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Upper large deviations for the maximal �ow through adomain of R
d in �rst passage perolationRaphaël CerfUniversité Paris Sud, Laboratoire de Mathématiques, bâtiment 42591405 Orsay Cedex, FraneE-mail: rerf�math.u-psud.frandMarie ThéretÉole Normale Supérieure, Département Mathématiques et Appliations, 45 rue d'Ulm75230 Paris Cedex 05, FraneE-mail: marie.theret�ens.frAbstrat: We onsider the standard �rst passage perolation model in the resaled graph Z

d/nfor d ≥ 2, and a domain Ω of boundary Γ in R
d. Let Γ1 and Γ2 be two disjoint open subsets of Γ,representing the parts of Γ through whih some water an enter and esape from Ω. We investigatethe asymptoti behaviour of the �ow φn through a disrete version Ωn of Ω between the orrespond-ing disrete sets Γ1

n and Γ2
n. We prove that under some onditions on the regularity of the domainand on the law of the apaity of the edges, the upper large deviations of φn/nd−1 above a ertainonstant are of volume order.AMS 2000 subjet lassi�ations: 60K35.Keywords : First passage perolation, maximal �ow, minimal ut, large deviations.1 First de�nitions and main resultWe use many notations introdued in [5℄ and [6℄. Let d ≥ 2. We onsider the graph (Zd

n, Ed
n) havingfor verties Z

d
n = Z

d/n and for edges E
d
n, the set of pairs of nearest neighbours for the standard L1norm. With eah edge e in E

d
n we assoiate a random variable t(e) with values in R

+. We supposethat the family (t(e), e ∈ E
d
n) is independent and identially distributed, with a ommon law Λ: thisis the standard model of �rst passage perolation on the graph (Zd

n, Ed
n). We interpret t(e) as theapaity of the edge e; it means that t(e) is the maximal amount of �uid that an go through theedge e per unit of time.We onsider an open bounded onneted subset Ω of R

d suh that the boundary Γ = ∂Ω of Ωis pieewise of lass C1 (in partiular Γ has �nite area: Hd−1(Γ) < ∞). It means that Γ is inludedin the union of a �nite number of hypersurfaes of lass C1, i.e., in the union of a �nite number of
C1 submanifolds of R

d of odimension 1. Let Γ1, Γ2 be two disjoint subsets of Γ that are open in
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1 FIRST DEFINITIONS AND MAIN RESULT
Γ. We want to de�ne the maximal �ow from Γ1 to Γ2 through Ω for the apaities (t(e), e ∈ E

d
n).We onsider a disrete version (Ωn,Γn,Γ1

n,Γ2
n) of (Ω,Γ,Γ1,Γ2) de�ned by:





Ωn = {x ∈ Z
d
n | d∞(x,Ω) < 1/n} ,

Γn = {x ∈ Ωn | ∃y /∈ Ωn , 〈x, y〉 ∈ E
d
n} ,

Γi
n = {x ∈ Γn | d∞(x,Γi) < 1/n , d∞(x,Γ3−i) ≥ 1/n} for i = 1, 2 ,where d∞ is the L∞-distane, the notation 〈x, y〉 orresponds to the edge of endpoints x and y (see�gure 1).

Γ2

Γ1

Γ1
n

Γ2
n

Γ Γn

Figure 1: Domain Ω.We shall study the maximal �ow from Γ1
n to Γ2

n in Ωn. Let us de�ne properly the maximal�ow φ(F1 → F2 in C) from F1 to F2 in C, for C ⊂ R
d (or by ommodity the orresponding graph

C ∩ Z
d/n). We will say that an edge e = 〈x, y〉 belongs to a subset A of R

d, whih we denote by
e ∈ A, if the interior of the segment joining x to y is inluded in A. We de�ne Ẽ

d
n as the set of all theoriented edges, i.e., an element ẽ in Ẽ

d
n is an ordered pair of verties whih are nearest neighbours.We denote an element ẽ ∈ Ẽ

d
n by 〈〈x, y〉〉, where x, y ∈ Z

d
n are the endpoints of ẽ and the edge isoriented from x towards y. We onsider the set S of all pairs of funtions (g, o), with g : E

d
n → R

+and o : E
d
n → Ẽ

d
n suh that o(〈x, y〉) ∈ {〈〈x, y〉〉, 〈〈y, x〉〉}, satisfying:

• for eah edge e in C we have
0 ≤ g(e) ≤ t(e) ,

• for eah vertex v in C r (F1 ∪ F2) we have
∑

e∈C : o(e)=〈〈v,·〉〉

g(e) =
∑

e∈C : o(e)=〈〈·,v〉〉

g(e) ,where the notation o(e) = 〈〈v, .〉〉 (respetively o(e) = 〈〈., v〉〉) means that there exists y ∈ Z
d
n suhthat e = 〈v, y〉 and o(e) = 〈〈v, y〉〉 (respetively o(e) = 〈〈y, v〉〉). A ouple (g, o) ∈ S is a possiblestream in C from F1 to F2: g(e) is the amount of �uid that goes through the edge e, and o(e) givesthe diretion in whih the �uid goes through e. The two onditions on (g, o) express only the fat2



1 FIRST DEFINITIONS AND MAIN RESULTthat the amount of �uid that an go through an edge is bounded by its apaity, and that there isno loss of �uid in the graph. With eah possible stream we assoiate the orresponding �ow
flow(g, o) =

∑

u∈F2 , v /∈C : 〈u,v〉∈Ed
n

g(〈u, v〉)1o(〈u,v〉)=〈〈u,v〉〉 − g(〈u, v〉)1o(〈u,v〉)=〈〈v,u〉〉 .This is the amount of �uid that rosses C from F1 to F2 if the �uid respets the stream (g, o). Themaximal �ow through C from F1 to F2 is the supremum of this quantity over all possible hoies ofstreams
φ(F1 → F2 in C) = sup{flow(g, o) | (g, o) ∈ S} .We reall that we onsider an open bounded onneted subset Ω of R

d whose boundary Γ ispieewise of lass C1, and two disjoint open subsets Γ1 and Γ2 of Γ. We denote by
φn = φ(Γ1

n → Γ2
n in Ωn)the maximal �ow from Γ1

n to Γ2
n in Ωn. We will investigate the asymptoti behaviour of φn/nd−1when n goes to in�nity. More preisely, we will show that the upper large deviations of φn above aertain onstant φ̃Ω are of volume order. The desription of φ̃Ω will be given in setion 2. Here westate the preise theorem:Theorem 1. We suppose that d(Γ1,Γ2) > 0. If the law Λ of the apaity of an edge admits anexponential moment:
∃θ > 0

∫

R+

eθxdΛ(x) < +∞ ,then there exists a �nite onstant φ̃Ω suh that for all λ > φ̃Ω,
lim sup

n→∞

1

nd
log P[φn ≥ λnd−1] < 0 .Remark 1. In the theorem 1 we need to impose that d(Γ1,Γ2) > 0 beause otherwise we annot besure that φ̃Ω < ∞, as we will see in setion 4. Moreover, if d(Γ1,Γ2) = 0, there exists a set of edgesof onstant ardinality (not depending on n) ontaining paths from Γ1

n to Γ2
n through Ωn for all nalong the ommon boundary of Γ1 and Γ2, and so it may be su�ient for these edges to have ahuge apaity to obtain that φn is abnormally big too. Thus, we annot hope to obtain upper largedeviations of volume order (see [9℄ for a ounter-example).Remark 2. The large deviations we obtain are of the relevant order. Indeed, if all the edges in Ωnhave a apaity whih is abnormally big, then the maximal �ow φn will be abnormally big too. Theprobability for these edges to have an abnormally large apaity is of order exp−Cnd for a onstant

C, beause the number of edges in Ωn is C ′nd for a onstant C ′.Remark 3. In the two ompanion papers [2℄ and [3℄, we prove in fat that φ̃Ω is the almost surelimit of φn/nd−1 when n goes to in�nity, and that the lower large deviations of φn/nd−1 below φ̃Ωare of surfae order. 3



2 COMPUTATION OF φ̃Ω2 Computation of φ̃Ω2.1 Geometri notationsWe start with some geometri de�nitions. For a subset X of R
d, we denote by Hs(X) the s-dimensional Hausdor� measure of X (we will use s = d − 1 and s = d − 2). The r-neighbourhood

Vi(X, r) of X for the distane di, that an be the Eulidean distane if i = 2 or the L∞-distane if
i = ∞, is de�ned by

Vi(X, r) = {y ∈ R
d | di(y,X) < r} .If X is a subset of R

d inluded in an hyperplane of R
d and of odimension 1 (for example a nondegenerate hyperretangle), we denote by hyp(X) the hyperplane spanned by X, and we denote by

cyl(X,h) the ylinder of basis X and of height 2h de�ned by
cyl(X,h) = {x + tv |x ∈ X , t ∈ [−h, h]} ,where v is one of the two unit vetors orthogonal to hyp(X) (see �gure 2). For x ∈ R

d, r ≥ 0 and
h

h

v

x X

Figure 2: Cylinder cyl(X,h).a unit vetor v, we denote by B(x, r) the losed ball entered at x of radius r.2.2 Flow in a ylinderHere are some partiular de�nitions of �ows through a box. It is important to know them, beauseall our work onsists in omparing the maximal �ow φn in Ωn with the maximal �ows in smallylinders. Let A be a non degenerate hyperretangle, i.e., a box of dimension d − 1 in R
d. Allhyperretangles will be supposed to be losed in R

d. We denote by v one of the two unit vetorsorthogonal to hyp(A). For h a positive real number, we onsider the ylinder cyl(A,h). Theset cyl(A,h) r hyp(A) has two onneted omponents, whih we denote by C1(A,h) and C2(A,h).For i = 1, 2, let Ah
i be the set of the points in Ci(A,h) ∩ Z

d
n whih have a nearest neighbour in

Z
d
n r cyl(A,h):

Ah
i = {x ∈ Ci(A,h) ∩ Z

d
n | ∃y ∈ Z

d
n r cyl(A,h) , 〈x, y〉 ∈ E

d
n} .Let T (A,h) (respetively B(A,h)) be the top (respetively the bottom) of cyl(A,h), i.e.,

T (A,h) = {x ∈ cyl(A,h) | ∃y /∈ cyl(A,h) , 〈x, y〉 ∈ E
d
n and 〈x, y〉 intersets A + hv}4



2 COMPUTATION OF φ̃Ω 2.3 Max-�ow min-ut theoremand
B(A,h) = {x ∈ cyl(A,h) | ∃y /∈ cyl(A,h) , 〈x, y〉 ∈ E

d
n and 〈x, y〉 intersets A − hv} .For a given realisation (t(e), e ∈ E

d
n) we de�ne the variable τ(A,h) = τ(cyl(A,h), v) by

τ(A,h) = τ(cyl(A,h), v) = φ(Ah
1 → Ah

2 in cyl(A,h)) ,and the variable φ(A,h) = φ(cyl(A,h), v) by
φ(A,h) = φ(cyl(A,h), v) = φ(B(A,h) → T (A,h) in cyl(A,h)) ,where φ(F1 → F2 in C) is the maximal �ow from F1 to F2 in C, for C ⊂ R

d (or by ommodity theorresponding graph C ∩Z
d/n) de�ned previously. The dependene in n is impliit here, in fat wean also write τn(A,h) and φn(A,h) if we want to emphasize this dependene on the mesh of thegraph.2.3 Max-�ow min-ut theoremThe maximal �ow φ(F1 → F2 in C) an be expressed di�erently thanks to the max-�ow min-uttheorem (see [1℄). We need some de�nitions to state this result. A path on the graph Z

d
n from v0to vm is a sequene (v0, e1, v1, ..., em, vm) of verties v0, ..., vm alternating with edges e1, ..., em suhthat vi−1 and vi are neighbours in the graph, joined by the edge ei, for i in {1, ...,m}. A set E ofedges in C is said to ut F1 from F2 in C if there is no path from F1 to F2 in C r E. We all E an

(F1, F2)-ut if E uts F1 from F2 in C and if no proper subset of E does. With eah set E of edgeswe assoiate its apaity whih is the variable
V (E) =

∑

e∈E

t(e) .The max-�ow min-ut theorem states that
φ(F1 → F2 in C) = min{V (E) |E is a (F1, F2)-ut } .2.4 De�nition of νThe asymptoti behaviour of the resaled expetation of τn(A,h) for large n is well known, thanksto the almost subadditivity of this variable. We reall the following result:Theorem 2. We suppose that ∫

[0,+∞[
x dΛ(x) < ∞ .Then for eah unit vetor v there exists a onstant ν(d,Λ, v) = ν(v) (the dependene on d and Λ isimpliit) suh that for every non degenerate hyperretangle A orthogonal to v and for every stritlypositive onstant h, we have

lim
n→∞

E[τn(A,h)]

nd−1Hd−1(A)
= ν(v) .5



2.5 Continuous min-ut 2 COMPUTATION OF φ̃ΩFor a proof of this proposition, see [8℄. We emphasize the fat that the limit depends on thediretion of v, but not on h nor on the hyperretangle A itself.In fat, Rossignol and Théret proved in [8℄ that under some moment onditions and/or someondition on A, ν(v) is the limit of the resaled variable τn(A,h)/(nd−1Hd−1(A)) almost surely andin L1. We also know, thanks to the works of Kesten [6℄, Zhang [11℄ and Rossignol and Théret [8℄that the variable φn(A,h)/(nd−1Hd−1(A)) satis�es the same law of large numbers in the partiularase where A is a straight hyperretangle, i.e., a hyperretangle of the form ∏d−1
i=1 [0, ki] × {0} forsome ki > 0.We reall some geometri properties of the map ν : v ∈ Sd−1 7→ ν(v), under the only onditionon Λ that E(t(e)) < ∞. They have been stated in setion 4.4 of [8℄. There exists a unit vetor

v0 suh that ν(v0) = 0 if and only if for all unit vetor v, ν(v) = 0, and it happens if and only if
Λ(0) ≥ 1−pc(d), where pc(d) is the ritial parameter of the bond perolation on Z

d. This propertyhas been proved by Zhang in [10℄. Moreover, ν satis�es the weak triangle inequality, i.e., if (ABC)is a non degenerate triangle in R
d and vA, vB and vC are the exterior normal unit vetors to thesides [BC], [AC], [AB] in the plane spanned by A, B, C, then

H1([AB])ν(vC ) ≤ H1([AC])ν(vB) + H1([BC])ν(vA) .This implies that the homogeneous extension ν0 of ν to R
d, de�ned by ν0(0) = 0 and for all w in

R
d,

ν0(w) = |w|2ν(w/|w|2) ,is a onvex funtion; in partiular, sine ν0 is �nite, it is ontinuous on R
d. We denote by νmin(respetively νmax) the in�mum (respetively supremum) of ν on Sd−1.The last result we reall is Theorem 4 in [9℄ onerning the upper large deviations of the variable

φn(A,h) above ν(v):Theorem 3. We suppose that
∃γ > 0

∫

[0,+∞[
eγx dΛ(x) < ∞ .Then for every unit vetor v and every non degenerate hyperretangle A orthogonal to v, for everystritly positive onstant h and for every λ > ν(v) we have

lim inf
n→∞

−1

ndHd−1(A)h
log P

[
φn(A,h)

nd−1Hd−1(A)
≥ λ

]
> 0 .We shall rely on this result for proving Theorem 1. Moreover, Theorem 1 is a generalisation ofTheorem 3, where we work in the domain Ω instead of a parallelepiped.2.5 Continuous min-utWe give here a de�nition of φ̃Ω in terms of the map ν. When a hypersurfae S is pieewise of lass

C1, we say that S is transverse to Γ if for all x ∈ S ∩ Γ, the normal unit vetors to S and Γ at xare not ollinear; if the normal vetor to S (respetively to Γ) at x is not well de�ned, this propertymust be satis�ed by all the vetors whih are limits of normal unit vetors to S (respetively Γ) at
y ∈ S (respetively y ∈ Γ) when we send y to x - there is at most a �nite number of suh limits.We say that a subset P of R

d is polyhedral if its boundary ∂P is inluded in the union of a �nite6



2 COMPUTATION OF φ̃Ω 2.5 Continuous min-utnumber of hyperplanes. For eah point x of suh a set P whih is on the interior of one fae of ∂P ,we denote by vP (x) the exterior unit vetor orthogonal to P at x. For A ⊂ R
d, we denote by ◦

A theinterior of A. We de�ne φ̃Ω by
φ̃Ω = inf

{
IΩ(P )

∣∣∣∣∣
P ⊂ Rd , Γ1 ⊂

◦
P , Γ2 ⊂

◦

Rd r P
P is polyhedral , ∂P is transverse to Γ

}
,where

IΩ(P ) =

∫

∂P∩Ω
ν(vP (x)) dHd−1(x) .See �gure 3 to have an example of suh a polyhedral set P .

Γ2vP (x)

Γ1 Ω

∂P

∂Ω

P

x

Figure 3: A polyhedral set P as in the de�nition of φ̃Ω.The de�nition of the onstant φ̃Ω is not very intuitive. We propose to de�ne the notion of aontinuous utset to have a better understanding of this onstant. We say that S ⊂ R
d uts Γ1from Γ2 in Ω if every ontinuous path from Γ1 to Γ2 in Ω intersets S. In fat, if P is a polyhedralset of R

d suh that
Γ1 ⊂

◦
P and Γ2 ⊂

◦

R
d

r P ,then ∂P ∩ Ω is a ontinuous utset from Γ1 to Γ2 in Ω. Sine ν(v) is the average amount of �uidthat an ross a hypersurfae of area one in the diretion v per unit of time, it an be interpretedas the apaity of a unitary hypersurfae orthogonal to v. Thus IΩ(P ) an be interpreted as theapaity of the ontinuous utset ∂P ∩ Ω de�ned by P . The onstant φ̃Ω is the solution of a minut problem, beause it is equal to the in�mum of the apaity of a ontinuous utset that satis�essome spei� properties. 7



4 THE CONSTANT φ̃Ω IS FINITE3 Sketh of the proofWe �rst prove that φ̃Ω is �nite, i.e., that there exists a polyhedral set P ⊂ R
d suh that ∂P istransverse to Γ and

Γ1 ⊂
◦
P , Γ2 ⊂

◦

R
d

r P .Then, we onsider suh a polyhedral set P whose apaity IΩ(P ) is lose to φ̃Ω. We onstrut aset Ω′ that ontains a small neighbourhood of Ω, thus Ω′ ontains Ωn for all large n, and suh that
Hd−1(∂P ∩ (Ω′

r Ω)) is very small. We need the property that ∂P is transverse to Γ to obtainthis ontrol on Hd−1(∂P ∩ (Ω′
r Ω)). We want to onstrut a (Γ1

n,Γ2
n)-ut in Ωn that is lose to

∂P ∩Ω′. We over ∂P ∩Ω′ with ylinders of arbitrarily small height; this is the reason why we needto onsider a polyhedral set P . A part of ∂P ∩ Ω′ of very small area is missing in this overing.We onstrut then a (Γ1
n,Γ2

n)-ut in Ωn with the help of utsets in the ylinders onstruted on
∂P ∩Ω′. To ahieve this, we have to add edges to over the part of ∂P ∩Ω′ missing in the overingby the ylinders, and to glue together the utsets in the di�erent ylinders. Thanks to the studyof the upper large deviations for the maximal �ow through ylinders made in [9℄, we obtain thatthe probability that the �ow φn is greater than IΩ(P )nd−1 goes to zero. We want to prove thatthis probability deays exponentially fast in nd. For that purpose, we have to onsider a olletionof ardinality of order n of possible sets of edges we an add to onstrut the utset in Ωn, and tohoose the set that has the minimal apaity.4 The onstant φ̃Ω is �niteTo prove that φ̃Ω < ∞, it is su�ient to exhibit a set P satisfying all the onditions given in thede�nition of φ̃Ω. Indeed, if suh a set P exists, then

φ̃Ω ≤ νmaxH
d−1(∂P ∩ Ω) < ∞sine a polyhedral set has �nite perimeter in Ω. We will onstrut suh a set P . The idea of theproof is the following. We will over Γ1 with small hyperubes whih are transverse to Γ1 and atpositive distane of Γ2. Then, by ompatness, we will extrat a �nite overing. We will denote by

P the union of the hyperubes of this �nite overing. Then P satis�es the desired properties.We prove a geometri lemma:Lemma 1. Let Γ be an hypersurfae (that is a C1 submanifold of R
d of odimension 1) and let Kbe a ompat subset of Γ. There exists a positive M = M(Γ,K) suh that:

∀ε > 0 ∃ r > 0 ∀x, y ∈ K |x − y|2 ≤ r ⇒ d2(y, tan(Γ, x)) ≤ M ε |x − y|2 .(tan(Γ, x) is the tangent hyperplane of Γ at x).Proof :By a standard ompatness argument, it is enough to prove the following loal property:
∀x ∈ Γ ∃M(x) > 0 ∀ε > 0 ∃ r(x, ε) > 0 ∀y, z ∈ Γ ∩ B(x, r(x, ε))

d2(y, tan(Γ, z)) ≤ M(x) ε |y − z|2 .8



4 THE CONSTANT φ̃Ω IS FINITEIndeed, if this property holds, we over K by the open balls B
o
(x, r(x, ε)/2), x ∈ K, we extrat a�nite subover B

o
(xi, r(xi, ε)/2), 1 ≤ i ≤ k, and we set

M = max{M(xi) : 1 ≤ i ≤ k } , r = min{ r(xi, ε)/2 : 1 ≤ i ≤ k } .Let now y, z belong to K with |y − z|2 ≤ r. Let i be suh that y belongs to B(xi, r(xi, ε)/2). Sine
r ≤ r(xi, ε)/2, then both y, z belong to the ball B(xi, r(xi, ε)) and it follows that

d2(y, tan(Γ, z)) ≤ M(xi) ε |y − z|2 ≤ M ε |y − z|2 .We turn now to the proof of the above loal property. Sine Γ is an hypersurfae, for any xin Γ there exists a neighbourhood V of x in R
d, a di�eomorphism f : V 7→ R

d of lass C1 anda (d − 1) dimensional vetor spae Z of R
d suh that Z ∩ f(V ) = f(Γ ∩ V ) (see for instane [4℄,

3.1.19). Let A be a ompat neighbourhood of x inluded in V . Sine f is a di�eomorphism, themaps y ∈ A 7→ df(y) ∈ End(Rd), u ∈ f(A) 7→ df−1(u) ∈ End(Rd) are ontinuous. Therefore theyare bounded:
∃M > 0 ∀y ∈ A ||df(y)|| ≤ M , ∀u ∈ f(A) ||df−1(u)|| ≤ M(here ||df(x)|| = sup{ |df(x)(y)|2 : |y|2 ≤ 1 } is the standard operator norm in End(Rd)). Sine f(A)is ompat, the di�erential map df−1 is uniformly ontinuous on f(A):

∀ε > 0 ∃δ > 0 ∀u, v ∈ f(A) |u − v|2 ≤ δ ⇒ ||df−1(u) − df−1(v)|| ≤ ε .Let ε be positive and let δ be assoiated to ε as above. Let ρ be positive and small enough sothat ρ < δ/2 and B(f(x), ρ) ⊂ f(A) (sine f is a C1 di�eomorphism, f(A) is a neighbourhood of
f(x)). Let r be suh that 0 < r < ρ/M and B(x, r) ⊂ A. We laim that M assoiated to x and rassoiated to ε, x answer the problem. Let y, z belong to Γ ∩ B(x, r). Sine [y, z] ⊂ B(x, r) ⊂ A,and ||df(ζ)|| ≤ M on A, then

|f(y) − f(x)|2 ≤ M |y − x|2 ≤ Mr < ρ , |f(z) − f(x)|2 < ρ ,

|f(y) − f(z)|2 < δ , |f(y) − f(z)|2 < M |y − z|2 .We apply next a lassial lemma of di�erential alulus (see [7℄, I, 4, Corollary 2) to the map f−1and the interval [f(z), f(y)] (whih is inluded in B(f(x), ρ) ⊂ f(A)) and the point f(z):
|y − z − df−1(f(z))(f(y) − f(z))|2 ≤

|f(y) − f(z)|2 sup { ||df−1(ζ) − df−1(f(z))|| : ζ ∈ [f(z), f(y)] } .The right�hand member is less than M |y − z|2 ε. Sine z + df−1(f(z))(f(y) − f(z)) belongs to
tan(Γ, z), we are done.

�We ome bak to our ase. The boundary Γ of Ω is pieewise of lass C1, i.e., it is inluded ina �nite union of C1 hypersurfaes, whih we denote by (S1, ..., Sp). The hypersurfaes S1, . . . , Spbeing C1 and the set Γ ompat, the maps x ∈ Γ 7→ vSk
(x), 1 ≤ k ≤ p (where vSk

(x) is the unitnormal vetor to Sk at x) are uniformly ontinuous:
∀δ > 0 ∃η > 0 ∀k ∈ { 1, . . . , p } ∀x, y ∈ Sk ∩ Γ |x − y|2 ≤ η ⇒

∣∣vSk
(x) − vSk

(y)
∣∣
2

< δ .9



4 THE CONSTANT φ̃Ω IS FINITELet η∗ be assoiated to δ = 1 by this property. Let k ∈ { 1, . . . , p }. The set Sk ∩ Γ is a ompatsubset of the hypersurfae Sk. Applying the previous lemma, we get:
∃Mk ∀δ0 > 0 ∃ ηk > 0 ∀x, y ∈ Sk ∩ Γ |x − y|2 ≤ ηk ⇒ d2

(
y, tan(Sk, x)

)
≤ Mkδ0|x − y|2 .Let M0 = max1≤k≤p Mk and let δ0 in ]0, 1/2[ be suh that M0δ0 < 1/2. For eah k in { 1, . . . , p },let ηk be assoiated to δ0 as in the above property and let

η0 = min
(

min
1≤k≤p

ηk, η∗,
1

8d
dist(Γ1,Γ2)

)
.We build a family of ubes Q(x, r), indexed by x ∈ Γ and r ∈]0, rΓ[ suh that Q(x, r) is a ubeentered at x of side length r whih is transverse to Γ. For x ∈ R

d and k ∈ { 1, . . . , p }, let pk(x) bea point of Sk ∩ Γ suh that
|x − pk(x)|2 = inf

{
|x − y|2 : y ∈ Sk ∩ Γ

}
.Suh a point exists sine Sk ∩ Γ is ompat. We de�ne then for k ∈ { 1, . . . , p }

∀x ∈ R
d vk(x) = vSk

(pk(x)) .We de�ne also
dr = inf

v1,...,vp∈Sd−1
max
b∈Bd

min
1 ≤ k ≤ r

e ∈ b

(
|e − vi|2, | − e − vi|2

)where Bd is the olletion of the orthonormal basis of R
d and Sd−1 is the unit sphere of R

d. Let ηbe assoiated to dr/4 as in the above ontinuity property. We set
rΓ =

η

2d
.Let x ∈ Γ. By the de�nition of dr, there exists an orthonormal basis bx of R

d suh that
∀e ∈ bx ∀k ∈ { 1, . . . , p } min

(
|e − vk(x)|2, | − e − vk(x)|2

)
>

dr

2
.Let Q(x, r) be the ube entered at x of sidelength r whose sides are parallel to the vetors of bx.We laim that Q(x, r) is transverse to Γ for r < rΓ. Indeed, let y ∈ Q(x, r) ∩ Γ. Suppose that

y ∈ Sk for some k ∈ { 1, . . . , p }, so that vk(y) = vSk
(y) and |x − pk(x)|2 < drΓ. In partiular, wehave |y − pk(x)|2 < 2drΓ < η and |vSk

(y) − vk(x)|2 < dr/4. For e ∈ bx,
dr

2
≤ |e − vk(x)|2 ≤ |e − vSk

(y)|2 + |vSk
(y) − vk(x)|2whene

|e − vSk
(y)|2 ≥

dr

2
−

dr

4
=

dr

4
.This is also true for −e, therefore the faes of the ube Q(x, r) are transverse to Sk.Now we onsider the olletion

(Q̊(x, r), x ∈ Γ1, r < rΓ) .10



5 DEFINITION OF THE SET Ω′It overs Γ1. By ompatness of Γ1, we an extrat a �nite overing (Q̊(xi, ri), i ∈ I) from thisolletion. We de�ne
P = ∪i∈IQ(xi, ri) ,We laim that P satis�es all the hypotheses in the de�nition of φ̃Ω. Indeed, P is obviously polyhedraland transverse to Γ. Moreover, we know that

Γ1 ⊂
◦
P ,and sine d(P,Γ2) > 0 we also obtain that

Γ2 ⊂
◦

R
d

r P .5 De�nition of the set Ω′Let λ be in ]φ̃Ω,+∞[. We are studying
P[φn ≥ λnd−1] .Suppose �rst that φ̃Ω > 0. There exists a positive s suh that λ > φ̃Ω(1 + s)2. By de�nition of φ̃Ω,for every positive s, there exists a polyhedral subset P of R

d, suh that ∂P is transverse to Γ,
Γ1 ⊂

◦
P , Γ2 ⊂

◦

R
d

r Pand
IΩ(P ) ≤ φ̃Ω(1 + s) .Then λ > IΩ(P )(1 + s) and

P[φn ≥ λnd−1] ≤ P[φn ≥ IΩ(P )(1 + s)nd−1] .Sine ∂P is transverse to Γ, we know that there exists δ0 > 0 (depending on λ, P and Γ) suh thatfor all δ ≤ δ0,
Hd−1(∂P ∩ (V2(Ω, δ) r Ω)) ≤

sIΩ(P )

2νmax
.Thus, for any set Ω′ satisfying Ω ⊂ Ω′ ⊂ V2(Ω, δ0), we have

∫

∂P∩Ω′

ν(vP (x))dHd−1(x) ≤ IΩ(P )(1 + s/2) ,then λ > (1 + s/2)(
∫
∂P∩Ω′

ν(vP (x))dHd−1(x)) and
P[φn ≥ λnd−1] ≤ P

[
φn ≥

(∫

∂P∩Ω′

ν(vP (x))dHd−1(x)

)
(1 + s/2)nd−1

]
.Suppose now that φ̃Ω = 0. Then for an arbitrarily �xed s ∈]0, 1[, there exists a polyhedralsubset P of R

d, suh that ∂P is transverse to Γ,
Γ1 ⊂

◦
P , Γ2 ⊂

◦

R
d

r P11



6 EXISTENCE OF A FAMILY OF (Γ1
N ,Γ2

N )-CUTSand
IΩ(P ) ≤

λ

1 + s
,and thus λ > IΩ(P )(1 + s). If IΩ(P ) > 0, we an use exatly the same argument as previously. Wesuppose that IΩ(P ) = 0. We know as previously that there exists δ0 > 0 (depending on λ, P and

Γ) suh that for all δ ≤ δ0,
Hd−1(∂P ∩ (V2(Ω, δ) r Ω)) <

λ

νmax(1 + s/2)
.Thus, in any ase, we obtain that there exists δ0 > 0 suh that, for any set Ω′ satisfying Ω ⊂ Ω′ ⊂

V2(Ω, δ0), we have
P[φn ≥ λnd−1] ≤ P

[
φn ≥

(∫

∂P∩Ω′

ν(vP (x))dHd−1(x)

)
(1 + s/2)nd−1

]
.We will onstrut a partiular set Ω′ satisfying Ω ⊂ Ω′ ⊂ V2(Ω, δ0). In the previous setion, wehave assoiated to eah ouple (x, r) in Γ×]0, rΓ[ a hyperube Q(x, r) entered at x, of sidelength r,and whih is transverse to Γ. Using exatly the same method, we an build a family of hyperubes

(Q′(x, r), x ∈ Γ, r < r(Γ,P ))suh that Q′(x, r) is entered at x, of sidelength r, and it is transverse to Γ and ∂P . The family
(
◦

Q′(x, r), x ∈ Γ, r < min(r(Γ,P ), δ0/(2d)))is a overing of the ompat set Γ, thus we an extrat a �nite overing from this olletion, wedenote it by (
◦

Q′(xi, ri), i ∈ J). We de�ne
Ω′ = Ω ∪

⋃

i∈J

◦

Q′(xi, ri) .Sine ri ≤ δ0/(2d) for all i ∈ J , we have Ω′ ⊂ V2(Ω, δ0). Moreover, ∂P is transverse to the boundary
Γ′ of Ω′. Finally, if we de�ne

δ1 = min
i∈J

ri/2 ,we know that V2(Ω, δ1) ⊂ Ω′, and thus for all n ≥ 2d/δ1, we have Ωn ⊂ Ω′.6 Existene of a family of (Γ1
n, Γ

2
n)-utsIn this setion we prove that we an onstrut a family of disjoint (Γ1

n,Γ2
n)-uts in Ωn. Let ζ be a �xedonstant larger than 2d. We onsider a parameter h < h0 = d(∂P,Γ1 ∪ Γ2). For k ∈ {0, ..., ⌊hn/ζ⌋}we de�ne

P (k) = {x ∈ R
d | d(x, P ) ≤ kζ/n} ,and for k ∈ {0, ..., ⌊hn/ζ⌋ − 1} we de�ne

U(k) = (
◦

R
d

r Pk+1) r
◦
P k

= {x ∈ R
d | kζ/n ≤ d(x, P ) < (k + 1)ζ/n} ,and M′(k) = U(k) ∩ Ω′ (see �gure 4). We will prove the following lemma:12



6 EXISTENCE OF A FAMILY OF (Γ1
N ,Γ2

N )-CUTS

Γ2

Γ1

Γ Γ′

P
M

′(k)

ζ/n

kζ/n

U(k)Figure 4: The sets P , U(k) and M′(k).Lemma 2. There exists N large enough suh that for all n ≥ N , every path on the graph (Zd
n, Ed

n)from Γ1
n to Γ2

n in Ωn ontains at least one edge whih is inluded in the set M′(k) for k ∈
{0, ..., ⌊hn/ζ⌋ − 1}.This lemma states preisely that for all k ∈ {0, ..., ⌊hn/ζ⌋ − 1}, M′(k) ontains a (Γ1

n,Γ2
n)-utin Ωn.Proof :Let k ∈ {0, ..., ⌊hn/ζ⌋ − 1}. Let γ be a disrete path from Γ1

n to Γ2
n in Ωn. In partiular, γ isontinuous, so we an parametrise it : γ = (γt)0≤t≤1. There exists N large enough suh that for all

n ≥ N , we have
Ωn ⊂ Ω′ , Γ1

n ⊂ V2(Γ
1, 2d/n) ⊂

◦
P k , and Γ2

n ⊂ V2(Γ
2, 2d/n) ⊂

◦

R
d

r Pk+1 .Sine γ is ontinuous, we know that there exists t1, t2 ∈]0, 1[ suh that
t1 = sup{t ∈ [0, 1] | γt ∈

◦
P k} ,

t2 = inf{t ≥ t1 | γt ∈
◦

R
d

r Pk+1} .Sine
◦
P k ∪ U(k) ∪

◦

R
d

r Pk+1is a partition of R
d, we know that (γt)t1≤t<t2 , whih is a ontinuous path, is inluded in U(k). Thelength of (γt)t1≤t<t2 is larger than d(γt1 , γt2). The segment [γt1 , γt2 ] intersets

{x ∈ R
d | d(x, P ) = (k + 1/2)ζ/n}at a point z, and we know that

V2(z, ζ/(2n)) ⊂
◦

V (k) .13



7 COVERING OF ∂P ∩ Ω′ BY CYLINDERSThus d(γt1 , γt2) ≥ ζ/n, and then the length of (γt)t1≤t<t2 is larger than ζ/n. Finally, γ is omposedof edges of length 1/n, and ζ ≥ 2d, so (γt)t1≤t<t2 , and thus γ, ontains at least one edge whih isinluded in U(k). Notiing that for all n ≥ N ,
γ ⊂ Ωn ⊂ Ω′ ,we obtain that this edge belongs to U(k) ∩ Ω′ = M′(k).

�7 Covering of ∂P ∩ Ω′ by ylindersFrom now on we only onsider n ≥ N . Aording to lemma 2, we know that eah set M′(k) for
k ∈ {0, ..., ⌊hn/ζ⌋ − 1} ontains a (Γ1

n,Γ2
n)-ut in Ωn, thus if we denote by M ′(k) the set of theedges inluded in M′(k), we obtain

φn ≤ min{V (M ′(k)) , k ∈ {0, ..., ⌊hn/ζ⌋ − 1}} .However, we do not have estimates on V (M ′(k)) that allow us to ontrol φn using only the previousinequality. The estimates we an use are the one of the upper large deviations for the maximal �owfrom the top to the bottom of a ylinder (Theorem 3). In this setion, we will transform our familyof uts (M ′(k)) by replaing a huge part of the edges in eah M′(k) by the edges of minimal utsetsin ylinders.We denote by Hi, i = 1, ...,N the intersetion of the faes of ∂P with Ω′. For eah i = 1, ...,N ,we denote by vi the exterior normal unit vetor to P along Hi. We will over ∂P ∩Ω′ by ylinders,exept a surfae of Hd−1 measure ontrolled by a parameter ε. To explain the onstrution of autset we will do with a huge number of ylinders, we present �rst the simpler onstrution of autset using one ylinder. Let R be a hyperretangle that is inluded in Hj for a j ∈ {1, ...,N},and let B be the ylinder de�ned by
B = {x + tvj |x ∈ R , t ∈ [0, h]} ,where h ≤ h0 is the same parameter as previously. The ylinder B is built on ∂P ∩ Ω′, in R

d
r

◦
P .We reall that h0 = d(∂P,Γ1 ∪ Γ2) > 0, so we know that d(B,Γ1 ∪ Γ2) > 0. We denote by Ea theset of the edges inluded in

Ea = {x + tvj |x ∈ R , d(x, ∂R) < ζ/n , t ∈ [0, h]} .The set Ea is a neighbourhood in B of the "vertial" faes of B, i.e., the faes of B that are ollinearto vj. We denote by Eb a set of edges in B that uts the top R + hvj from the bottom R of B.Let M ′(k) be the set of the edges inluded in M′(k), for a k ∈ {0, ..., ⌊hn/ζ⌋ − 1}. Let B′ be thethinner ylinder
B′ = {x + tvj |x ∈ R , d(x, ∂R) ≥ ζ/n , t ∈ [0, h]} .Thus for all k ∈ {0, ..., ⌊hn/ζ⌋ − 1}, the set of edges

(M ′(k) ∩ (Rd
r B′)) ∪ Ea ∪ Eb14



7 COVERING OF ∂P ∩ Ω′ BY CYLINDERS
Ea

Eb

B

B′

M
′(k) ∩ (Rd

r B′)

∂P ∩ Ω′P

Ω′
r P

kζ/n

ζ/n

ζ/n

Figure 5: Constrution of a (Γ1
n,Γ2

n)-ut in Ωn using a utset in a ylinder.uts Γ1
n from Γ2

n in Ωn. Indeed, the set of edges M ′(k) is already a ut between Γ1
n and Γ2

n in Ωn.We remove from it the edges that are inside B′ whih is in the interior of B, and we add to ita utset Eb from the top to the bottom of B, and the set of edges Ea that glue together Eb and
M ′(k) ∩ (Rd

r B′). This property is illustrated in the �gure 5.Remark 4. In this �gure, we have represented Eb as a surfae (so a path in dimension 2) thatseparates the top from the bottom of the ylinder to illustrate the fat that Eb uts all disretepaths from the bottom to the top of B. Atually, we an mention that it is possible to de�ne anobjet whih ould be the dual of an edge in dimension d ≥ 2 (as a generalization of the dual of aplanar graph). This objet is a plaquette, i.e., a hypersquare of sidelength 1/n that is orthogonalto the edge and uts it in its middle, and whose sides are parallel to the hyperplanes of the axis.Then the dual of a utset is a hypersurfae of plaquettes, thus the �gure 5 is somehow intuitive.We do exatly the same onstrution, but with a large number of ylinders, that will almostover ∂P ∩ Ω′. We onsider a �xed ε > 0. There exists a l su�iently small (depending on F , Pand ε) suh that there exists a �nite olletion (Ri,j, i = 1, ...,N , j = 1, ..., Ni) of hypersquares ofside l of disjoint interiors satisfying Ri,j ⊂ Hi for all i ∈ {1, ...,N} and j ∈ {1, ..., Ni}, and for all
i ∈ {1, ...,N},

{x ∈ Hi | d(x, ∂Hi) ≥ εHd−2(∂Hi)
−1N−1} ⊂

Ni⋃

j=1

Ri,j ⊂

⊂ {x ∈ Hi | d(x, ∂Hi) ≥ εHd−2(∂Hi)
−1N−12−1} .15



7 COVERING OF ∂P ∩ Ω′ BY CYLINDERSWe immediately obtain that
Hd−1


(∂P ∩ Ω′) r

N⋃

i=1

Ni⋃

j=1

Ri,j


 ≤ ε .We remark that ∫

∂P∩Ω′

ν(vP (x))dHd−1(x) ≥
N∑

i=1

Nil
d−1ν(vi) ,so that

P[φn ≥ λnd−1] ≤ P

[
φn ≥ (1 + s/2)nd−1

N∑

i=1

Nil
d−1ν(vi)

]
.Let h < h0. For all i ∈ {1, ...,N} and j ∈ {1, ..., Ni}, we de�ne

Bi,j = {x + tvi |x ∈ Ri,j , t ∈ [0, h]} .Sine all the Bi,j are at stritly positive distane of ∂Hi, there exists a positive h1 suh that for all
h < h1, the ylinders Bi,j have pairwise disjoint interiors. We thus onsider h < min(h0, h1) (see�gure 6 for example). At this point, we ould de�ne a neighbourhood of the vertial faes of eah

Γ′

Γ′

Hi

Bi,j

Ω′
r P

P

h

Figure 6: Covering of ∂P ∩ Ω′ by ylinders.ylinder Bi,j, and do the same onstrution as in the previous example with one ylinder. Atually,we need to hoose a little bit more arefully the sets of edges we de�ne along the vertial faes of the16



7 COVERING OF ∂P ∩ Ω′ BY CYLINDERSylinders. We will not onsider only eah ylinder Bi,j, but also thinner versions of these ylindersof the type
Bi,j(k) = {x + tvj |x ∈ Ri,j , d(x, ∂Ri,j) > kζ/n , t ∈ [0, h]}for di�erent values of k. We will then onsider the edges inluded in a neighbourhood of the vertialfaes of eah Bi,j(k) (see the set Wi,j(k) above), and hoose k to minimize the apaity of the unionover i and j of these edges. The reason why we need this optimization is also the reason why webuilt a family (M ′(k)) of utsets and not only one utset from Γ1

n to Γ2
n in Ωn, we will try to explainit in remark 5.Here are the preise de�nitions of the sets of edges. We still onsider the same onstants ζbigger than 2d and h < min(h0, h1). We de�ne another positive onstant η that we will hoose later(depending on P , s and Ω). For i in {1, ...,N} and j in {1, ..., Ni} we reall the de�nition of Bi,j:

Bi,j = {x + tvi |x ∈ Ri,j , t ∈ [0, h]} ,and we de�ne the following subsets of R
d:

B′
i,j = {x + tvi |x ∈ Ri,j , d(x, ∂Ri,j) > η , t ∈ [0, h]} ,

∀k ∈ {0, ..., ⌊ηn/ζ − 1⌋} , Wi,j(k) = {x ∈ Bi,j | kζ/n ≤ d2(x, ∂Ri,j + Rvi) < (k + 1)ζ/n} ,

∀k ∈ {0, ..., ⌊hnκ/ζ − 1⌋} , M(k) = M′(k) r


⋃

i,j

B′
i,j


 ,(see �gures 7 and 8). We denote by Wi,j(k) the set of the edges inluded in Wi,j(k) and we

l

l

Wi,j(k)

Bi,j
ζ/n

kζ/n

Ri,j

h

vi

Figure 7: The set Wi,j(k).de�ne W (k) = ∪i,jWi,j(k). We also denote by M(k) the edges inluded in M(k). Exatly as in17



7 COVERING OF ∂P ∩ Ω′ BY CYLINDERS
P

Ω′
r P

H1

H2

H1

H2

a

: M1(k): M3(k)

: M2(k)

H1 ∩ H2

Γ′

M(k)

a
b

∪jB1,j

∂H1 ∩ Γ′

a
b

Γ′

h

∪jB2,j

a = kζ/n

b = (k + 1)ζ/n

∂H1 ∩ Γ′

∂P

∂P

c

c = 2ηFigure 8: The set M(k).the onstrution of a utset with one ylinder, we obtain a utset that is built with utsets in eahylinders Bi,j. Indeed, if we denote by Ei,j a set of edges that is a utset from the top to thebottom of Bi,j (oriented towards the diretion given by vi), then for eah k1 ∈ {0, ..., ⌊ηn/ζ − 1⌋}and k2 ∈ {0, ..., ⌊hn/ζ − 1⌋}, the set of edges:
⋃

i = 1, ...,N
j = 1, ..., Ni

Ei,j ∪ W (k1) ∪ M(k2)

ontains a utset from Γ1
n to Γ2

n in Ωn. We dedue that
φn ≤

∑

i,j

φBi,j
+ min

k1

V (W (k1)) + min
k2

V (M(k2)) . (1)18



8 CONTROL OF THE CARDINALITY OF THE SETS OF EDGES W AND M8 Control of the ardinality of the sets of edges W and MFor the sake of larity, we do not reall the sets in whih the parameters take its values, we alwaysassume that they are the following: i ∈ {1, ...,N}, j ∈ {1, ..., Ni}, k1 ∈ {0, ..., , ⌊ηn/ζ − 1⌋} and
k2 ∈ {0, ..., ⌊hn/ζ − 1⌋}. We have to evaluate the number of edges in the sets W (k1) and M(k2)to ontrol the terms mink1

V (W (k1)) and mink2
V (M(k2)) in (1). There exist onstants c1(d,Ω),

c2(P, d,Ω) suh that
card W (k1) ≤ c1

Hd−1(∂P ∩ Ω′)

ld−1
ζld−2hnd−1 ≤ c2l

−1hnd−1 .The ardinality of M(k2) is a little bit more ompliated to ontrol. We will divide M(k) (respe-tively M(k)) into three parts: M(k) ⊂ M1(k) ∪ M2(k) ∪ M3(k) (respetively M(k) ⊂ M1(k) ∪
M2(k) ⊂ M3(k)), that are represented in �gure 8.We de�ne R′

i,j = {x ∈ Ri,j | d(x, ∂Ri,j) > η} whih is the basis of B′
i,j. The set M1(k) is atranslation of the sets Hi r (∪Ni

j=1R
′
i,j) along the diretion given by vi enlarged with a thikness

ζ/(nκ):
M1(k) ⊂

N⋃

i=1

{x + tvi |x ∈ Hi r (∪Ni

j=1R
′
i,j) , t ∈ [kζ/n, (k + 1)ζ/n[} .Here we have an inlusion and not an equality beause M1(k) an be a trunated version of thisset (trunated at the juntion between the translates of two di�erent faes). Sine we know that

Hd−1


(∂P ∩ Ω′) r

N⋃

i=1

Ni⋃

j=1

Ri,j


 ≤ ε ,and

Hd−1




N⋃

i=1

Ni⋃

j=1

(Ri,j r R′
i,j)


 ≤

Hd−1(∂P ∩ Ω′)

ld−1
ld−2η = Hd−1(∂P ∩ Ω′)l−1η ,we have the following bound on the ardinality of M1(k):

card(M1(k)) ≤ c3(ε + l−1η)nd−1 ,for a onstant c3(d, P,Ω,Ω′).The part M2(k) orresponds to the edges inluded in the "bends" of the neighbourhood of ∂Ploated around the boundary of the faes of ∂P in Ω′, denoted by M2(k), i.e.:
M2(k) ⊂

⋃

i,j

(V2(Hi ∩ Hj, (k + 1)ζ/n) r V2(Hi ∩ Hj, kζ/n)) ,and there exists a onstant c4(d, P,Ω′) suh that
card M2(k) ≤ c4|kζ/n|d−2nd−1 ≤ c4h

d−2nd−1 .The last part M3(k) orresponds to the part ofM(k) that is near the boundary Γ′ of Ω′. Indeed,
Γ′ is not orthogonal to ∂P , thus for some k, the set M(k) may ontain edges that are not inludedin

N⋃

i=1

{x + tvi |x ∈ Hi r (∪Ni

j=1R
′
i,j) , t ∈ [kζ/n, (k + 1)ζ/n[} ,19



8 CONTROL OF THE CARDINALITY OF THE SETS OF EDGES W AND Mneither in
⋃

i,j

(V2(Hi ∩ Hj, (k + 1)ζ/n) r V2(Hi ∩ Hj, kζ/n)) ,(see �gure 8). However, M(k) ⊂ U(k), the problem is to evaluate the di�erene of ardinalitybetween the di�erent M(k) due to the intersetion of U(k) with Ω′. We have onstruted Ω′ suhthat Γ′ is transverse to ∂P preisely to obtain this ontrol. The sets Γ′ and ∂P are polyhedralsurfaes whih are transverse. We denote by (Hi, i ∈ I) (resp. (H′
j, j ∈ J)) the hyperplanes thatontain ∂P (resp. Γ′), and by vi (resp. v′j) the exterior normal unit vetor to P along Hi (resp. Ω′along H′

j). The set Γ′ ∩ ∂P is inluded in the union of a �nite number of intersetions Hi ∩ H′
j oftransverse hyperplanes. To eah suh intersetion Hi ∩H′

j, we an assoiate the angles between viand v′j , and between vi and −v′j, in the plane of dimension 2 spanned by vi and v′j. Eah suh angleis stritly positive beause Hi is transverse to H′
j , and so the minimum θ0 over the �nite number ofde�ned angles is stritly positive. This θ0 and the measure Hd−2(∂P ∩ Γ′) give to us a ontrol onthe volume of M3(k), and thus on card(M3(k)), as soon as these sets belong to a neighbourhoodof ∂P ∩ Γ′ (see �gure 9). Thus, there exist h2(Ω
′, P ) > 0 and a onstant c5(d, P,Ω,Ω′) suh that

Γ′

≥ θ0

∂P

M3(k)

M′(k)

kζ/n

ζ/n
≤ h

∂P ∩ Γ′

Figure 9: The set M3(k).for all h ≤ h2,
card(M3)(k) = c5hnd−1 .We onlude that there exists a positive onstant c6(d, P,Ω,Ω′) suh that

card M(k) ≤ c6(ε + l−1η + hd−2 + h)nd−1 .20



9 CALIBRATION OF THE CONSTANTS9 Calibration of the onstantsWe remark that the sets W (k) (resp., the sets M(k)) are pairwise disjoint for di�erent k. Then weobtain that
P[φn ≥λnd−1] ≤ P

[
φn ≥ (1 + s/2)nd−1

N∑

i=1

Nil
d−1ν(vi)

]

≤ P




N∑

i=1

Ni∑

j=1

φBi,j
≥ (1 + s/4)nd−1

N∑

i=1

Nil
d−1ν(vi)




+ P

[
min
k1

V (W (k1)) ≥ (s/8)nd−1
N∑

i=1

Nil
d−1ν(vi)

]

+ P

[
min
k2

V (M(k2)) ≥ (s/8)nd−1
N∑

i=1

Nil
d−1ν(vi)

]

≤
N∑

i=1

Ni∑

j=1

(
max

i,j
P[φBi,j

≥ ld−1ν(vi)(1 + s/4)nd−1]

)

+ P




c2l−1hnd−1∑

i=1

t(ei) ≥ (s/8)nd−1
N∑

i=1

Nil
d−1ν(vi)



⌊ηn/ζ⌋

+ P




c6(ε+l−1η+hd−2+h)nd−1∑

i=1

t(ei) ≥ (s/8)nd−1
N∑

i=1

Nil
d−1ν(vi)




2⌊hn/ζ⌋

.The terms
P[φBi,j

≥ ld−1ν(vi)(1 + s/4)nd−1]have already been studied in [9℄ (we realled it as Theorem 3 in this paper).It remains to study two terms of the type
P(n) = P




αnd−1∑

i=1

t(ei) ≥ βnd−1


 .As soon as β > αE(t) and the law of the apaity of the edges admits an exponential moment, theCramér theorem in R allows us to a�rm that

lim sup
n→∞

1

nd−1
logP(n) < 0 .Moreover, for all

ε ≤ ε0 =
1

2νmax

∫

P∩Ω′

ν(vP (x))dHd−1(x) ,21



9 CALIBRATION OF THE CONSTANTSwe have
N∑

i=1

Nil
d−1ν(vi) ≥

∫

∂P∩Ω′

ν(vP (x))dHd−1(x) − ενmax

≥
1

2

∫

∂P∩Ω′

ν(vP (x))dHd−1(x)

≥
νmin

2
Hd−1(∂P ∩ Ω′) .Thus, for all ε < ε0 and h < min(h0, h1, h2), if the onstants satisfy the two following onditions:

c2l
−1h < Hd−1(∂P ∩ Ω′)νminE(t(e))s/16 , (2)and

c6(ε + l−1η + hd−2 + h) < Hd−1(∂P ∩ Ω′)νminE(t(e))s/16 , (3)thanks Theorem 3 and the Cramér theorem in R, we obtain that
lim sup

n→∞

1

nd
log P[φn ≥ λnd−1] < 0 ,and theorem 1 is proved. We laim that it is possible to hoose the onstants suh that onditions(2) and (3) are satis�ed. Indeed, we �rst hoose ε < ε0 suh that

ε <
1

4

Hd−1(∂P ∩ Ω)νminE(t(e))s

16c6
.To this �xed ε orresponds a l. Knowing ε and l, we hoose h ≤ min(h0, h1, h2) and η suh that

max(h, hd−2, l−1h, l−1η) <
1

4

Hd−1(∂P ∩ Ω′)νminE(t(e))s

16max(c2, c6)
.This ends the proof of theorem 1.Remark 5. We try here to explain why we built several sets W (k1) and M(k2), and not only oneouple of suh sets, that would have been su�ient to onstrut a utset from Γ1

n to Γ2
n in Ωn.To use estimates of upper large deviations of maximal �ows in ylinder we already know, we wantto ompare φn with ∑

i,j φBi,j
. Heuristially, to onstrut a (Γ1

n,Γ2
n)-ut in Ωn from the unionof utsets in eah ylinder Bi,j, we have to add edges to glue together the di�erent utsets at theommon boundary of the small ylinders, and to extend these utsets to (∂P ∩Ωn)r

⋃N
i=1

⋃Ni

j=1 Ri,j.Yet we want to prove that the upper large deviations of φn are of volume order. If we only onsiderone possible set E of edges suh that
φn ≤

∑

i,j

φBi,j
+ V (E) ,we will obtain that

P[φn ≥ λnd−1] ≤
∑

i,j

P[φBi,j
≥ ld−1ν(vi)(1 + s/4)nd−1]

+ P

[
V (E) ≥ nd−1

N∑

i=1

Nil
d−1ν(vi)s/4

]
.22



REFERENCES REFERENCESWe an hoose suh a set E so that it ontains less than δnd−1 edges for a small δ (E is equal to
W (k1) ∪ M(k2) for a �xed ouple (k1, k2) for example), but the probability

P




δnd−1∑

i=1

t(ei) ≥ Cnd−1


does not deay exponentially fast with nd in general. To obtain this speed of deay, we have tomake an optimization over the possible hoies of the set E, i.e., we hoose E among a set of C ′npossible disjoint sets of edges E1, ..., EC′n; in this ase, we obtain that

φn ≤
∑

i,j

φBi,j
+ min

k=1,...,C′n
V (Ek) ,and so

P[φn ≥ λnd−1] ≤
∑

i,j

P[φBi,j
≥ ld−1ν(vi)(1 + s/4)nd−1]

+
C′n∏

k=1

P

[
V (Ek) ≥ nd−1

N∑

i=1

Nil
d−1ν(vi)s/4

]
. (4)It is then su�ient to prove that for all k, P[V (Ek) ≥ C ′′nd−1] deays exponentially fast with nd−1to onlude that the last term in (4) deays exponentially fast with nd. Theorem 3 gives a ontrolon the terms

P[φBi,j
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d in �rst passage perolation. Available from arxiv.org/abs/0907.5504.[3℄ Raphaël Cerf and Marie Théret. Lower large deviations for the maximal �ow through a domainof R
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