan`1 ‘
rRan`1 of xy ` u1v1 ` ¨ ¨ ¨ ` unvn.

By [Buc87, 4.4.1 (3)], the category MCMpRnq is naturally triangulated, with the translation
being given by the syzygy functor Cokerpϕq ÞÑ Cokerpψq (that is, by pϕ,ψq ÞÑ pψ,ϕq on matrix
factorizations), which is its own inverse. Thus, the commutativity of the diagram

rRan`1 ‘
rRan`1

„
´

0 1
´1 0

¯

��

´un ϕ
ψ ´vn

¯

// rRan`1 ‘
rRan`1

„
´

0 ´1
1 0

¯

��

´ vn ϕ
ψ ´un

¯

// rRan`1 ‘
rRan`1

„
´

0 1
´1 0

¯

��

rRan`1 ‘
rRan`1

´

vn ψ
ϕ ´un

¯

// rRan`1 ‘
rRan`1

´

un ψ
ϕ ´vn

¯

// rRan`1 ‘
rRan`1

shows that the Knörrer equivalence commutes with translations.

In summary, the image ofM1 under the pn´1q-fold Knörrer equivalence is a maximal Cohen–Macaulay
Rn-module Mn such that the “stabilized Ext’s” defined as in [Buc87, 6.1.1] by

ExtiRn
pM,M 1q :“ HomMCMpRnqpM,M 1risq

satisfy
ExtiRn

pMn,Mnq – ExtiR1
pM1,M1q for every i and n.

Since each Mn is maximal Cohen–Macaulay, [Buc87, 6.4.1 (i)] ensures that for i ą 0 the stabilized
Ext’s in question agree with their usual nonstable counterparts, so that (3.2.1) gives

Ext2i´1Rn
pMn,Mnq “ 0 and Ext2iRn

pMn,Mnq ‰ 0 for every n, i ě 1.

In particular, Ext2Rn
pMn,Mnq ‰ 0, so each Mn is nonfree. On the other hand, the vanishing of

Ext1Rn
pMn,Mnq implies that EndRnpMnq fits into an Rn-module exact sequence

0 Ñ EndRnpMnq ÑM‘r1
n ÑM‘r2

n ÑM‘r3
n Ñ QÑ 0.

Since Mn is Cohen–Macaulay, it follows that Hj
mpRn,EndRnpMnqq “ 0 for n ě 2 and j ď 2 (see

[SGA 2new, III, 3.3]), so that EndRnpMnq, which is free over URn , is (S3), as desired.

Remark 3.3. The dimensions of the rings Rn are odd. Thus, the failure of the freeness of the modules
Mn should be contrasted with the following result [Dao13, 7.2.5]: for a local ring R of even dimension
ě 4 whose completion is a quotient of an either equicharacteristic or unramified regular local ring by
a nonzerodivisor, a vector bundle V on UR is free if and only if depthRpEndRpΓpUR,V qqq ě 3.

4. Vector bundles on global complete intersections

We are ready for the promised splitting criterion for vector bundles on global complete intersections.

Theorem 4.1. For a field k and a global complete intersection X Ă Pnk of dimension d ě 3, a vector
bundle V on X is a direct sum of powers of Op1q if and only if

H1pX,E ndOX
pV qpiqq – H2pX,E ndOX

pV qpiqq – 0 for every i P Z. (4.1.1)
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Proof. By the definition of a global complete intersection, X is the Proj of the graded ring

R :“ krx0, . . . , xns{pf1, . . . , fn´dq for some homogeneous elements fi P krx0, . . . , xns.

The sequence f1, . . . , fn´d is krx0, . . . , xns-regular: indeed, on the local rings of Pnk at the closed
points of X this follows from the dimension requirement, and this then implies the same on each
prime localization of krx0, . . . , xns due to the gradedness of the kernel of the multiplication by fi on
krx0, . . . , xns{pf1, . . . , fi´1q (the annihilator of this kernel is homogeneous, so if a prime p contains
it, then so does the prime generated by the homogeneous elements of p, see also [EGA II, 2.2.1]). In
particular, the local rings of R are complete intersections. In fact, due to the vanishing properties of
cohomology of projective space [EGA III1, 2.1.13], the homogeneous coordinate ring of X is R:

R –
À

ně0 ΓpX,OXpnqq, compatibly with the gradings. (4.1.2)

We consider the graded R-module M :“
À

nPZ ΓpX,V pnqq, whose associated OX -module is V (see
[EGA II, 3.4.4]). Letting m :“ px0, . . . , xnq Ă R denote the irrelevant ideal, we deduce thatM defines
a vector bundle on SpecpRqztmu: indeed, on homogeneous localizations of R this follows from V
being a vector bundle, and, by [EGA II, 2.2.1], this then implies the same on the corresponding usual
localizations. Moreover, by [EGA III1, 1.4.3.2, 2.1.5.2], the R-moduleM agrees with the pushforward
of its restriction to SpecpRqztmu. Thus, Lemma 2.2 ensures that the R-modules M and EndRpMq
are finite and (S2) and that EndRpMq, like M , agrees with the pushforward of its restriction to
SpecpRqztmu. The OX -module associated to EndRpMq is EndOX

pV q (see [EGA II, 3.2.6]), so
[EGA III1, 1.4.3.1, 2.1.5.1] supply the identification

Hj`1
m pR,EndRpMqq –

À

iPZH
jpX,E ndOX

pV qpiqq for every j ě 1. (4.1.3)

Suppose that V is a direct sum of powers of Op1q, so that M is a direct sum of shifts of the
graded R-module

À

nPZ ΓpX,OXpnqq. By using the vanishing properties [EGA III1, 2.1.13] of the
cohomology of the projective space once more, we deduce from (4.1.2) that this R-module is free of
rank 1. Then EndRpMq is a free R-module and (4.1.3) together with the fact that depthpRmq ě 4
(obtained from Rm being a complete intersection of dimension ě 4) gives (4.1.1).

Conversely, suppose that (4.1.1) holds. Then (4.1.3) implies that Hj
mpR,EndRpMqq “ 0 for

j “ 2 or j “ 3. Since EndRpMq is (S2), this vanishing also holds for j ď 1. It follows that
depthRm

ppEndRpMqqmq ě 4 (see [SGA 2new, III, 3.3 (iv)]). Theorem 2.3 then implies that Mm is
Rm-free, so that M is a finite projective R-module. Since M is also graded, the graded Nakayama
lemma [BBHR91, I, Prop. 1.1 (2)] implies thatM is generated by a homogeneous lift of any R{m-basis
of M{mM . Since X is connected, the rank of M is constant, and it follows that M is R-free as a
graded module. In other words, M is isomorphic to a direct sum of shifts of R, to the effect that V
is isomorphic to a direct sum of powers of Op1q, as desired. �
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