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1. Introduction

A well known Theorem of Lyapunov [11, 13] states that the range of a non–atomic vec-
tor measure is compact and convex. Conversely (e.g. [1]) each compact convex centrally
symmetric subset of R2 containing the origin is the range of a two dimensional measure
(such a set is called a zonoid).
Some problems related to the bang–bang principle in control theory led us to work with
the class of the Chebyshev measures. Our definition of a Chebyshev measure is essentially
a linear independence condition on some vectors of its range. In [5,6] we proved that the
range of a n−dimensional Chebyshev measure is strictly convex and its boundary contains
the origin. Recently Schneider showed in [14] that the range of a n−dimensional measure
is strictly convex if and only if for every set A with µ(A) 6= 0 there exist n measurable
subsets A1, . . . , An of A such that µ(A1), . . . , µ(An) are linearly independent. A result by
Neyman [9] states that if the origin is an extreme point of the boundary of a zonoid Z
and µ is a vector measure such that R(µ) = Z then Z determines the m−range of µ i.e.
the set of m−uples (µ(A1), . . . , µ(Am)) where A1, . . . , Am are a measurable partition of
the space. A n−dimensional strictly convex zonoid whose boundary contains the origin is
then naturally expected to be the range of a Chebyshev measure.
Here we prove that a strictly convex, centrally symmetric, compact subset of R2 whose
boundary contains the origin is actually the range of a two dimensional Chebyshev mea-
sure. We give two different proofs: the first one involves the representation theorem for
Chebyshev measures proved in [6]; the second one is based on a new simple representation
result for convex sets in R2. Our technique allows also, given an arbitrary convex centrally
symmetric compact set, to build explicitly a measure whose range coincides with it. The
method of defining the measure through its density with respect to a reference measure
was used in [2] where the authors characterize the range of a couple of positive (quasi–)
measures. Moreover, we give a condition under which a two dimensional vector measure
admits a decomposition as the difference of two Chebyshev measures.
Further, for two dimensional measures, we state a necessary condition on the density func-
tion of µ with respect to its total variation for the strict convexity of the range R(µ) of µ;
as an application we show that µ is a Chebyshev measure on [0, 1] if and only if the map
θ defined by θ(α, β) = µ([α, β]) for 0 < α < β < 1 is a homeomorphism onto intR(µ).

2. Notation and preliminary results

Let µ = (µ1, µ2) be a two dimensional vector measure defined on the interval [0, 1]
equipped with a σ− fieldM and |µ| be its total variation. The determinant measure detµ
associated to µ is the two dimensional measure on [0, 1]2 defined by

detµ = µ1 ⊗ µ2 − µ2 ⊗ µ1;

we point out that if A,B are measurable then detµ(A×B) = det(µ(A), µ(B)).
We assume that M contains the Borelians and we set Γ = {(x, y) ∈ R2 : 0 ≤ x ≤ y ≤ 1}.
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Definition 1. The measure µ is a Chebyshev measure (or simply T–measure) with re-
spect to the intervals ([0, α])0≤α≤1 if it is non–atomic and each |µ| ⊗ |µ|– non negligible
measurable subset of Γ has a positive (or negative) detµ measure.

Remark. In what follows we will always assume detµ to be positive whenever µ is a
Chebyshev measure; its properties do not change in the other case.
In particular if µ is a Chebyshev measure and A,B are |µ| – non negligible subsets of [0, 1]
such that supA ≤ inf B then det(µ(A), µ(B)) >0.

For Φ being an endomorphism of R2 and µ a two dimensional measure on [0, 1] we define
the two dimensional measure Φµ by Φµ(A) = Φ(µ(A)) for every measurable A ⊂ [0, 1].
The next proposition is a straightforward consequence of the definitions.

Proposition 1. Let µ be a T–measure and Φ be a rotation; then Φµ is a T–measure.

Definition 2. A function f in L1
ν([0, 1],R2) is a Chebyshev system (or simply T–system)

with respect to a prescribed measure ν whenever the determinant det(f(t1), f(t2)) is positive
for ν ⊗ ν– almost every (t1, t2) in Γ.

Proposition 2. [6, Th. 3.4] A measure µ is a Chebyshev measure if and only if the density
of µ with respect to its total variation is a T–system.

For µ = (µ1, µ2) being a two dimensional measure on [0, 1] we denote by R(µ) the range
of µ defined by R(µ) = {µ(E) = (µ1(E), µ2(E)) : E ∈M} and by θ : Γ→ R(µ) the map
defined by θ(α, β) = µ([α, β]) for every (α, β) in Γ.
We denote by intA the interior of a set A, by clA its closure, by ∂A its boundary and by
coA its convex hull; for L being a convex set in Rn we denote by riL its relative interior.
We refer to [12] for the definitions of these sets.
The peculiar properties of a Chebyshev measure rely on the following result.

Theorem 1. [6] Let µ be a Chebyshev measure on [0, 1]. Then the restriction of θ to int Γ
induces a homeomorphism onto intR(µ); in particular R(µ) = {µ([α, β]) : 0 ≤ α ≤ β ≤ 1}
and ∂R(µ) = {µ([0, α]) : 0 ≤ α ≤ 1} ∪ {µ([β, 1]) : 0 ≤ β ≤ 1}.

3. A characterization of planar strictly convex zonoids

Theorem 2. Let K be a subset of R2. We have the following equivalence:

i) the set K is strictly convex, compact, centrally symmetric and (0, 0) ∈ ∂K;
ii) there exists a two–dimensional Chebyshev measure µ such that K = R(µ).

Proof. Assume that i) holds. Let Φ be a rotation such that Φ(K) ⊂ {(x, y) ∈ R2 : x ≥ 0};
let for simplicity [0, 1] be the projection of Φ(K) on the x−axis. For each x in [0, 1] let

y(x) = inf{y ∈ R : (x, y) ∈ Φ(K)}.
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Clearly p = 1
2 (1, y(1)) is the center of Φ(K) and the boundary of Φ(K) is the union of the

graph of y and its symmetric with respect to p. Since y is strictly convex and y(0) = 0
there exists a strictly increasing function g such that

∀x ∈ [0, 1] y(x) =
∫ x

0

g(t) dt.

Let µ be the two dimensional vector measure on [0, 1] whose density function with respect
to the Lebesgue measure is f(t) = (1, g(t)). Since g is strictly increasing, f is a T–system
with respect to the Lebesgue measure: Proposition 2 then implies that µ is a T–measure.
By Theorem 1 the boundary points of the range of µ are exactly the points µ([0, x]) where x
varies in [0, 1] together with their symmetric with respect to 1

2µ([0, 1]). By the definition of
µ we have µ([0, x]) = (x, y(x)); it follows that the boundaries ofR(µ) and of Φ(K) coincide:
these sets being convex and closed we obtain R(µ) = Φ(K) so that K = R(Φ−1µ). By
Proposition 1, Φ−1µ is a T–measure, proving ii). The converse is a trivial consequence of
the Lyapunov Theorem and of the results stated in [5,6]. �

4. Bidimensional zonoids

A point P of a convex set C is said to be exposed (see [12]) if there exists an hyperplane
whose intersection with C is reduced to P . It is well–known (Straszewicz–Klee Theorem,
[10, 15]) that a compact subset of a normed space has at least an exposed point.
Let C be a compact, convex, centrally symmetric subset of R2. We assume here that O is
an exposed point of C and that

C ⊂ {(x, y) ∈ R2 : x ≥ 0}, C ∩ {(0, y) : y ∈ R} = {O}.

Let L > 0,M in R be such that (L/2,M/2) are the coordinates of the center I of C; clearly
C is contained in [0, L]× R. Let y be the function defined by

∀x ∈ [0, L] : y(x) = min{y ∈ R : (x, y) ∈ C}.

Clearly y is convex, bounded and (thus) continuous on its domain and its graph coincides
with ∂−C = ∂C ∩ {(x, y) ∈ R2 : y ≤ M

L x}. Let G : [0, L]→ ∂−C be the map defined by

∀x ∈ [0, L] : G(x) = (x, y(x)).

Remark that for x in [0, L] the symmetric point of G(L− x) with respect to I is the point
(x,M − y(L− x)) of the boundary of C. It follows that

∀(x, y) ∈ [0, L]× R : (x, y) ∈ C ⇐⇒ y(x) ≤ y ≤M − y(L− x). (◦)

We will widely use the next representation result.
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Proposition 3. The following identity holds:

C = {G(x2)−G(x1) : x1, x2 ∈ [0, L], x1≤x2}.

Proof. Let x1 ≤ x2; if x1 = x2 then O = G(x1)−G(x1) ∈ C.
Assume that x1 < x2; since 0 ≤ x1 and x2 − x1 ≤ x2 then by convexity we have

y(x2 − x1)
x2 − x1

≤ y(x2)− y(x1)
x2 − x1

;

similarly since x1 ≤ L− (x2 − x1) and x2 ≤ L then

y(x2)− y(x1)
x2 − x1

≤ y(L)− y(L− (x2 − x1))
L− (L− (x2 − x1))

.

It follows that y(x2 − x1) ≤ y(x2)− y(x1) ≤M − y(L− (x2 − x1)); thus by (◦) the point
(x2 − x1, y(x2)− y(x1)) = G(x2)−G(x1) belongs to C.
Conversely let z = (a, b) ∈ C. Let ϕ : [0, L− a]→ R be the map defined by

∀x ∈ [0, L− a] : ϕ(x) = y(x+ a)− y(x)− b.

Clearly ϕ is continuous; moreover by (◦) we have y(a) ≤ b ≤ M − y(L − a). Therefore
ϕ(0) = y(a)− b ≤ 0 and ϕ(L− a) = M − y(L− a)− b ≥ 0: it follows that there exists x1

such that ϕ(x1) = 0. Then if we put x2 = x1 + a we obtain y(x2) = b + y(x1) implying
that G(x2) = z +G(x1), which is the desired conclusion. �

The construction in Theorem 2 suggests an alternative proof (and an improvement) to
the well–known fact that C is the range of a measure (see [1]).
For I, J being intervals in R we write that I < J if both I and J are not trivial and
sup I ≤ inf J ; we shall denote by λ the Lebesgue measure in R.

Theorem 3. Let K be a non empty, compact, centrally symmetric, convex subset of R2

containing the origin. Then there exists a non–atomic measure µ on the Borelians of
[0, 1] such that K = R(µ) and for every x in K there exist α, β, γ, δ in [0, 1] such that
x = µ([α, β])− µ([γ, δ]). Moreover if the origin is an exposed point of K then

R(µ) = {µ([α, β]) : 0 ≤ α ≤ β ≤ 1}.

Proof. Let e be an exposed point of K; such a point exists by the Straszewicz–Klee The-
orem. Then O is an exposed point of −e+K. Let T be a rotation such that

T (−e+K) ⊂ {(x, y) ∈ R2 : x ≥ 0}, T (−e+K) ∩ {(0, y) : y ∈ R} = {O}
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and let I = (L/2,M/2) be the center of T (−e + K); we will assume that L = 1 and set
C = T (−e+K). Correspondingly let y and G be the functions defined above.
By [12, Corollary 24.2.1] there exists an increasing function g : [0, 1]→ R such that

∀x1, x2 ∈ [0, 1] : y(x2)− y(x1) =
∫ x2

x1

g(t) dt.

Let ν be the measure whose density function with respect to the Lebesgue measure is
(1, g). Proposition 3 then yields

C = {ν([x1, x2]) : x1, x2 ∈ [0, 1], x1≤x2} (∗)

so that, in particular, C ⊂ R(ν). To prove the opposite inclusion let I1 < · · · < Im be m
disjoint non trivial open intervals and set V = I1 ∪ · · · ∪ Im. Let

0 = x0 < x1 < · · · < xm≤1 and 1 = y0 > y1 > · · · > ym≥0

be such that, for i in {1, . . . ,m}, the intervals Ji =]xi−1, xi[ and Li =]ym−i+1, ym−i[ are
translates of Ii, so that for each i there exist two positive real numbers ai and bi satisfying
Ii = ai + Ji and Li = bi + Ii. Then

J1 < · · · < Jm, L1 < · · · < Lm, xm = λ(V ), ym = 1− xm.

The function g being increasing we obtain

∀i ∈ {1, . . . ,m} :
∫
Ji

g(t) dt ≤
∫
Ji

g(ai + t) dt =
∫
Ii

g(t) dt ≤
∫
Ii

g(bi + t) dt =
∫
Li

g(t) dt

and thus ∫ xm

0

g(t) dt =
m∑
i=1

∫
Ji

g(t) dt ≤
∫
V

g(t) dt ≤
m∑
i=1

∫
Li

g(t) dt =
∫ 1

ym

g(t) dt.

Now by Proposition 3 we have

p =
(
xm,

∫ xm

0

g(t) dt
)

= G(xm)−G(0) ∈ C, q =
(
xm,

∫ 1

ym

g(t) dt
)

= G(1)−G(ym) ∈ C;

therefore by convexity we obtain

ν(V ) =
(
xm,

∫
V

g(t) dt
)
∈ co {p, q} ⊂ C.
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Let A be a measurable subset of [0, 1]; the measure ν being regular there exists a Gδ subset
E such that ν(A) = ν(E). We may write E = ∩mVm where (Vm)m is a decreasing sequence
of countable unions of disjoint open intervals. Since ν(E) = limm ν(Vm) then the previous
remarks and the closure of C imply that ν(A) = ν(E) is in C. It follows that

C = R(ν) (∗∗)

and therefore K = e + T−1R(ν) = e +R(T−1ν). If O is an exposed point of K we may
take e = O, proving the claim. Otherwise since O ∈ TK there exists a set E such that
ν(E) = −Te; let ν′ be the measure on the Borelians of [0, 1] defined by

ν′(B) = ν(B \ E)− ν(B ∩ E).

It is well known [1, Lemma 1.3] (and easy to check) that the range of ν′ is given by

R(ν′) = R(ν)− ν(E)

so that R(ν′) = TK and therefore K = T−1(R(ν′)) = R(µ) where µ = T−1ν′.
Now let A be a measurable subset of [0, 1]. Then

µ(A) = T−1ν(A \ E)− T−1ν(A ∩ E);

(∗) and (∗∗) yield the conclusion. �

Remark. A generalized version of the integral inequalities that we use to show that R(ν)
is contained in C was stated in [3]; their proof in this less general context is simpler and
it is given here for the convenience of the reader.

The above arguments yield an alternative proof of Theorem 2.

Corollary. Let K be a non empty, compact, centrally symmetric, strictly convex subset of
R2 such that O belongs to ∂K. Then there exists a Chebyshev measure µ on the Borelians
of [0, 1] such that K = R(µ).

Proof. Since K is strictly convex and O belongs to ∂K then O is exposed: with the
notation of the proof of Theorem 3 we may take e = O and thus no translation is needed.
Then C = T (K) so that by (∗∗) we obtain K = R(T−1ν) where ν is the measure whose
density with respect to λ is the vector (1, g). Since the function y is strictly convex then
g is strictly monotonic and therefore (1, g) is a T–system. Proposition 2 then shows that
ν is a Chebyshev measure; Proposition 1 yields the result. �

Remark. The main difference between the two proofs is that, in Theorem 3, the represen-
tation result for convex sets (Proposition 3) is used as a substitute of the representation
Theorem 1 for Chebyshev measures.

7



5. Decomposition of measures

Let (X,M) be a measurable space and µ be a non–atomic positive measure on X. There
exists a family (Mi)i∈[0,1] of sets of M such that µ is a Chebyshev measure with respect
to µ and to (Mi)i∈[0,1] (we refer to [6] for the definition of T–measure in this more general
setting). In fact Lyapunov Theorem on the range of measures yields the existence of an
increasing family (Mi)i∈[0,1] such that µ(Mi) = iµ(X) for each i in [0, 1].
More generally, if µ is a signed measure on X, by the Hahn decomposition theorem we
may decompose X into a disjoint union X− ∪X+ such that if we set

µ+(·) = µ(X+ ∩ ·), µ−(·) = −µ(X− ∩ ·)
then µ = µ+ − µ− and µ+, µ− are positive measures. The latter property together
with the non–atomicity yield the existence of two increasing families (M+

i )i∈[0,1] and
(M−i )i∈[0,1] such that µ+ (resp. µ−) is a Chebyshev measure with respect to (M+

i )i∈[0,1]

(resp. (M−i )i∈[0,1]). Thus µ is the difference of two Chebyshev measures.
We give now a condition under which the same conclusion holds for two dimensional vec-
tor measures. For a vector v of R2 \ {(0, 0)} we denote by arg v its principal argument in
]− π, π].
Let f be a measurable function with values in R2.

Theorem 4. Let µ be a two dimensional non–atomic vector measure on (X,M) and let
f = (f1, f2) be its density function with respect to |µ|. If |µ|({x : arg f(x) = θ}) = 0 for
each θ in ]− π, π] then there exist two T–measures µ+ and µ− such that µ = µ+ − µ−.

Proof. We define X+ = {x ∈ X : arg f(x) ≥ 0}, X− = {x ∈ X : arg f(x) < 0} and

∀i ∈ [0, 1] : M+
i = {x ∈ X+ : arg f(x) ≤ iπ}, M−i = {x ∈ X− : arg f(x) ≥ −iπ}.

Let f+ and f− be the functions f+ = f1X+ and f− = f1X− . Then f+ (resp. f−) is a
T–system on X+ (resp. X−) with respect to |µ| and (M+

i )i∈[0,1] (resp. (M−i )i∈[0,1]). Then
setting dµ+ = f+d |µ| and dµ− = f−d |µ| we obtain a decomposition of µ as the difference
of two Chebyshev measures. �

Remark. Under the above assumptions Theorem 5.1 in [6] then implies that for every A
in M there exist i1, i2, j1, j2 in [0, 1] such that µ(A) = µ+(M+

i2
\M+

i1
) − µ−(M−j2 \M

−
j1

).
This result looks similar to the one stated in Theorem 3; however here the measure µ is
imposed whereas in Theorem 3, given a zonoid, the measure is built.

6. A characterization of two dimensional Chebyshev measures

Let µ be a two dimensional non–atomic vector measure on ([0, 1],M) and let f be its
density with respect to the total variation |µ|. We denote by < u : u ∈ E > the vector
subspace of R2 spanned by the vectors u belonging to a set E and by “·” the usual scalar
product in R2.
The next result will be applied later and has an interest in itself.

8



Theorem 5. If R(µ) is strictly convex then the determinant det(f(x), f(y)) of the vectors
f(x), f(y) is not zero |µ| ⊗ |µ|– a.e. on [0, 1]2.

Proof. Let A,Z,A1 be the sets defined by

A = {(x, y) : det(f(x), f(y)) = 0}, Z = {x : f(x) = 0}
A1 = {(x, y) : f(x) 6= 0, f(y) ∈<f(x)>};

clearly we have A = (Z× [0, 1])∪A1 and (Z× [0, 1])∩A1 = ∅. Let τ be the map defined by
τ(a, b) = (−b, a); then A1 = {(x, y) : f(x) 6= 0, f(y)·τ(f(x)) = 0} so that A1 is measurable.
Moreover Fubini’s Theorem gives

|µ| ⊗ |µ|(A1) =
∫

[0,1]\Z

{∫
Dx

d|µ|(y)
}
d|µ|(x)

where, for x in [0, 1], Dx = {y : f(y) · τ(f(x)) = 0}.
If |µ| ⊗ |µ|(A1) 6= 0 there exists x in [0, 1] \ Z such that |µ|(Dx) 6= 0. The very definition
of Dx implies that for every measurable subset B of Dx we have

µ(B) · τ(f(x)) =
∫
B

f(y) · τ(f(x)) d|µ|(y) = 0

and thus the vector space <µ(B) : B ∈M, B ⊂ Dx> is at most one dimensional: Theorem
3.1.2 in [14] then implies that R(µ) is not strictly convex, a contradiction. Obviously
|µ|(Z) = 0; thus |µ| ⊗ |µ|(A) = |µ| ⊗ |µ|(Z × [0, 1]) + |µ| ⊗ |µ|(A1) = 0, proving the
claim. �

We will use the following results.

Lemma 1. Let A be a non–empty open convex bounded subset of R2 and assume that ∂A
contains a non trivial segment L. Then riL is open in ∂A.

For the convenience of the reader, a proof of a more general result is given in the
appendix.

Lemma 2. Let A,B be open bounded subsets of Rn and ψ : clA → Rn be a continuous
map inducing a homeomorphism from A onto B. Then ψ(∂A) = ∂B.

We recall that we denote by λ the Lebesgue measure on [0, 1]; in what follows we
assume that there exists a strictly positive function h in L1

λ([0, 1]) such that d|µ| = h dλ;
in particular |µ| is absolutely continuous with respect to λ.
We prove here that Theorem 1 characterizes the Chebyshev measures.
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Theorem 6. Let θ be the map defined in §2. If θ induces a homeomorphism from int Γ
onto intR(µ) then µ is a Chebyshev measure.

Proof. Remark first that intR(µ), being isomorphic to int Γ, is non–empty.
Since Γ and R(µ) are convex and closed then Theorem 6.3 in [12] yields Γ = cl (int Γ) and
R(µ) = cl (intR(µ)): applying Lemma 2 with ψ = θ, A = int Γ, B = intR(µ) we obtain
θ(∂Γ) = ∂R(µ); in particular

∂R(µ) = {µ([0, α]) : 0 ≤ α ≤ 1} ∪ {µ([β, 1]) : 0 ≤ β ≤ 1}.
Assume that the boundary of R(µ) contains a non trivial segment L; let (for instance) α
in [0, 1] be such that x = µ([0, α]) belongs to the relative interior of L. By Lemma 1 there
exists an open neighbourhood V of x such that V ∩ ∂R(µ) = V ∩ riL. By continuity there
exist α1, α2 in ]0, 1[ such that α1<α<α2 and

{µ([0, t]) : t∈ [α1, α2] } ⊂ V ;

Lemma 2 then implies that µ([0, t]) ∈ V ∩ riL for every t ∈]α1, α2[. Therefore, if p ∈
R2 \ {O}, c ∈ R are such that L ⊂ {x ∈ R2 : p · x = c} we have

∀t ∈]α1, α2[: p · µ([0, t]) = c.

Let U be the open subset of int Γ defined by

U = {(α, β) ∈ R2 : α1<α<β<α2}.
Our assumption implies that θ(U) is an open subset of R2; however we have

∀(α, β) ∈ U p · θ(α, β) = p · µ([α, β]) = p · µ([0, β])− p · µ([0, α]) = 0,

a contradiction; it follows that R(µ) is strictly convex. Theorem 5 then implies that

det(f(α), f(β)) 6= 0 |µ| ⊗ |µ|− a.e. in [0, 1]2.

By [16, Corollary 10.50] we have

lim
x→0

µ([α, α+ x])
|µ|([α, α+ x])

= f(α) |µ| − a.e. and lim
x→0

|µ|([α, α+ x])
λ([α, α+ x])

= h(α) λ− a.e.

so that

lim
x→0

µ([α, α+ x])
x

= f(α)h(α) |µ| − a.e.

Therefore the map θ is differentiable |µ| ⊗ |µ|– a.e. on [0, 1]2 and its Jacobian is given by

Jac(θ)(α, β) = (−f(α)h(α), f(β)h(β)) |µ| ⊗ |µ|− a.e.

so that in particular the determinant of the Jacobian vanishes only on a negligible set.
The map θ is a homeomorphism on int Γ and Γ is connected; as a consequence the degree
deg(int Γ, θ, p) is constantly equal to 1 or −1 for every p in intR(µ) [8, Theorem 3.35],
assume for instance that it equals −1. Then by [8, Lemma 5.9] we have

sgn det(−f(α), f(β)) = sgn det Jac(θ)(α, β) = deg(int Γ, θ, p) = −1 |µ| ⊗ |µ|−a.e. in Γ

and therefore f is a T–system; Proposition 2 yields the conclusion. �
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Appendix: faces of codimension 1

The above Lemma 1 can be formulated in a more general setting.

Theorem 7. Let A be an open convex bounded subset of Rn and assume that ∂A contains
a relatively open subset L of an hyperplane. Then L is open in ∂A.

Proof (G. De Marco). It is not restrictive to assume that O ∈ A and that L ⊂ H where

H = {(x1, . . . , xn) ∈ Rn : xn = λ} for some λ > 0.

Clearly H is a supporting hyperplane so that xn ≤ λ for every x = (x1, . . . , xn) ∈ clA.
We denote by ‖ · ‖ the norm of Rn defined by ‖(x1, . . . , xn)‖ = maxi |xi|; we recall that the
map p : x 7→ x

‖x‖ is a homeomorphism from ∂A onto the unit sphere S (in the ‖ · ‖−norm)
of Rn (see for instance [7]). It is not restrictive to assume that

L ⊂ {(x1, . . . , xn) ∈ Rn : xn > max{|x1|, . . . , |xn−1|}};

in fact it is enough to transform A and H with the map (x1, . . . , xn) 7→ (x1, . . . , xn−1, rxn)
for a sufficiently large r. Then in particular we have ‖x‖ = λ for every x in L. It follows
that K = p(L) ⊂ S ∩Q where Q = {(x1, . . . , xn) ∈ Rn : xn = 1} = 1

λH and that p(x) = x
λ

for every x in L so that K is homothetic to L and is thus open in Q. Moreover K is
contained in the open set B = {(x1, . . . , xn) ∈ Rn : xn > 0, 1 > max{|x1|, . . . , |xn−1|}}
and Q ∩B = S ∩B: therefore K is open in S. �
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