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Abstract

We study the simple genetic algorithm with a ranking selection mech-
anism (linear ranking or tournament). We denote by ` the length
of the chromosomes, by m the population size, by pC the crossover
probability and by pM the mutation probability. We introduce a pa-
rameter σ, called the strength of the ranking selection, which mea-
sures the selection intensity of the fittest chromosome. We show that
the dynamics of the genetic algorithm depend in a critical way on
the parameter

π = σ(1 − pC)(1 − pM )` .

If π < 1, then the genetic algorithm operates in a disordered regime:
an advantageous mutant disappears with probability larger than 1−
1/mβ , where β is a positive exponent. If π > 1, then the genetic
algorithm operates in a quasispecies regime: an advantageous mutant
invades a positive fraction of the population with probability larger
than a constant p∗ (which does not depend on m). We estimate
next the probability of the occurrence of a catastrophe (the whole
population falls below a fitness level which was previously reached
by a positive fraction of the population). The asymptotic results
suggest the following rules:
• π = σ(1 − pC)(1 − pM )` should be slightly larger than 1;
• pM should be of order 1/`;
• m should be larger than ` ln `;
• the running time should be at most of exponential order in m.
The first condition requires that `pM +pC < lnσ. These conclusions
must be taken with great care: they come from an asymptotic regime,
and it is a formidable task to understand the relevance of this regime
for a real–world problem. At least, we hope that these conclusions
provide interesting guidelines for the practical implementation of the
simple genetic algorithm.
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1 Introduction

Genetic algorithms are search procedures based on the genetic mechanisms
which guide natural evolution: selection, crossover and mutation. The most
cited initial references on genetic algorithms are the beautiful books of Hol-
land [27], who tried to initiate a theoretical analysis of these processes, and
of Goldberg [24], who made a very attractive exposition of these algorithms.
The success of genetic algorithms over the years has been amazing. They
have been used to attack optimization problems of every possible kind.
Numerous variants, extensions and generalizations of the basic genetic al-
gorithms have been developed. The literature on genetic algorithms is now
so huge that it is beyond my ability to compile a decent reasonable review.
Unfortunately, the theoretical understanding of the mechanisms at work in
genetic algorithms is still far from satisfactory.

We study here the simple genetic algorithm with a ranking selection
mechanism. Ranking selection means that the selection mechanism de-
pends only on the ranking of the chromosomes according to the fitness
function. We consider mainly two popular selection mechanisms: linear
ranking selection and tournament selection. The simple genetic algorithm
operates on binary strings of length `, called the chromosomes. The pop-
ulation size is denoted by m. We use the standard single point crossover
and the crossover probability is denoted by pC . We use independent par-
allel mutation at each bit and the mutation probability is denoted by pM .
We introduce a parameter σ, called the strength of the ranking selection,
which measures the selection intensity of the fittest chromosome. For lin-
ear ranking selection with parameters η−, η+, the strength of the ranking
selection σ is equal to η+. For tournament selection with parameter t,
the strength of the ranking selection σ is equal to t. We show that the
dynamics of the simple genetic algorithm depend in a critical way on the
parameter

π = σ(1− pC)(1− pM )` .

Heuristically, the parameter π might be interpreted as the mean number
of offspring of the fittest chromosome from one generation to the next. We
prove that:

• If π < 1, then the genetic algorithm operates in a disordered regime: an
advantageous mutant disappears with probability larger than 1 − 1/mβ ,
where β is a positive exponent.

• If π > 1, then the genetic algorithm operates in a quasispecies regime:
an advantageous mutant invades a positive fraction of the population with
probability larger than a constant p∗ (which does not depend on m).

These results hold in the limit of large populations, when m grows to ∞.
One is naturally led to think that the parameters of the genetic algorithm
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should be adjusted so that π is larger than 1. Yet we think that the most
interesting regime is when π is only slightly larger than 1. Indeed, in order
to increase π, the mutation and crossover probabilities pM and pC should be
decreased and this would slow down the exploration of the space. However
an efficient search procedure should realize a delicate balance between the
exploration mechanism and the selection mechanism. This general idea is
present in numerous works dealing with random optimization [41, 50, 56].
Another reason is that we wish to avoid the premature convergence of the
genetic algorithm, i.e., an excessive concentration of the population on the
current best chromosome. This problem has been encountered in practice
and it is discussed in several works on genetic algorithms (see for instance
[49, 60, 61]). It seems therefore more judicious to choose “large” values
of pM and pC compatible with the condition π > 1. This means that the
mutation probability should be of order 1/`; more precisely, the condition
π > 1 implies that

`pM + pC < lnσ .

In particular, the crossover probability cannot be too large in order to
avoid the disordered regime. It has already been observed in the practice
of genetic algorithms that it is sensible to take the mutation probability
pM of the same order than 1/`.

Another outcome of our study concerns the occurrence of a catastrophe
and the influence of the population size. Loosely speaking, a catastrophe
occurs if the whole population falls below a fitness level which was previ-
ously reached by a positive fraction of the population. A straightforward
strategy to prevent the occurrence of a catastrophe is to use “elitism”,
i.e., to retain automatically the best chromosome from one generation to
another. Yet, in the quasispecies regime, the simple genetic algorithm is
robust enough to avoid catastrophes for a very long time. We prove that,
when π > 1, a catastrophe occurs typically after a number of generations
which is of exponential order in m, in fact of order exp(c∗m), where c∗ is
a constant depending on π only. With a small population size, the danger
is that a catastrophe might occur before the genetic algorithm succeeds
in finding an advantageous mutant. Thus the genetic algorithm will work
efficiently only if the population size is sufficiently large. Suppose that the
population is stuck on a local maximum. The typical time to discover an
advantageous mutant is of order p−∆

M , where 0 ≤ ∆ ≤ ` and ∆ depends on
the current population (rigorous estimates were derived in [6]). We wish
to ensure that, with high probability, this discovery will occur before a
catastrophe. So we should have

m � ∆

c∗
ln

1

pM
.

A natural strategy would be to take m very large. Yet there is another
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practical constraint: we wish to minimize the number of evaluations of
the fitness function. Therefore we aim for the smallest population size
compatible with the desired goal. To take into account these contradic-
tory constraints, we suggest that the parameters σ, pC , pM , `,m should be
adjusted according to the following rules:

• π = σ(1− pC)(1− pM )` should be slightly larger than 1;

• pM should be of order 1/`;

• m should be larger than ` ln `;

• the running time should be at most of exponential order in m.

These conclusions must be taken with great care: they come from an
asymptotic regime, and it is a formidable task to understand the rele-
vance of this regime for a real–world problem. At least, we hope that these
conclusions provide interesting guidelines for the practical implementation
of the genetic algorithm.

We provide also sufficient conditions on the fitness function f ensur-
ing that, starting from any population, the hitting time of the optimal
chromosomes is polynomial in `. We close with a condition ensuring the
concentration of the invariant probability measure of the genetic algorithm
on populations containing optimal chromosomes. This condition reads:

π = σ(1− pC)(1− pM )` > 1 , pM ≥
c∗

`
, m ≥ m0 , m ≥ c∗` ln ` .

Here c∗ and m0 are constants depending on π only. This result is certainly
less relevant in practice than the previous ones, however it demonstrates the
asymptotic validity of the genetic algorithm and it is reassuring to know
that the genetic algorithm works in this asymptotic regime. The other
good news is that this condition holds uniformly with respect to the fitness
function. Hence a population of size of order ` ln ` is enough to search an
arbitrary function on the space { 0, 1 }`.

By the way, the results obtained here vindicate a conjectural picture
outlined in [7]. Namely, the genetic algorithm running on a fitness land-
scape is a finite population model, approximating an infinite population
model. This infinite model presents several phase transitions, depending
on the geometry of the fitness landscape. In a way, there is a phase tran-
sition associated to each local maximum.

The results presented here have been derived with the help of ideas
coming from the quasispecies theory. In 1971, Manfred Eigen analyzed a
simple system of replicating molecules and demonstrated the existence of
a critical mutation rate, called the error threshold [17]. This fundamental
result led to the notion of quasispecies developed by Eigen, McCaskill and
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Schuster [18]. If the mutation rate exceeds the error threshold, then, at
equilibrium, the population is completely random. If the mutation rate is
below the error threshold, then, at equilibrium, the population contains a
positive fraction of the Master sequence (the most fit macromolecule) and
a cloud of mutants which are quite close to the Master sequence. This
specific distribution of individuals is called a quasispecies.

Several researchers have already argued that the notion of error thresh-
old plays a role in the dynamics of a genetic algorithm. This is far from
obvious, because Eigen’s model is formulated for an infinite population
model. However there is evidence that a similar phenomenon occurs in fi-
nite populations as well, and also in genetic algorithms. In her PhD thesis
[41], Ochoa demonstrated the occurrence of error thresholds in genetic algo-
rithms over a wide range of problems and landscapes. This very interesting
work is published in a series of conference papers [40, 42, 43, 44, 45, 46, 47].
One of the most interesting and inspiring works on the theory of genetic
algorithms that I have read over the last years is the series of papers by
van Nimwegen, Crutchfield and Mitchell [54, 55, 56, 57, 58]. In these pa-
pers, the authors perform a theoretical and experimental study of a ge-
netic algorithm on a specific class of fitness functions. Their analysis relies
on techniques from mathematical population genetics, molecular evolution
theory and statistical physics. Among the fundamental ingredients guiding
the analysis are the quasispecies model, the error threshold and metasta-
bility. In the last work of the series [56], van Nimwegen and Crutchfield
describe an entire search effort surface and they introduce a generalized
error threshold in the space of the population size and the mutation prob-
ability delimiting a set of parameters where the genetic algorithm proceeds
efficiently. In a genetic algorithm, the crossover operator complicates the
dynamics and either it shifts the critical points or it creates new ones. This
phenomenon has been observed independently by Rogers, Prügel–Bennett
and Jennings [50] and by Nilsson Jacobi and Nordahl [28].

A version of the quasispecies theory was recently worked out in the con-
text of a classical model of population genetics, namely the Wright–Fisher
model [8, 10]. The Wright–Fisher model corresponds exactly to a genetic
algorithm without crossover. Let us explain briefly why quasispecies theory
is relevant to understand the dynamics of a genetic algorithm. Typically,
on a complicated landscape, the evolution of the genetic algorithm proceeds
by jumps. The population stays for a long time exploring the space around
the current best fit chromosome, until it discovers a better chromosome.
If this discovery time is very long, the process reaches a local equilibrium
and the distribution of the population looks like a quasispecies. Our goal
here is to estimate the persistence time of this quasispecies, i.e., the time
the quasispecies stays alive until it is destroyed by a catastrophe. The
persistence time depends in a complicated way on the structure of the fit-
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ness landscape. The persistence time depends also on the population size.
If the population size is large, the genetic algorithm will be able to keep
an interesting quasipecies alive for a long time, long enough until a new
advantageous mutant is discovered and creates a new quasispecies. We
shall obtain a simple lower bound on the persistence time of the fittest
chromosomes by comparing the genetic algorithm with a family of simpler
processes, which are amenable to rigorous mathematical analysis.

A very interesting conclusion of [56] is the existence of a critical pop-
ulation size below which it is practically impossible to reach the global
optimum. A similar conclusion was obtained in the simpler framework of
the generalized simulated annealing [9]: within a specific asymptotic regime
of low mutations and high selection pressure, the convergence to the global
maximum could be guaranteed only above a critical population size. The
approach presented here confirms this prediction. The genetic algorithm is
very unlikely to reach the global optimum if the population size is too small.
If the population size is too large, the genetic algorithm will evolve slowly
and will require too many evaluations of the fitness function. The optimal
population size seems to depend strongly on the optimization problem. In
any case a population size of order c∗` ln ` should be enough to search the
space of chromosomes of length ` (here again c∗ is a constant depending
on π only).

Technically, we study the genetic algorithm within the framework of
the theory of Markov chains. It has been noted numerous times in the
literature that a genetic algorithm is conveniently modelled as a Markov
chain. Several researchers have studied genetic algorithms in this context,
here is a selection of works belonging to this line of research: [2, 4, 16,
25, 33, 34, 35, 37, 38, 39, 51, 52, 59, 61, 53]. Unfortunately, the transition
matrix is very complicated and the resulting formulas are intractable. Our
strategy is to consider a specific asymptotic regime. Twenty years ago, in
[9], an asymptotic regime corresponding to the simulated annealing was
studied. In this regime, the space { 0, 1 }` and the population size were
kept fixed, while the mutation probability was sent to 0 and the selection
strength to ∞. It was then possible to analyze precisely the asymptotic
dynamics of the population. Several other interesting results have been
obtained in this regime, in particular, the understanding of the asymptotic
dynamics helped to design potentially more efficient variants of the genetic
algorithm [48, 22, 21, 11]. Although this regime made it possible to derive
rigorous convergence results, it turned out to be irrelevant in practice,
because it is certainly not the correct regime of parameters to run efficiently
a genetic algorithm. Another interesting approach based on the Feynman–
Kac formula was developed by Del Moral and Miclo [12, 13, 14]. Several
other works have considered other asymptotic approximations on specific
fitness landscapes [3, 4, 15, 36]. Here we consider the asymptotic regime
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corresponding to the quasispecies theory in a finite population, namely:

• The size m of the population goes to ∞.

• The length ` of the chromosomes is large.

• The mutation probability is of order 1/`.

We are able to derive various estimates in this specific asymptotic regime.
We hope that these results will be relevant in practice. The proofs use var-
ious tools from the theory of Markov chains: coupling techniques, Galton–
Watson processes, large deviations estimates, Poisson approximation. The
main strategy of the proofs is to analyze the evolution of the most fit chro-
mosomes, and more precisely the number of their descendants which are
not altered by mutation and crossover. This evolution is described by an
auxiliary Markov chain which is adequately coupled with the genetic al-
gorithm. The study of this auxiliary chain rests on several ideas which
were developed in the Freidlin–Wentzell theory and in the analysis of the
simulated annealing.

The main results are stated in the section 2. The simple genetic al-
gorithm is briefly explained before presenting the main results and it is
formally described in section 3. The remaining sections are devoted to the
proofs. In section 4, we build a coupling for the genetic algorithms starting
with different populations. In section 5, we develop stochastic bounds to
study the disordered regime. In section 6, we build an auxiliary chain and
we study its dynamics. This auxiliary chain keeps track of the evolution
of the quasispecies within the genetic algorithm. Section 7 contains the
final proofs of the main theorems. Several classical results from probability
theory are gathered in the appendix.

2 Main results

In this section, we provide a brief description of the simple genetic algorithm
and we present our main results. The goal of the simple genetic algorithm
is to find the global maxima of a fitness function f defined on { 0, 1 }` with
values in R. The genetic algorithm starts with a population of m points of
{ 0, 1 }`, called the chromosomes, and it repeats the following fundamental
cycle in order to build the generation n+ 1 from the generation n:

Repeat

• Select two chromosomes from the generation n

• Perform the crossover

• Perform the mutation
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• Put the two resulting chromosomes in generation n+ 1

Until there are m chromosomes in generation n+ 1

When building the generation n+ 1 from the generation n, all the random
choices are performed independently. Therefore, the above algorithmic
description is equivalent to the parallel version described in section 3. Let
us describe more precisely the selection, crossover and mutation steps.

Selection. We use ranking selection, meaning that the chromosomes are
ordered according to their fitness, and they are selected with the help of
a probability distribution which depends only on their rank. In case there
is a tie between several chromosomes, we rank them randomly (with the
uniform distribution over all possible choices). We consider mainly two
popular selection mechanisms: linear ranking selection and tournament
selection. The linear ranking selection depends on two parameters η−, η+

satisfying 0 ≤ η− ≤ η+, η− + η+ = 2 and we have

P
(selecting the (m− i+ 1)–th

best chromosome

)
=

1

m

(
η− + (η+ − η−)

i− 1

m− 1

)
.

The tournament selection depends on an integer parameter t satisfying
2 ≤ t ≤ m and we have

P
(

selecting the (m− i+ 1)–th
best chromosome

)
=

1

mt

(
it − (i− 1)t

)
.

We introduce a parameter σ, called the strength of the ranking selection.
In the cases we consider, the parameter σ is equal to the limit

σ = lim
m→∞

m× P
(

the selection operator chooses the best
fit individual present in the population

)
.

For the linear ranking selection, the strength of the ranking selection σ is
equal to η+. For the tournament selection, the strength of the ranking
selection σ is equal to t.

Crossover. We use the standard single point crossover and the crossover
probability is denoted by pC :

P

(
000 011
100 110

011 001
001 111

−→ 000 011
100 110

001 111
011 001

)
=

pC
`− 1

.
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Mutation. We use independent parallel mutation at each bit and the
mutation probability is denoted by pM :

P
(

0000000 −→ 0101000
)

= p2
M (1− pM )5 .

We state next the main results. in the form of six theorems. The first
two theorems show that the dynamics of the genetic algorithm depend in
a critical way on the value of

π = σ(1− pC)(1− pM )` .

If π < 1, the most fit chromosome is very likely to disappear before κ lnm
generations. If π > 1, the most fit chromosome has a positive probability
(independent of m) to invade a positive fraction of the population. Heuris-
tically, the parameter π can be interpreted as the mean number of offsprings
of the fittest chromosome from one generation to the next.

The disordered regime. We consider the fitness function f defined by

∀u ∈ { 0, 1 }` f(u) =

{
2 if u = 1 · · · 1
1 otherwise

This corresponds to the sharp peak landscape. The chromosome 1 · · · 1
is called the Master sequence. We start the genetic algorithm from the
population x0 containing one Master sequence 1 · · · 1 and m − 1 copies of
the chromosome 0 · · · 0, i.e.,

x0 =


1 · · · 1
0 · · · 0
...

...
0 · · · 0


Theorem 2.1 Let π < 1 be fixed. We suppose that the parameters are
set so that ` = m and σ(1−pC)(1−pM )` = π. There exist strictly positive
constants κ, β,m0, which depend on π only, such that, for the genetic
algorithm starting from x0,

∀m ≥ m0 P

 the Master sequence 1 · · · 1
disappears from the population

before κ lnm generations

 ≥ 1− 1

mβ
.

This theorem furnishes an example where the genetic algorithm performs
poorly, even for large populations. To build this example, we take ` = m
and we work with the sharp peak landscape. To prove theorem 2.1, we
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shall bound from above the number of Master sequences present in the
population with a subcritical Galton–Watson process of parameter π.
The quasispecies regime. We consider an arbitrary fitness function f .
We start the genetic algorithm from an arbitrary population x0. Let f∗0 be
the maximal fitness in x0, i.e.,

f∗0 = max
1≤i≤m

f
(
x0(i)

)
.

Theorem 2.2 Let π > 1 be fixed. We suppose that the parameters are
set so that σ(1− pC)(1− pM )` = π. There exist strictly positive constants
V ∗, p∗, which depend on π only, such that, for the genetic algorithm starting
from x0, for any `,m ≥ 1,

P

 until the generation exp(V ∗m)
the population always contains a chromosome

with fitness larger than or equal to f∗0

 ≥ p∗ .

To prove theorem 2.2, we couple the genetic algorithm with an auxiliary
chain on the integers, which bounds from below the evolution of the most fit
chromosomes in the population. When π is strictly larger than 1, this chain
can be seen as a stochastic perturbation of a deterministic map, which has
one stable fixed point ρ∗. Theorems 2.3, 2.4, 2.5 are obtained in the same
way, they are consequences of more refined results on the dynamics of the
auxiliary chain.
The catastrophes. We consider next an arbitrary fitness function f and
we start the genetic algorithm from an arbitrary position. For λ ∈ R and a
population x, we define N(x, λ) as the number of chromosomes in x whose
fitness is larger than or equal to λ:

N(x, λ) = card { i ∈ { 1, . . . ,m } : f(x(i)) ≥ λ } .

For i ∈ { 1, . . . ,m } and x ∈ { 0, 1 }`, we define Λ(x, i) as the fitness of the
i–th best chromosome in the population x:

Λ(x, i) = max
{
λ ∈ R : N(x, λ) ≥ i

}
.

We denote by Xn the population of the genetic algorithm after n iterations.

Theorem 2.3 Let π > 1 be fixed. There exist strictly positive constants
ρ∗, c∗,m0, which depend on π only, such that: for any fitness function f ,
any set of parameters `, pC , pM satisfying σ(1− pC)(1− pM )` = π, for any
m ≥ m0, for the genetic algorithm starting from an arbitrary population,
we have

P

(
∀n ≤ exp(c∗m) max

1≤i≤m
f
(
Xn(i)

)
≥ max

0≤s≤n
Λ
(
Xs, bρ∗mc

))
≥ 1− exp(−c∗m) .

10



It might be that ρ∗ is very small, especially if π is close to 1. We point out
that the sequence

max
0≤s≤n

Λ
(
Xs, bρ∗mc

)
is non–decreasing with respect to the time n. Thus, with very high proba-
bility, until time exp(c∗m), the maximal fitness observed in the population
stays above a non–decreasing sequence. We say that a catastrophe occurs
at time n if

max
1≤i≤m

f
(
Xn(i)

)
< max

0≤s≤n
Λ
(
Xs, bρ∗mc

)
.

This means that the maximal fitness in generation n has fallen below a
fitness level which had been previously reached by a fraction ρ∗ of the
chromosomes. In other words, a quasispecies has been destroyed.
Hitting time of optimal chromosomes. We denote by H the Hamming
distance between two chromosomes:

∀u, v ∈ { 0, 1 }` H(u, v) = card
{
j : 1 ≤ j ≤ `, u(j) 6= v(j)

}
.

For λ ∈ R, we define L(λ) as the set of the points in { 0, 1 }` having a fitness
larger than or equal to λ:

L(λ) =
{
u ∈ { 0, 1 }` : f(u) ≥ λ

}
.

For λ < γ, we define ∆(λ, γ) as the maximal distance between a point of
L(λ) and the set L(γ), i.e.,

∆(λ, γ) = max
u∈L(λ)

min
v∈L(γ)

H(u, v) .

Let τ∗ be the hitting time of the set of the populations containing optimal
chromosomes, i.e.,

τ∗ = min
{
n ≥ 1 : ∃ i ∈ { 1, . . . ,m }

f(Xn(i)) = max
{
f(u) : u ∈ { 0, 1 }`

}}
.

We give next a theoretical upper bound on the expected value of τ∗.

Theorem 2.4 Let π > 1 be fixed. There exist constants c∗, κ∗,m0, which
depend only on π, such that: for any set of parameters `, pC , pM ,m satis-
fying

σ(1− pC)(1− pM )` = π , pM ≥
c∗

`
, m ≥ m0 , m ≥ c∗` ln ` ,

for the genetic algorithm starting from an arbitrary population, for any
increasing sequence λ0 < · · · < λr such that

λ0 = min
{
f(u) : u ∈ { 0, 1 }`

}
, λr = max

{
f(u) : u ∈ { 0, 1 }`

}
,
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we have

E(τ∗) ≤ 2 + κ∗(lnm)m2
r−1∑
k=0

(pM )−∆(λk,λk+1) .

In the next result, we make a strong structural hypothesis on the fitness
landscape and we obtain a bound on τ∗ which is polynomial in `.

Theorem 2.5 Let γ,∆ ≥ 1. Suppose that the fitness function is such that
there exists an increasing sequence

λ0 = min
{ 0,1 }`

f < λ1 < · · · < λr−1 < λr = max
{ 0,1 }`

f

with r ≤ `γ and satisfying

∀k ∈ { 0, . . . , r − 1 } ∆(λk, λk+1) ≤ ∆ .

Let π > 1 be fixed. There exist positive constants c∗,m0, which depend
only on π, such that: for any set of parameters `, pC , pM ,m satisfying

π = σ(1− pC)(1− pM )` , pM ≥
c∗

`
, m ≥ m0 , m ≥ c∗∆ ln ` ,

for the genetic algorithm starting from an arbitrary population,

E(τ∗) ≤ 2 + (lnm)m2`γ+∆ .

Asymptotic convergence. The bounds on the hitting time of optimal
chromosomes yield simple estimates for the invariant probability measure of
the genetic algorithm. Let us recall that the invariant probability measure µ
is given by

∀x, y ∈
(
{ 0, 1 }`

)m
µ(y) = lim

n→∞
P
(
Xn = y

∣∣X0 = x
)
.

The invariant probability measure µ depends on the fitness function f and
the parameters `, pC , pM ,m, as well as the selection mechanism.

Theorem 2.6 Let π > 1 be fixed. There exist positive constants c∗,m0,
which depend only on π, such that: for any set of parameters `, pC , pM ,m
satisfying

π = σ(1− pC)(1− pM )` , pM ≥
c∗

`
, m ≥ m0 , m ≥ c∗` ln ` ,

for any fitness function f : { 0, 1 }` → R, the invariant probability mea-
sure µ of the simple genetic algorithm satisfies

µ
({
x : max

1≤i≤m
f
(
x(i)

)
= max
{ 0,1 }`

f
})
≥ 1− exp(−c∗m) .
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This result is certainly less relevant in practice than the previous ones,
since it is extremely difficult to understand the speed of convergence of the
genetic algorithm towards its invariant measure, yet it demonstrates that
the genetic algorithm is successful in this asymptotic regime.

3 The model

Let ` ≥ 1 be an integer. We work on the space { 0, 1 }` of binary strings of
length `. An element of { 0, 1 }` is called a chromosome. Generic elements of
{ 0, 1 }` will be denoted by the letters u, v, w. Let m ≥ 1 be an even integer.
A population is an m–tuple of elements of { 0, 1 }`. Generic populations
will be denoted by the letters x, y, z. Thus a population x is a vector

x =

 x(1)
...

x(m)


whose components are chromosomes. For i ∈ { 1, . . . ,m }, we denote by

x(i, 1), . . . , x(i, `)

the digits of the sequence x(i). This way a population x can be represented
as an array

x =

 x(1, 1) · · · x(1, `)
...

...
x(m, 1) · · · x(m, `)


of size m × ` of zeroes and ones, the i–th row corresponding to the i–
th chromosome of the population. Let f : { 0, 1 }` → R be an arbitrary
objective function, traditionally called the fitness function.

Mathematically, a simple genetic algorithm is conveniently modelled by
a Markov chain (Xn)n∈N with state space

(
{ 0, 1 }`

)m
, the space of the

populations of m chromosomes. The transition mechanism of the simple
genetic algorithm can be decomposed into three steps: selection, crossover
and mutation. We explain separately each step.

3.1 Selection

We perform first the selection operation, which consists in selecting with
replacement m chromosomes from the population. To this end, we build a
selection distribution

sel :
(
{ 0, 1 }`

)m × { 1, . . . ,m } → [0, 1] .
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The value sel(x, i) is the probability of selecting the i–th chromosome in
the population x. We consider only ranking selection mechanisms, hence
the value sel(x, i) depends only on the ranking of the chromosomes of the
population x according to their fitness. We first define a ranking function,
which gives the rank of a chromosome in a population. Let x ∈

(
{ 0, 1 }`

)m
be a population. We choose a permutation σ of { 1, . . . ,m } such that

f(x(σ(1))) ≤ · · · ≤ f(x(σ(m))) .

The choice of σ is not unique in case of ties, when several chromosomes have
the same fitness. It turns out that the way the permutation σ is chosen
affects considerably the behavior of the genetic algorithm. We choose the
permutation σ randomly, according to the uniform distribution over the
set of the permutations σ which satisfy the above condition. The choice
of σ is done independently from the other steps of the algorithm, and it is
performed again at each selection step. In particular, each time the process
returns to the population x, a new permutation σ is drawn independently,
and the ordering of the chromosomes will change accordingly. We define
the rank of the i–th chromosome of the population x as

rank(x, i) = σ−1(i) .

Thus if rank(x, i) = m, this implies that x(i) has the largest fitness in
the population x, but the converse is false: when the fitness function f is
not one to one, a chromosome with maximal fitness might get a ranking
smaller than m. Once the ranking function rank(x, i) is built, we need a
selection distribution Fm on { 1, . . . ,m } to complete the definition of the
selection distribution sel(x, i). A selection distribution Fm on { 1, . . . ,m }
is simply a probability distribution on { 1, . . . ,m }. We define the selection
distribution sel(x, i) by setting

∀i ∈ { 1, . . . ,m } sel(x, i) = Fm(rank(x, i)) .

Throughout the paper, we shall make the following hypothesis on Fm.

Hypothesis on Fm. There exists a cumulative distribution function F on
[0, 1] such that

∀s ∈ [0, 1] lim
m→∞

∑
i≤sm

Fm(i) = F (s) .

We suppose that F is continuous on [0, 1], strictly increasing on [0, 1],
convex on ]0, 1[ and left differentiable at 1. The value of its left derivative
at 1 is called the selection drift and is denoted by σ (necessarily σ ≥ 1).
We suppose that the discrete derivative of Fm at 1 converges to σ in the
following sense:

∀ε > 0 ∃ δ > 0 ∃m0 ≥ 1 ∀m ≥ m0 ∀i ∈
{

1, . . . , bδmc
}
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∣∣∣Fm(m− i+ 1) + · · ·+ Fm(m)− σ i

m

∣∣∣ ≤ εσ
i

m
.

We consider two popular choices for the selection distribution Fm.

Linear ranking selection. This selection scheme depends on two param-
eters η−, η+ which satisfy

0 ≤ η− ≤ η+ , η− + η+ = 2 .

We define the linear ranking selection distribution by

∀i ∈ { 1, . . . ,m } Fm(i) =
1

m

(
η− + (η+ − η−)

i− 1

m− 1

)
.

The linear ranking selection distribution satisfies the hypothesis with

F (s) = η−s+
1

2
(η+ − η−)s2 , σ = η+ .

Tournament selection. This selection scheme depends on an integer
parameter t satisfying 2 ≤ t ≤ m. We define the tournament selection
distribution by

∀i ∈ { 1, . . . ,m } Fm(i) =
1

mt

(
it − (i− 1)t

)
.

The tournament selection distribution satisfies the hypothesis with

F (s) = st , σ = t .

Finally, we draw independently m chromosomes from the population x ac-
cording to the selection distribution sel(x, ·) to obtain the population after
selection. The stochastic matrix PS associated to the selection operator is
defined as follows. The probability to select the population y starting from
the population x is

PS(x, y) =

m∏
i=1

( ∑
j:x(j)=y(i)

sel(x, j)
)
.

3.2 Crossover

After having selected m chromosomes, we perform the crossover operation.
The crossover depends on a parameter pC ∈ [0, 1] and it acts on pairs of
chromosomes. Let us explain how the crossover operator acts on two chro-
mosomes u, v. With probability 1− pC , there is no crossover and the chro-
mosomes u, v are not modified. With probability pC , there is a crossover
between the chromosomes u, v. We choose uniformly at random a cutting
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position k in { 1, . . . , `− 1 }. A new pair (u′, v′) of chromosomes is formed,
where u′ (respectively v′) consists of the first k digits of u (respectively v)
and the last `− k digits of v (respectively u).

u = 000 011
v = 100 110

011 001
001 111

−→ u′ = 000 011
v′ = 100 110

001 111
011 001

cutting position

Mathematically, this mechanism is encoded in a crossover kernel

C :
(
{ 0, 1 }`

)2 × ({ 0, 1 }`
)2 → [0, 1] .

The value C
(
(u, v), (u′, v′)

)
is the probability that, by crossover, the pair

of chromosomes (u, v) becomes the pair (u′, v′). More precisely, we define,
for u, v two chromosomes and k ∈ { 1, . . . , `− 1 },

switch
(
k, u, v

)
= u(1) · · ·u(k)v(k + 1) · · · v(`) .

The crossover kernel C is then equal to

C
((u

v

)
,
(u′
v′

))
= (1− pC)1(u,v)=(u′,v′)

+
pC
`− 1

card

{
k ∈ { 1, . . . , `− 1 } :

switch
(
k, u, v

)
= u′

switch
(
k, v, u

)
= v′

}
.

We apply simultaneously the crossover operator on the m/2 consecutive
pairs of chromosomes of a population of size m. The stochastic matrix PC
associated to the crossover operator is defined as follows. The probability
to obtain the population z after performing the crossover starting from the
population y is

PC(y, z) =

m/2∏
i=1

C
((y(2i− 1)

y(2i)

)
,
(z(2i− 1)

z(2i)

))
.

3.3 Mutation

After having performed the crossover, we perform the mutation. The mu-
tation depends on one parameter, the mutation probability pM ∈ [0, 1],
and it acts on a single chromosome. Let u be a chromosome. For each
k ∈ { 1, . . . , ` }, the digit u(k) is kept unchanged with probability 1 − pM
and it mutates to 1 − u(k) with probability pM . These changes are done
simultaneously and independently. Mathematically, this mechanism is en-
coded in a mutation kernel

M :
(
{ 0, 1 }`

)2 → [0, 1] .
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The value M(u, v) is the probability that, by mutation, the chromosome u
becomes the chromosome v, and it is given by

M(u, v) = p
H(u,v)
M (1− pM )`−H(u,v) ,

where H(u, v) is the Hamming distance between u and v, defined by

H(u, v) = card
{
j : 1 ≤ j ≤ `, u(j) 6= v(j)

}
.

The stochastic matrix PM associated to the mutation operator is defined
as follows. The probability to obtain the population x′ after performing
the mutation starting from the population z is

PM (z, x′) =
m∏
i=1

M
(
z(i), x′(i)

)
.

3.4 Transition matrix of the SGA

The fundamental cycle of the simple genetic algorithm consists in applying
successively the selection, the crossover and the mutation operators on the
population. Mathematically, the simple genetic algorithm is conveniently
modelled by a Markov chain (Xn)n∈N with state space

(
{ 0, 1 }`

)m
, the

space of the populations of m chromosomes. The transition matrix PSGA
of the simple genetic algorithm is defined by

∀x, x′ ∈
(
{ 0, 1 }`

)m
PSGA(x, x′) = P

(
Xn+1 = x′ |Xn = x

)
.

The matrix PSGA is simply the product of the three matrices PM , PC , PS ,
i.e., PSGA = PMPCPS , or equivalently,

∀x, x′ ∈
(
{ 0, 1 }`

)m
PSGA(x, x′) =

∑
y,z

PM (x, y)PC(y, z)PS(z, x′) .

4 Coupling for the genetic algorithm

Throughout the proofs, we rely on various coupling arguments. We will
couple here the simple genetic algorithm starting from any possible initial
population. We first define separately the maps for coupling the selection,
crossover and mutation.

Selection. We define a selection map

S :
(
{ 0, 1 }`

)m × [0, 1]→ { 1, . . . ,m }

in order to couple the selection mechanism starting with different popula-
tions. We first build a map I : [0, 1]→ { 1, . . . ,m } which gives the rank of
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the chromosome to choose. More precisely, for s ∈ [0, 1[, we set I(s) = i
where i is the unique index in { 1, . . . ,m } satisfying

Fm(1) + · · ·+ Fm(i− 1) ≤ s < Fm(1) + · · ·+ Fm(i) .

Let next x ∈
(
{ 0, 1 }`

)m
and let s ∈ [0, 1[. We define S(x, s) = j where j

is the unique index in { 1, . . . ,m } such that rank(x, j) = I(s). The map S
is built in such a way that, if U is a random variable with uniform law on
the interval [0, 1], then, for any population x, the law of S(x, U) is given
by the selection distribution:

∀i ∈ { 1, . . . ,m } P
(
S(x, U) = i

)
= sel(x, i) .

Crossover. We define a map

C :
(
{ 0, 1 }`

)2

× { 0, 1 } × { 1, . . . , `− 1 } → { 0, 1 }`

in order to couple the crossover mechanism starting with different pairs of
chromosomes. Let u, v ∈ { 0, 1 }` and let ε ∈ { 0, 1 }, k ∈ { 1, . . . , ` − 1 }.
We define

C
(
u, v, ε, k

)
=

{
switch

(
k, u, v

)
if ε = 1

u if ε = 0

The map C is built in such a way that, if V,W are two independent random
variables with respective laws the Bernoulli law with parameter pC and the
uniform law on { 1, . . . , `−1 }, then, for any chromosomes u, v, the law of the
pair of chromosomes C(u, v, V,W ), C(v, u, V,W ) is given by the crossover
kernel C:

∀u′, v′ ∈ { 0, 1 }` P

(
C(u, v, V,W ) = u′

C(v, u, V,W ) = v′

)
= C

((u
v

)
,
(u′
v′

))
.

Mutation. We define a map

M : { 0, 1 }` × { 0, 1 }` → { 0, 1 }`

in order to couple the mutation mechanism starting with different chromo-
somes. Let ε1, . . . , ε` ∈ { 0, 1 } and let u1, . . . , u` ∈ { 0, 1 }. The map M is
defined by setting

M(ε1 · · · ε`, u1, · · · , u`) = η1 · · · η` ,

where

∀i ∈ { 1, . . . , ` } ηi =

{
εi if ui = 0

1− εi if ui = 1

18



The map M is built in such a way that, if U1, . . . , U ` are ` independent
random variables with law the Bernoulli law with parameter pM , then, for
any chromosome u, the law of the chromosome M(u, U1, . . . , U `) is given
by the line of the mutation matrix corresponding to u:

∀v ∈ { 0, 1 }` P
(
M(u, U1, . . . , U `) = v

)
= M(u, v) .

Coupling for the genetic algorithm. We will now combine the maps
S, C,M with random inputs in order to couple the genetic algorithm with
various initial conditions. We will build all the processes on a single large
probability space. We consider a probability space (Ω,F , P ) containing the
following collection of independent random variables:

• Uniform on the interval [0, 1]: Sin , n ≥ 1 , 1 ≤ i ≤ m ;
• Bernoulli with parameter pM : U i,jn , n ≥ 1 , 1 ≤ i ≤ m, 1 ≤ j ≤ ` ;
• Bernoulli with parameter pC : V in , n ≥ 1 , 1 ≤ i ≤ m/2 ;
• Uniform on { 1, . . . , `− 1 }: W i

n , n ≥ 1 , 1 ≤ i ≤ m/2 .

The variables having subscript n constitute the random input which is used
to perform the n–th step of the Markov chains. For each n ≥ 1, we build
a map

Φn :
(
{ 0, 1 }`

)m → (
{ 0, 1 }`

)m
in order to realize the coupling between the genetic algorithm with various
initial conditions. The coupling map Φn is defined by

∀x ∈
(
{ 0, 1 }`

)m
Φn(x) =

M
(
C
(
S(x, S1

n),S(x, S2
n), V 1

n ,W
1
n

)
, U1,1

n , . . . , U1,`
n

)
M
(
C
(
S(x, S2

n),S(x, S1
n), V 1

n ,W
1
n

)
, U2,1

n , . . . , U2,`
n

)
M
(
C
(
S(x, S3

n),S(x, S4
n), V 2

n ,W
2
n

)
, U3,1

n , . . . , U3,`
n

)
M
(
C
(
S(x, S4

n),S(x, S3
n), V 2

n ,W
2
n

)
, U4,1

n , . . . , U4,`
n

)
...

M
(
C
(
S(x, Sm−1

n ),S(x, Smn ), V
m/2
n ,W

m/2
n

)
, Um−1,1

n , . . . , Um−1,`
n

)
M
(
C
(
S(x, Smn ),S(x, Sm−1

n ), V
m/2
n ,W

m/2
n

)
, Um,1n , . . . , Um,`n

)


The coupling is then built in a standard way with the help of the sequence
(Φn)n≥1. Let x ∈

(
{ 0, 1 }`

)m
be the starting point of the process. We

build the process (Xn)n≥0 by setting X0 = x and

∀n ≥ 1 Xn = Φn
(
Xn−1

)
.

A routine check shows that the process (Xn)n≥0 is a Markov chain starting
from x with the adequate transition matrix. This way we have coupled the
genetic algorithm with all possible initial conditions.
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5 The disordered regime

We consider the fitness function f defined by

∀u ∈ { 0, 1 }` f(u) =

{
2 if u = 1 · · · 1
1 otherwise

This corresponds to the sharp peak landscape. The chromosome 1 · · · 1
is called the Master sequence. We start the genetic algorithm with the
population

x0 =


1 · · · 1
0 · · · 0
...

...
0 · · · 0


and we wish to estimate the probability of survival of the Master sequence.
We denote by (Xn)n∈N the genetic algorithm starting from x0. We shall
develop bounds in the sense of stochastic domination. Let π < 1 be fixed.
Throughout the section, we suppose that `, pC , pM satisfy

σ(1− pC)(1− pM )` = π .

5.1 Genealogy

To build a chromosome in the generation n, we select two parents in gener-
ation n− 1, and we apply the crossover and the mutation operators. Thus
each chromosome has two parents in the previous generation. With the
coupling construction, the parents of the chromosomes Xn(2i− 1), Xn(2i)
are the chromosomes S(Xn−1, S

2i−1
n ), S(Xn−1, S

2i
n ). The genealogy of a

chromosome consists of all its ancestors until time 0. We define auxil-
iary random variables in order to control the progeny of the initial Master
sequence. For n ≥ 1, i ∈ { 1, . . . ,m }, we set Mn(i) = 1 if the Master
sequence appears in the genealogy of Xn(i) and 0 otherwise. We denote by
Mn the vector (Mn(1), . . . ,Mn(m)) and we define also

Tn =

m∑
i=1

Mn(i) .

The variable Tn is the total number of descendants of the Master sequence
at time n. Let also N∗n be the number of Master sequences present in the
population at time n:

∀n ≥ 1 N∗n = card
{
i ∈ { 1, . . . ,m } : Xn(i) = 1 · · · 1

}
.
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We shall next compute stochastic bounds on (Tn)n∈N and (N∗n)n∈N. The
process (Tn)n∈N will be controlled by a supercritical branching process,
while the process (N∗n)n∈N will be controlled by a subcritical branching
process.

5.2 Bound on Tn

By construction, the chromosomes Xn(2i − 1) and Xn(2i) have the same
parents, thus Mn(2i− 1) = Mn(2i) and

∀n ≥ 1 Tn =

m/2∑
i=1

2Mn(2i) .

Conditionally on Xn−1,Mn−1, the random variables Mn(2i), 1 ≤ i ≤ m/2,
are independent and identically distributed. Let us estimate their param-
eter:

P
(
Mn(2) = 0

∣∣Xn−1,Mn−1

)
=

P

 the selection operator selects two parents
in Xn−1 which do not belong to

the progeny of the initial Master sequence

∣∣∣∣∣Xn−1,Mn−1

 .

The number of chromosomes in the progeny of the initial Master sequence
at time n−1 is Tn−1. The lowest value for the above conditional probability
corresponds to the situation where all these chromosomes are ranked best
during the selection process, therefore

P
(
Mn(2) = 0

∣∣Xn−1,Mn−1

)
≥
(
Fm(1) + · · ·+ Fm(m− Tn−1)

)2

.

To go further, we need a bound on Tn−1. Thus we define

τ1 = inf
{
n ≥ 1 : Tn > m1/4

}
and we will study the random variable Tn1{ τ1≥n }. In order to incorporate
the event { τ1 ≥ n } in the previous inequality, we condition with respect
to the whole history of the process as follows:

P
(
Mn(2) = 1, τ1 ≥ n

∣∣Xn−1,Mn−1, . . . , X0,M0

)
= 1{T0≤m1/4,...,Tn−1≤m1/4 }P

(
Mn(2) = 1

∣∣Xn−1,Mn−1, . . . , X0,M0

)
= 1{ τ1≥n }P

(
Mn(2) = 1

∣∣Xn−1,Mn−1

)
≤ 1{ τ1≥n−1 }

(
1−

(
Fm(1) + · · ·+ Fm(m− Tn−1)

)2
)
.

21



Using the hypothesis on Fm, we obtain that, for m large enough, there
exists δ > 0 such that

∀i ∈
{

1, . . . , bδmc
}

Fm(m− i+ 1) + · · ·+ Fm(m) ≤ 2σ
i

m
.

For m large enough, if τ1 ≥ n, then Tn−1 ≤ m1/4 ≤ bδmc, whence

P
(
Mn(2) = 1, τ1 ≥ n

∣∣Xn−1,Mn−1, . . . , X0,M0

)
≤ 1{ τ1≥n−1 }

(
1−

(
1− 2σ

Tn−1

m

)2
)
≤ 1{ τ1≥n−1 }4σ

Tn−1

m
.

Proposition 5.1 Let (Zn)n∈N be a Galton–Watson process starting from
Z0 = 1 with reproduction law ν = 2P(4σ), i.e., the law ν is twice the
Poisson law of parameter 4σ. For m large enough, we have

∀n ≥ 0 Tn1{ τ1≥n } � Zn .

Proof. We recall that � means stochastic domination (see appendix C).
We will prove the inequality by induction on n. For n = 0, the inequality
holds trivially, since

T01{ τ1≥0 } = Z0 = 1 .

Let n ≥ 1 and suppose that the inequality has been proved at rank n −
1. The previous computation shows that, conditionally on X0,M0, . . . ,
Xn−1,Mn−1, the law of Tn1{ τ1≥n } is stochastically dominated by the law

2B
(m

2
,

4σ

m
Tn−11{ τ1≥n−1 }

)
.

There exists t0 > 0 such that, for 0 < t < t0, we have ln(1 − t) ≥ −2t.
Therefore, for m large enough so that 4σm−3/4 < t0, we have(

1− 4σ

m
Tn−11{ τ1≥n−1 }

)m/2
≥ exp

(
− 4σTn−11{ τ1≥n−1 }

)
.

By lemma C.1, we conclude from this inequality that

2B
(m

2
,

4σ

m
Tn−11{ τ1≥n−1 }

)
� 2P

(
4σTn−11{ τ1≥n−1 }

)
.

Therefore, for any non–decreasing function φ, we have

E
(
φ
(
Tn1{ τ1≥n }

) ∣∣Xn−1,Mn−1, . . . , X0,M0

)
≤

E
(
φ
( Tn−11{ τ1≥n−1 }∑

k=1

Yk

) ∣∣Tn−11{ τ1≥n−1 }

)
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where the random variables (Yk)k≥1 are independent identically distributed
with law ν = 2P

(
4σ
)
, and they are also independent of the processes

(Xn)n∈N, (Mn)n∈N. The conditional expectation is a non–decreasing func-
tion of Tn−11{ τ1≥n−1 }. Taking the expectation with respect to

Xn−1,Mn−1, . . . , X0,M0

and using the induction hypothesis, we get

E
(
φ
(
Tn1{ τ1≥n }

))
≤ E

(
φ
( Tn−11{ τ1≥n−1 }∑

k=1

Yk

))

≤ E
(
φ
( Zn−1∑
k=1

Yk

))
= E

(
φ
(
Zn
))
.

This completes the induction step. �

In order to exploit proposition 5.1, we shall need a bound on τ1, which we
compute next.

Proposition 5.2 There exist κ > 0, c1 > 0, m1 ≥ 1, such that

∀m ≥ m1 P
(
τ1 < κ lnm

)
≤ 1

mc1
.

Proof. Let (Zn)n∈N be a Galton–Watson process as in proposition 5.1.
We have, for k ≥ 0,

P (τ1 = k) = P
(
τ1 ≥ k, Tk > m1/4

)
= P

(
Tk1{ τ1≥k } > m1/4

)
≤ P

(
Zk > m1/4

)
≤ m−1/4E

(
Zk
)
≤ m−1/4(8σ)k .

We sum this inequality: for n ≥ 1,

P (τ1 < n) ≤ m−1/4
n−1∑
k=0

(8σ)k = m−1/4 (8σ)n − 1

8σ − 1
.

We choose n = κ lnm, where κ is positive and sufficiently small, and we
obtain the desired conclusion. �

5.3 Bound on N∗
n

By definition, we have

∀n ≥ 1 N∗n =

m/2∑
i=1

(
1{Xn(2i−1)=1···1 } + 1{Xn(2i)=1···1 }

)
.
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Let us define, for 1 ≤ i ≤ m/2,

Bn(i) = 1{Xn(2i−1)=1···1 } + 1{Xn(2i)=1···1 } .

Conditionally on Xn−1, the variables Bn(i), 1 ≤ i ≤ m/2, are independent
and identically distributed. A Master sequence appearing in generation n is
either in the progeny of the initial Master sequence, or it has been created
through numerous mutations and crossover from 0 · · · 0. The probability of
the first scenario will be controlled with the help of Tn−1 (the size of the
progeny of the initial Master sequence in generation n − 1). The second
scenario is very unlikely unless n is large. To control its probability, we
introduce the time τ2, when a mutant, not belonging to the progeny of the
initial Master sequence, is at distance less than ` −

√
` from the Master

sequence. Let us recall that H(u, v) is the Hamming distance between the
chromosomes u, v. We set

τ2 = inf
{
n ≥ 1 : ∃ i ∈ { 1, . . . ,m }

H(Xn(i), 1 · · · 1) ≤ `−
√
`, Mn(i) = 0

}
.

We recall that
τ1 = inf

{
n ≥ 1 : Tn > m1/4

}
.

We set also
τ0 = inf

{
n ≥ 1 : N∗n = 0

}
.

We shall compute a bound on N∗n until time τ = min(τ0, τ1, τ2).

Proposition 5.3 Let π < 1. We suppose in addition that ` = m. For m
large enough, the process

(N∗n1{ τ≥n })n∈N

is stochastically dominated by a subcritical Galton–Watson process.

Proof. We shall estimate the law of Bn(1). The proof is tedious because
there are several cases to consider. The chromosomes Xn(1), Xn(2) are
obtained after applying the crossover and the mutation operators on the
chromosomes of the population Xn−1 having indices

I1 = S(Xn−1, S
1
n) , I2 = S(Xn−1, S

2
n) .

We denote by Y1, Y2 the chromosomes obtained after crossover from the
chromosomes Xn−1(I1), Xn−1(I2), i.e.,

Y1 = C
(
Xn−1(I1), Xn−1(I2), V 1

n ,W
1
n

)
,

Y2 = C
(
Xn−1(I2), Xn−1(I1), V 1

n ,W
1
n

)
.
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Our goal is to obtain a stochastic bound on N∗n1{ τ≥n }, so we need only to
consider the case where τ ≥ n. Thus, in the following computations, we
suppose that τ2 ≥ n. Let λ > 0 be such that π/σ ≥ exp(−λ). We have
then

(1− pM )` =
π

σ(1− pC)
≥ π

σ
≥ exp(−λ) .

Notice that λ depends only on π/σ, and not on ` or pM . By lemma C.1,
the binomial law B(`, pM ) is then stochastically dominated by the Poisson
law P(λ). We will use repeatedly the bound given in lemma C.2:

∀t ≥ λ P
(
U1,1
n + · · ·+ U1,`

n ≥ t
)
≤
(λe
t

)t
.

When using this bound, the value of t will be a function of `. We will
always take ` large enough, so that the value of t will be larger than λ. We
examine several cases, depending on whether the initial Master sequence
belongs to the genealogy of the chromosomes Xn−1(I1), Xn−1(I2):

• Mn−1(I1) = Mn−1(I2) = 0. Since τ2 ≥ n, then the chromosomes
Xn−1(I1) and Xn−1(I2) have strictly less than

√
` ones, therefore the chro-

mosomes Y1, Y2 obtained after crossover have strictly less than 2
√
` ones.

Thus, for ` large enough and ∗ = 1 or ∗ = 2,

P
(
M
(
Y∗, U

1,1
n , . . . , U1,`

n

)
= 1 · · · 1

)
≤ P

(
U∗,1n + · · ·+ U∗,`n > `− 2

√
`
)
≤
( λe

`− 2
√
`

)`−2
√
`

.

Therefore

P

(
Bn(1) > 0, τ2 ≥ n

Mn−1(I1) = Mn−1(I2) = 0

∣∣∣Xn−1

Mn−1

)
≤ 2

( λe

`− 2
√
`

)`−2
√
`

.

• Mn−1(I1) = 1, Mn−1(I2) = 0. We estimate first the probability that
Bn(1) = 2. Since τ2 ≥ n, then the chromosome Xn−1(I2) has strictly less
than

√
` ones, therefore at least one of the chromosomes Y1, Y2 obtained

after crossover has strictly less than (`+
√
`)/2 ones. Suppose for instance

that it is the case for Y1. It is then very unlikely that a Master sequence is
created from Y1 with the help of the mutations. Indeed, for ` large enough,
we have

P
(
M
(
Y1, U

1,1
n , . . . , U1,`

n

)
= 1 · · · 1, H(Y1, 1 · · · 1) > (`−

√
`)/2

)
≤ P

(
U1,1
n + · · ·+ U1,`

n > (`−
√
`)/2

)
≤
( 2λe

`−
√
`

)(`−
√
`)/2

.
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Therefore

P

(
Bn(1) = 2, τ2 ≥ n

Mn−1(I1) = 1,Mn−1(I2) = 0

∣∣∣Xn−1

Mn−1

)
≤ 2

( 2λe

`−
√
`

)(`−
√
`)/2

.

We estimate next the probability that Bn(1) = 1. Suppose that a crossover
occurs between Xn−1(I1), Xn−1(I2), i.e., that V 1

n = 1. Since τ2 ≥ n, then
the chromosome Xn−1(I2) has strictly less than

√
` ones. After crossover,

the probability that one of the two resulting chromosomes Y1, Y2 has at
least `−

√
` ones is less than 4/

√
`. Indeed, this can happen only if, either

on the left of the cutting site, or on its right, there are at most
√
` zeroes.

The most favorable situation is when all the ones in Y2 are at the end or at
the beginning of Y2, in which case we have 2

√
` cutting sites which lead to

the desired result. Now, if a chromosome u is such that H(u, 1 · · · 1) >
√
`,

then

P
(
M
(
u, U1,1

n , . . . , U1,`
n

)
= 1 · · · 1

)
≤ P

(
U1,1
n + · · ·+ U1,`

n >
√
`
)
≤
( λe√

`

)√`
.

From the previous discussion, we conclude that

P

(
Bn(1) = 1, V 1

n = 1, τ2 ≥ n
Mn−1(I1) = 1,Mn−1(I2) = 0

∣∣∣Xn−1

Mn−1

)
≤( 4√

`
+ 2

( λe√
`

)√`)(
Fm(m)− Fm(m− Tn−1)

)
.

We consider now the case where no crossover occurs between the chromo-
somes Xn−1(I1), Xn−1(I2), i.e., we have

V 1
n = 0 , Y1 = Xn−1(I1) , Y2 = Xn−1(I2) .

We write

P
(
Bn(1) = 1, Mn−1(I1) = 1,Mn−1(I2) = 0, V 1

n = 0 , τ2 ≥ n
∣∣Xn−1, Mn−1

)
≤ P

(
M
(
Xn−1(I1), U1,1

n , . . . , U1,`
n

)
= 1 · · · 1

Mn−1(I1) = 1, V 1
n = 0, τ2 ≥ n

∣∣∣∣∣ Xn−1

Mn−1

)

+P

(
M
(
Xn−1(I2), U1,1

n , . . . , U1,`
n

)
= 1 · · · 1

Mn−1(I2) = 0, V 1
n = 0, τ2 ≥ n

∣∣∣∣∣ Xn−1

Mn−1

)
.

We estimate the last term. Since τ2 ≥ n, then the chromosome Y2 =
Xn−1(I2) has strictly less than

√
` ones. As before, for ` large enough, we
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have

P

(
M
(
Xn−1(I2), U1,1

n , . . . , U1,`
n

)
= 1 · · · 1

Mn−1(I2) = 0, V 1
n = 0, τ2 ≥ n

∣∣∣∣∣ Xn−1

Mn−1

)

≤ P
(
U2,1
n + · · ·+ U2,`

n > `−
√
`
)
≤
( λe

`−
√
`

)`−√`
.

Thus it is very unlikely that a Master sequence is created from Y2 =
Xn−1(I2) with the help of the mutations. The most likely scenario is
that the Master sequence comes from Y1 = Xn−1(I1). We estimate the
probability of this scenario, and to do so, we distinguish further two cases,
according to whether Xn(I1) is a Master sequence or not:

P

(
M
(
Xn−1(I1), U1,1

n , . . . , U1,`
n

)
= 1 · · · 1

Mn−1(I1) = 1, V 1
n = 0, τ2 ≥ n

∣∣∣∣∣ Xn−1

Mn−1

)
=

P

(
M
(
Xn−1(I1), U1,1

n , . . . , U1,`
n

)
= 1 · · · 1

Xn−1(I1) = 1 · · · 1, Mn−1(I1) = 1, V 1
n = 0, τ2 ≥ n

∣∣∣∣∣ Xn−1

Mn−1

)

+P

(
M
(
Xn−1(I1), U1,1

n , . . . , U1,`
n

)
= 1 · · · 1

Xn−1(I1) 6= 1 · · · 1, Mn−1(I1) = 1, V 1
n = 0, τ2 ≥ n

∣∣∣∣∣ Xn−1

Mn−1

)
.

To estimate these probabilities, we make an intermediate conditioning and
we obtain

P

(
M
(
Xn−1(I1), U1,1

n , . . . , U1,`
n

)
= 1 · · · 1

Xn−1(I1) = 1 · · · 1, Mn−1(I1) = 1, V 1
n = 0, τ2 ≥ n

∣∣∣∣∣ Xn−1

Mn−1

)
≤

P
(
M
(
1 · · · 1, U1,1

n , . . . , U1,`
n

)
= 1 · · · 1

)
×P

(
Xn−1(I1) = 1 · · · 1

Mn−1(I1) = 1, V 1
n = 0, τ2 ≥ n

∣∣∣∣∣ Xn−1

Mn−1

)
≤ (1− pM )`(1− pC)

(
Fm(m)− Fm(m−N∗n−1)

)
.

Indeed, the number of Master sequences present in Xn−1 is N∗n−1 and the
probability of selecting a Master sequence in Xn−1 is at most (Fm(m) −
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Fm(m−N∗n−1)). In a similar way,

P

(
M
(
Xn−1(I1), U1,1

n , . . . , U1,`
n

)
= 1 · · · 1

Xn−1(I1) 6= 1 · · · 1, Mn−1(I1) = 1, V 1
n = 0, τ2 ≥ n

∣∣∣∣∣ Xn−1

Mn−1

)
≤

∑
u 6=1···1

P
(
M
(
u, U1,1

n , . . . , U1,`
n

)
= 1 · · · 1

)
P

Xn−1(I1) = u
Mn−1(I1) = 1

τ2 ≥ n

∣∣∣∣∣ Xn−1

Mn−1


≤ pMP

(
Xn−1(I1) 6= 1 · · · 1

Mn−1(I1) = 1, τ2 ≥ n

∣∣∣∣∣ Xn−1

Mn−1

)
≤ pM

(
Fm(m)− Fm(m− Tn−1)

)
.

Putting together the previous inequalities, we obtain

P
(
Bn(1) = 1, Mn−1(I1) = 1,Mn−1(I2) = 0, τ2 ≥ n

∣∣Xn−1, Mn−1

)
≤
( 4√

`
+ 2

( λe√
`

)√`)(
Fm(m)− Fm(m− Tn−1)

)
+
( λe

`−
√
`

)`−√`
+

(1−pM )`(1−pC)
(
Fm(m)−Fm(m−N∗n−1)

)
+ pM

(
Fm(m)−Fm(m−Tn−1)

)
.

• Mn−1(I1) = Mn−1(I2) = 1. In this case, we have

P
(
Mn−1(I1) = 1,Mn−1(I2) = 1 , τ2 ≥ n

∣∣Xn−1, Mn−1

)
≤
(
Fm(m)− Fm(m− Tn−1)

)2

.

In conclusion, we obtain the following inequalities:

P
(
Bn(1) = 2 , τ2 ≥ n

∣∣Xn−1, Mn−1

)
≤

2
( λe

`− 2
√
`

)`−2
√
`

+ 4
( 2λe

`−
√
`

)(`−
√
`)/2

+
(
Fm(m)− Fm(m− Tn−1)

)2

,

P
(
Bn(1) = 1 , τ2 ≥ n

∣∣Xn−1, Mn−1

)
≤

2
( λe

`− 2
√
`

)`−2
√
`

+
( 8√

`
+ 4

( λe√
`

)√`)(
Fm(m)− Fm(m− Tn−1)

)
+ 2
( λe

`−
√
`

)`−√`
+ 2(1− pM )`(1− pC)

(
Fm(m)− Fm(m−N∗n−1)

)
+ 2pM

(
Fm(m)− Fm(m− Tn−1)

)
+
(
Fm(m)− Fm(m− Tn−1)

)2

.

In order to incorporate the event { τ ≥ n } in these inequalities, we condi-
tion with respect to the whole history of the process as follows: for ∗ = 1
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or ∗ = 2,

P
(
Bn(1) = ∗, τ ≥ n

∣∣Xn−1,Mn−1, . . . , X0,M0

)
≤ 1{ τ≥n }P

(
Bn(1) = ∗

∣∣Xn−1,Mn−1

)
.

Let ε > 0 be such that (1 + 5ε)π < 1. We use next the hypothesis on the
selection function: there exists c > 0 such that, for m large enough,

1{ τ≥n }

(
Fm(m)− Fm(m− Tn−1)

)
≤ 1{ τ≥n }

c

m
Tn−1 ≤

c

m3/4
.

Moreover, for m large enough,

1{ τ≥n }

(
Fm(m)− Fm(m−N∗n−1)

)
≤ 1{ τ≥n }

σ(1 + ε)

m
N∗n−1 .

Thus there exists a constant c > 0 such that, for m, ` large enough,

1{ τ≥n }P
(
Bn(1) = 2

∣∣Xn−1, Mn−1

)
≤ 1

`2
+

c2

m3/2
,

1{ τ≥n }P
(
Bn(1) = 1

∣∣Xn−1, Mn−1

)
≤ 1

`2
+

8√
`

c

m3/4

+
2

m
σ(1 + ε)1{ τ≥n }N

∗
n−1(1− pM )`(1− pC) + 2pM

c

m3/4
+

c2

m3/2
.

We rewrite the previous inequalities in the case ` = m. First, we have, for
a positive constant c,

P
(
Bn(1) = 2 , τ ≥ n

∣∣Xn−1,Mn−1, . . . , X0,M0

)
≤ c

m3/2
.

Moreover σ(1− pM )m ≥ π, whence

pM ≤ −
1

m
ln(π/σ) .

For m large enough, we have therefore

1

m2
+

8√
m

c

m3/4
+ 2pM

c

m3/4
+

c2

m3/2
≤ 2

m
πε ,

and it follows that

P
(
Bn(1) = 1 , τ ≥ n

∣∣Xn−1,Mn−1, . . . , X0,M0

)
≤
2

m
π(1 + 2ε)1{ τ≥n }N

∗
n−1 .
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Coming back to the initial equality for N∗n, we conclude that, for m large
enough, the law of N∗n1{ τ≥n } is stochastically dominated by the sum of
two independent binomial random variables as follows:

N∗n1{ τ≥n } � B
(m

2
,

2

m
π(1 + 2ε)1{ τ≥n }N

∗
n−1

)
+ 2B

(m
2
,

c

m3/2

)
.

For m large, these two binomial laws are in turn stochastically dominated
by two Poisson laws. More precisely, for m large enough,(

1− 2

m
π(1 + 2ε)1{ τ≥n }N

∗
n−1

)m/2
≥ exp

(
− π(1 + 3ε)1{ τ≥n }N

∗
n−1

)
,(

1− cm−3/2
)m/2 ≥ exp(−ε) .

Lemma C.1 yields then that

N∗n1{ τ≥n } � P
(
π(1 + 3ε)N∗n−11{ τ≥n }

)
+ 2P(ε) .

The point is that we have got rid of the variablem in the upper bound, so we
are now in position to compare N∗n1{ τ≥n } with a Galton–Watson process.
Let (Y ′n)n≥1 be a sequence of i.i.d. random variables with law P(π(1+3ε)),
let (Y ′′n )n≥1 be a sequence of i.i.d. random variables with law P(ε), both
sequences being independent. The previous stochastic inequality can be
rewritten as

N∗n1{ τ≥n } �
(N∗n−11{ τ≥n }∑

k≥1

Y ′k

)
+ 2Y ′′1 .

This implies further that

N∗n1{ τ≥n } �
N∗n−11{ τ≥n−1 }∑

k≥1

(
Y ′k + 2Y ′′k

)
. (?)

Let ν∗ be the law of Y ′1 +2Y ′′1 and let (Z∗n)n≥0 be a Galton–Watson process
starting from Z0 = 1 with reproduction law ν∗. We prove finally that, for
m large enough,

∀n ≥ 0 N∗n1{ τ≥n } � Z∗n .

We suppose that m is large enough so that the stochastic inequality (?)
holds and we proceed by induction on n. For n = 0, we have

N∗0 1{ τ≥0 } = 1 ≤ Z∗0 = 1 .

Let n ≥ 1 and suppose that the inequality holds at rank n−1. Inequality (?)
yields

N∗n1{ τ≥n } �
N∗n−11{ τ≥n−1 }∑

k≥1

(
Y ′k + 2Y ′′k

)
�

Z∗n−1∑
k≥1

(
Y ′k + 2Y ′′k

)
= Z∗n .
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Thus the inequality holds at rank n and the induction is completed. More-
over we have

E(ν∗) = E
(
Y ′1 + 2Y ′′1

)
= π(1 + 5ε) < 1 .

Thus the Galton–Watson process (Z∗n)n≥0 is subcritical and this completes
the proof of proposition 5.3. �

We close this section with a bound on τ2, which will be useful when applying
proposition 5.3.

Lemma 5.4 For m ≥ 2 and for ` large enough, we have

P
(
τ2 ≤

1

5
ln `
)
≤ 1− exp

(
−m exp

(
− `1/4

))
.

Proof. If τ2 < n, then, before time n, a chromosome has been created
with at least

√
` ones, and whose genealogy does not contain the initial

Master sequence. We shall compute an upper bound on the number of
ones appearing in the genealogy of such a chromosome at generation n.
Let us define

∀n ≥ 1 Dn = max
{
`−H(Xn(i), 1 · · · 1) : 1 ≤ i ≤ m, Mn(i) = 0

}
.

The quantity Dn is the maximum number of ones in a chromosome of the
generation n, which does not belong to the progeny of the initial Master
sequence. These ones must have been created by mutation. Let us consider
a chromosome of the generation n+1, which does not belong to the progeny
of the initial Master sequence. The number of ones in each of its two parents
was at most Dn. After crossover between these two parents, the number
of ones was at most 2Dn. After mutation, the number of ones was at most

Dn+1 ≤ 2Dn + max
{∑̀
j=1

U i,jn : 1 ≤ i ≤ m
}
.

We first control the last term. Let n ≥ 1 and let us define the event E(n)
by

E(n) =
{
∀i ∈ { 1, . . . ,m } ∀k ∈ { 1, . . . , n }

∑̀
j=1

U i,jk ≤ `1/4
}
.

We have

P
(
E(n)

)
=
(

1− P
(∑̀
j=1

U1,j
1 > `1/4

))mn
.
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The law of the sum
∑`
j=1 U

1,j
1 is the binomial law B(`, pM ). Let λ > 0 be

such that π/σ ≥ exp(−λ). We have then

(1− pM )` =
π

σ(1− pC)
≥ π

σ
≥ exp(−λ) .

By lemma C.1, the binomial law B(`, pM ) is stochastically dominated by
the Poisson law P(λ). Using the bound given in lemma C.2, we obtain
that, for `1/4 > λ,

P
(
E(n)

)
≥
(

1−
( λe

`1/4

)`1/4)mn
,

whence, for ` large enough,

P
(
E(n)

)
≥ exp

(
−mn exp

(
− `1/4

))
.

Suppose that the event E(n) occurs. We have then

∀k ∈ { 0, . . . , n− 1 } Dk+1 ≤ 2Dk + `1/4 .

Dividing by 2k+1 and summing from k = 0 to n− 1, we get

Dn ≤ 2n
n−1∑
k=0

`1/4

2k+1
≤ 2n`1/4 .

Therefore, if 2n < `1/4 and if the event E(n) occurs, then τ2 > n. Taking
n = (ln `)/5, we obtain the estimate stated in the lemma. �

5.4 Proof of theorem 2.1

We complete here the proof of theorem 2.1. The hypothesis of theo-
rem 2.1 allows to apply proposition 5.3. Thus there exists a subcritical
Galton–Watson process (Z∗n)n≥0, with reproduction law ν∗, which dom-
inates stochastically the process (N∗n1{ τ≥n })n≥0. A standard result on
Galton–Watson processes (see for instance [1]) ensures the existence of a
positive constant c∗, which depends only on the law ν∗, such that

∀n ≥ 1 P
(
Z∗n > 0

)
≤ exp(−cn) .

Let κ, c1 be as in proposition 5.2. We suppose that κ < 1/5, so that we
can use the estimate of lemma 5.4. We have then

P
(
τ0 > κ lnm

)
≤

P
(
τ0 > κ lnm, τ < κ lnm

)
+ P

(
N∗bκ lnmc > 0, τ ≥ κ lnm

)
≤ P

(
τ1 < κ lnm

)
+ P

(
τ2 < κ lnm

)
+ P

(
Z∗bκ lnmc > 0

)
≤ 1

mc1
+ 1− exp(−m exp

(
−m1/4

))
+ exp(−c∗bκ lnmc) .
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This inequality yields the estimate stated in theorem 2.1.

6 The quasispecies regime

For λ ∈ R and a population x, we define N(x, λ) as the number of chro-
mosomes in x whose fitness is larger than or equal to λ:

N(x, λ) = card { i ∈ { 1, . . . ,m } : f(x(i)) ≥ λ } .

We shall couple the processes (N(Xn, λ))n∈N, λ ∈ R, with a family of
Markov chains

(
Nn(t, i)

)
n≥t, t ∈ N. We study then dynamics of these

Markov chains.

6.1 The auxiliary chain

Here, we couple the genetic algorithm with an auxiliary chain. For n ≥ 1,
let Γn : { 1, . . . ,m }2 → { 0, 1 } be the map defined by

∀i, j ∈ { 1, . . . ,m } Γn(i, j) =

{
1 if I(Sjn) ≥ m− i+ 1

0 otherwise

Recall that the map I is defined together with the selection map S. In
fact, the map Γn(i, j) is equal to one if the j–th chromosome chosen during
the selection at time n is among the best i chromosomes of generation n.
For each n ≥ 1, we define also a map Ψn : { 0, . . . ,m } → { 0, . . . ,m } by
setting

∀i ∈ { 0, . . . ,m }

Ψn(i) =

m∑
j=1

(
Γn(i, j) (1− V dj/2en )

∏̀
k=1

(1− U j,kn )
)
.

The map Ψn(i) counts the number of chromosomes in generation n + 1
which have been obtained by selecting a chromosome among the best i
chromosomes of generation n, and for which there was no crossover and no
subsequent mutation. For any j, the map i 7→ Γn(i, j) is non–decreasing,
therefore the map i 7→ Ψn(i) is also non–decreasing. For t ∈ N and i ∈
{ 1, . . . ,m }, let (

Nn(t, i)
)
n≥t

be the Markov chain starting from i at time t and defined by

∀n ≥ t Nn+1(t, i) = Ψn

(
Nn(t, i)

)
.
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Since the map Ψn is non–decreasing, then the coupling defined above be-
tween the chains

(
Nn(t, i)

)
n≥t, i ∈ { 1, . . . ,m }, is monotone, i.e., we have

∀n ≥ t ∀i ≤ j Nn(t, i) ≤ Nn(t, j) .

This implies in particular that the Markov chain (Nn(t, i))n≥t is monotone
(see appendix B for the precise definitions).

Proposition 6.1 For any t ∈ N and λ ∈ R, we have

∀n ≥ t N(Xn, λ) ≥ Nn
(
t,N(Xt, λ)

)
.

Proof. Let us fix λ ∈ R. At time t, there is equality. We prove
the inequality by induction over n. Suppose that the inequality holds at
time n ≥ t. The value Ψn(N(Xn, λ)) is a lower bound on the number
of chromosomes in generation n+ 1 which are an exact copy of one of the
chromosomes of generation n which have a fitness larger than or equal to λ.
Therefore

N(Xn+1, λ) ≥ Ψn

(
N(Xn, λ)

)
.

Using the inequality at time n and the monotonicity of Ψn, we get

Ψn

(
N(Xn, λ)

)
≥ Ψn

(
Nn(t,N(Xt, λ))

)
= Nn+1

(
t,N(Xt, λ)

)
.

The induction step is completed. �

6.2 Transition probabilities of Nn

To alleviate the notation, we suppose that the Markov chain
(
Nn(t, i)

)
n≥t

starts at time 0, we remove t, i from the notation and we write simply
(Nn)n≥0. Let us compute the transition probabilities of (Nn)n≥0. The null
state is absorbing for the Markov chain (Nn)n≥0. By definition, we have

∀n ≥ 1 Nn+1 =

m∑
j=1

(
Γn(Nn, j) (1− V dj/2en )

∏̀
k=1

(1− U j,kn )
)
.

The random variable Nn+1 is a sum of m identically distributed Bernoulli
random variables, whose parameter depends on the value of Nn. Yet these
random variables are not independent, because the crossover creates a
correlation between two consecutive chromosomes (through the variable
V
dj/2e
n ). In order to get rid of this correlation, we first count the number

of crossover occurring in generation n, and then we sum over the indices
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where no crossover has taken place. Let Bn be the random variable defined
by

Bn =
m

2
−
m/2∑
j=1

V jn .

The law of Bn is the binomial law B(m/2, 1−pC). Conditionally on Nn = i,
the law of Nn+1 is the same as the law of the random variable

2Bn∑
k=1

Y ik ,

where the variables Y ik , k ∈ N, i ∈ { 1, . . . ,m }, are Bernoulli i.i.d. random
variables (independent of Bn as well) with parameter

εm(i) =
(
Fm(m− i+ 1) + · · ·+ Fm(m)

)
(1− pM )` .

Finally, we have for i ∈ { 1, . . . ,m } and j ∈ { 0, . . . ,m },

P
(
Nn+1 = j |Nn = i

)
=

m/2∑
b=0

(
m/2
b

)
(1− pC)bp

m/2−b
C

(
2b
j

)
εm(i)j(1− εm(i))2b−j .

6.3 Large deviations upper bound

The formula for the transition probabilities is very complicated, so we will
study its asymptotics as m goes to ∞. The goal of this section is to prove
the large deviations upper bound stated in proposition 6.4. We do not
have a genuine large deviations principle for the chain (Nn)n≥0, because
there is some freedom left for the parameters pC , pM , `. In order to derive
a corresponding lower bound, we would have to fix the limiting value of pC
and (1 − pM )`. However we wish to focus on the role of the parameter π,
and for our purpose, we need only a large deviations upper bound under
the constraint

π = σ(1− pC)(1− pM )` .

For p ∈ [0, 1] and t ≥ 0, we define

I(p, t) =


t ln

t

p
+ (1− t) ln

1− t
1− p

0 < p < 1, 0 ≤ t ≤ 1

0 t = p = 0 or t = p = 1

+∞ (p ∈ {0, 1}, t 6= p) or t > 1 or p > 1

The function I(p, ·) is the rate function governing the large deviations of
the binomial distribution B(n, p) with parameters n and p. It is standard
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that I is lower semicontinuous with respect to t, yet we will need a little
more, as stated in the next lemma.

Lemma 6.2 The map I(p, t) is sequentially lower semicontinuous in p, t,
i.e., for any p ∈ [0, 1], t ∈ R+, any sequences (pn)n≥1, (tn)n≥1 converging
towards p, t, we have

lim inf
n→∞

I(pn, tn) ≥ I(p, t) .

Proof. We need only to distinguish a few cases. For 0 < p < 1, the result
is straightforward. If p = 0 and t > 0, or if p = 1 and t < 1, we check that

lim inf
n→∞

I(pn, tn) = +∞ .

If p = t = 0 or if p = t = 1, the inequality holds since I(0, 0) = I(1, 1) = 0.
�

We define, for s ∈]0, 1], t ∈ [0, 1],

V1(s, t) = inf
{ 1

2
I
(
1− p, β

)
+ βI

((1− F (1− s)
)
π

σ(1− p)
,
t

β

)
:

0 ≤ p ≤ 1− π

σ
, t ≤ β ≤ 1

}
.

We set also V1(0, 0) = 0 and V1(0, t) = +∞ for t > 0.

Lemma 6.3 The map V1(s, t) is sequentially lower semicontinuous in s, t,
i.e., for any s, t ∈ [0, 1], any sequences (sn)n≥1, (tn)n≥1 converging towards
s, t, we have

lim inf
n→∞

V1(sn, tn) ≥ V1(s, t) .

Proof. Let s, t ∈ [0, 1]. Let (sn)n≥1, (tn)n≥1 be two sequences in [0, 1]
which converge towards s, t. For each n ≥ 1, let pn and βn be such that

0 ≤ pn ≤ 1− π/σ , tn ≤ βn ≤ 1 ,

1

2
I
(
1− pn, βn

)
+ βnI

((1− F (1− sn)
)
π

σ(1− pn)
,
tn
βn

)
≤ V1(sn, tn) +

1

n
.

By compactness, up to the extraction of a subsequence, we can suppose
that there exist p̃, β̃, γ̃ such that

0 ≤ p̃ ≤ 1− π/σ , t ≤ β̃ ≤ 1 ,

lim
n→∞

pn = p̃ , lim
n→∞

βn = β̃ , lim
n→∞

tn
βn

= γ̃ .
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Using the continuity of F and the lower semicontinuity of I, we obtain

lim inf
n→∞

V1(sn, tn) ≥ 1

2
I
(
1− p̃, β̃

)
+ β̃I

((1− F (1− s)
)
π

σ(1− p̃)
, γ̃
)
.

Let us denote by ∆ the righthand quantity. We distinguish several cases:

• t > 0. We have then γ̃ = t/β̃, whence ∆ ≥ V1(s, t).

• t = 0, β̃ > 0. We have then γ̃ = 0, whence ∆ ≥ V1(s, 0).

• t = 0, β̃ = 0, s > 0. We have then ∆ ≥ 1
2I
(
1− p̃, 0

)
≥ V1(s, 0).

• t = 0, β̃ = 0, s = 0. Obviously, ∆ ≥ V1(0, 0) = 0.

In each case, we conclude that ∆ ≥ V1(s, t). This shows that V1 is lower
semicontinuous. �

Proposition 6.4 For any s ∈ [0, 1], any subset U of [0, 1], we have, for
any n ≥ 1,

lim sup
m→∞

1

m
lnP

(
Nn+1 ∈ mU |Nn = bsmc

)
≤ − inf

t∈U
V1(s, t) .

Proof. Let n ≥ 1, let i ∈ { 1, . . . ,m } and j ∈ { 0, . . . ,m }. From
lemma D.1, we obtain that, for any b ≤ m/2,(
m/2
b

)
(1− pC)bp

m/2−b
C

(
2b
j

)
εm(i)j(1− εm(i))2b−j ≤

exp

(
−m

{1

2
I
(

1− pC ,
2b

m

)
+

2b

m
I
(
εm(i),

j

2b

)}
+ 4 lnm+ 6

)
.

We take the maximum with respect to b, we sum and we get

P
(
Nn+1 = j |Nn = i

)
≤ (m+ 1)×

exp

(
−m min

0≤b≤m/2

{1

2
I
(

1− pC ,
2b

m

)
+

2b

m
I
(
εm(i),

j

2b

)}
+ 4 lnm+ 6

)
.

We seek next a large deviations upper bound for the transition probabilities.
Let s ∈ [0, 1] and let us take i = bmsc. We first consider the cases s = 0
and s = 1. For s = 0, we have εm(0) = 0 and

P
(
Nn+1 ∈ mU |Nn = 0

)
=

{
0 if 0 6∈ mU
1 if 0 ∈ mU
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and the inequality stated in the lemma holds. Suppose that s = 1. We
have then

εm(m) = (1− pM )` =
π

σ(1− pC)
.

It follows that

P
(
Nn+1 ∈ mU |Nn = m

)
≤ (m+ 1)2 exp

(
4 lnm+ 6

)
×

exp

(
−m min

0≤b≤m/2
min
j∈mU

{1

2
I
(

1− pC ,
2b

m

)
+

2b

m
I
( π

σ(1− pC)
,
j

2b

)})
≤ (m+ 1)2 exp

(
4 lnm+ 6

)
exp

(
−m min

t∈U
V1(1, t)

)
.

Taking ln, dividing by m and sending m to ∞, we obtain the desired large
deviations upper bound. From now on, we suppose that 0 < s < 1. We
have

lim
m→+∞

Fm(m− bsmc+ 1) + · · ·+ Fm(m) = 1− F (1− s)

whence

εm(bsmc) ∼
(
1− F (1− s)

)
(1− pM )` as m→∞ .

Let us set
ε(s) =

(
1− F (1− s)

)
(1− pM )` .

For any u ∈ [0, 1], we have∣∣∣I(εm(bsmc), u
)
− I
(
ε(s), u

)∣∣∣ ≤ ∣∣∣ ln ε(s)

εm(bsmc)

∣∣∣ +
∣∣∣ ln 1− ε(s)

1− εm(bsmc)

∣∣∣ .
In order to bound these terms, we suppose in addition that 0 < s < 1.
Since F is strictly increasing on [0, 1] by hypothesis, then 0 < F (1−s) < 1.
It follows that there exist γ and m0(s) such that for m ≥ m0(s),

0 < γ < Fm(m− bsmc+ 1) + · · ·+ Fm(m) < 1− γ < 1 .

Let us set

∆(s,m) =
∣∣1− F (1− s)−

(
Fm(m− bsmc+ 1) + · · ·+ Fm(m)

)∣∣ .
Since, for any a ≤ 1, any x ∈]0, 1[,∣∣∣ ∂

∂x
ln(1− xa)

∣∣∣ =
∣∣∣ a

1− xa

∣∣∣ ≤ 1

1− x
,
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we have, for m ≥ m0(s),∣∣∣ ln 1− ε(s)
1− εm(bsmc)

∣∣∣ ≤ 1

γ
∆(s,m) .

Similarly, we have ∣∣∣ ln ε(s)

εm(bsmc)

∣∣∣ ≤ 1

γ
∆(s,m) .

These inequalities hold uniformly with respect to the value of (1 − pM )`.
Let now s ∈]0, 1[ and let U be a subset of [0, 1]. Collecting together the
previous inequalities, we have, for any m ≥ m0(s),

P
(
Nn+1 ∈ mU |Nn = bsmc

)
≤ (m+ 1)2×

exp

(
−m min

0≤b≤m/2
min
j∈mU

{1

2
I
(

1− pC ,
2b

m

)
+

2b

m
I
((1− F (1− s)

)
π

σ(1− pC)
,
j

2b

)}
+4 lnm+ 6 +

2m

γ
∆(s,m)

)
.

We are now in position to replace the discrete variational problem appear-
ing in this inequality by a continuous one. Let V1(s, t) be the function
defined before lemma 6.3. The previous inequality implies that, for any
m ≥ m0(s),

P
(
Nn+1 ∈ mU |Nn = bsmc

)
≤

(m+ 1)2 exp

(
−m min

t∈U
V1(s, t) + 4 lnm+ 6 +

2m

γ
∆(s,m)

)
.

Taking ln, dividing by m and sending m to ∞, we obtain the desired large
deviations upper bound. �

Proceeding in the same way, we can prove a similar large deviations upper
bound for the l–step transition probabilities. For l ≥ 1, we define a function
Vl on [0, 1]× [0, 1] by

Vl(s, t) = inf
{ l−1∑
k=0

V1

(
ρk, ρk+1

)
: ρ0 = s, ρl = t,

ρk ∈ [0, 1] for 0 ≤ k < l
}
.

Corollary 6.5 For l ≥ 1, the l–step transition probabilities of (Nn)n≥0

satisfy the following large deviations upper bound: for any s ∈ [0, 1], any
subset U of [0, 1], we have

lim sup
m→∞

1

m
lnP

(
Nn+l ∈ mU |Nn = bsmc

)
≤ − inf

t∈U
Vl(s, t) .
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6.4 Dynamics of Nn

Let us examine when the rate function V1(s, t) vanishes. Let π > 1 and
let s, t ∈ [0, 1]. By lemma 6.3, the variational problem defining V1(s, t) is
well posed, i.e., there exists p∗, β∗ ∈ [0, 1] such that 0 ≤ p∗ ≤ 1 − π/σ,
t ≤ β∗ ≤ 1 and

V1(s, t) =
1

2
I
(
1− p∗, β∗

)
+ β∗I

((1− F (1− s)
)
π

σ(1− p∗)
,
t

β∗

)
.

Thus V1(s, t) vanishes if and only if

β∗ = 1− p∗ ,
(
1− F (1− s)

)
π

σ(1− p∗)
=

t

β∗
,

or equivalently

t =
(
1− F (1− s)

)π
σ
.

We define a function φ : [0, 1]→ [0, 1] by

∀r ∈ [0, 1] φ(r) =
(
1− F (1− r)

)π
σ
.

The Markov chain (Nn)n≥0 can be seen as a random perturbation of the
dynamical system associated to the map φ:

z0 ∈ [0, 1] , ∀n ≥ 1 zn = φ(zn−1) .

Since φ is non–decreasing, the sequence (zn)n∈N is monotonous and it con-
verges to a fixed point of φ. We have supposed that F is convex, so that
φ is concave. Moreover we have φ(0) = 0, φ(1) = π/σ < 1 and φ′(0) = π,
therefore:
• If π < 1, then the function φ admits only one fixed point, 0, and (zn)n∈N
converges to 0;
• If π > 1, the function φ admits two fixed points, 0 and ρ∗(π), and (zn)n∈N
converges to ρ∗(π) whenever z0 > 0.
We can even compute ρ∗(π) for linear ranking and tournament selection:
Linear ranking selection. In this case, we have

ρ∗(π) =
2η+

η+ − η−
(

1− 1

π

)
.

Tournament selection. The non null fixed point is the solution of

1 + ρ∗(π) + · · ·+ ρ∗(π)t−1 =
σ

π
.
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In the case where t = 2, we obtain

ρ∗(π) =
σ

π
− 1 .

The natural strategy to study the Markov chain (Nn)n≥0 is to use the
Freidlin–Wentzell theory [23]. The crucial quantity to analyze the dynamics
is the following cost function V . We define, for s, t ∈ [0, 1],

V (s, t) = inf
l≥1

Vl(s, t) =

inf
l≥1

inf
{ l−1∑
k=0

V1

(
ρk, ρk+1

)
: ρ0 = s, ρl = t, ρk ∈ [0, 1] for 0 ≤ k < l

}
.

Lemma 6.6 Suppose that π > 1. For s, t ∈ [0, 1], we have V (s, t) = 0 if
and only if
• either s = t = 0,
• or s > 0, t = ρ∗(π),
• or there exists l ≥ 1 such that t = φl(s).

Proof. Throughout the proof, we write simply ρ∗ instead of ρ∗(π). Let
s, t ∈ [0, 1] be such that V (s, t) = 0. For each n ≥ 1, let (ρn0 , . . . , ρ

n
l(n)) be

a sequence of length l(n) in [0, 1] such that

ρn0 = s, ρnl(n) = t,

l(n)−1∑
k=0

V1

(
ρnk , ρ

n
k+1

)
≤ 1

n
.

If s = 0, then necessarily ρn1 = · · · = ρnl(n) = 0 and t = 0. From now on, we
suppose that s > 0. We consider two cases. If the sequence (l(n))n≥1 is
bounded, then we can extract a subsequence(

ρ
φ(n)
0 , . . . , ρ

φ(n)
l(φ(n))

)
such that l(φ(n)) = l does not depend on n and for any k ∈ { 0, . . . , l− 1 },
the following limit exists:

lim
n→∞

ρ
φ(n)
k = ρk .

The map V1 being lower semicontinuous, we have then

∀k ∈ { 0, . . . , l − 1 } V1

(
ρk, ρk+1

)
= 0 ,

whence
∀k ∈ { 0, . . . , l } ρk = φk(ρ0) .
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Since in addition ρ0 = s and ρl = t, we conclude that t = φl(s). Suppose
next that the sequence (l(n))n≥1 is not bounded. Our goal is to show that
t = ρ∗. Using Cantor’s diagonal procedure, we can extract a subsequence(

ρ
φ(n)
0 , . . . , ρ

φ(n)
l(φ(n))

)
such that, for any k ≥ 0, the following limit exists:

lim
n→∞

ρ
φ(n)
k = ρk .

The map V1 being lower semicontinuous, we have then

∀k ≥ 0 V1

(
ρk, ρk+1

)
= 0 ,

whence
∀k ≥ 0 ρk = φk(ρ0) .

We have also V1

(
ρ∗, ρ∗

)
= 0. By lemma 6.3, there exist p∗, β∗ such that

0 ≤ p∗ ≤ 1− π/σ, ρ∗ ≤ β∗ ≤ 1 and

V1(ρ∗, ρ∗) =
1

2
I
(
1− p∗, β∗

)
+ β∗I

((1− F (1− ρ∗)
)
π

σ(1− p∗)
,
ρ∗

β∗

)
.

Since ρ∗ is in ]0, 1[, certainly we have β∗ > 0. Let ε > 0. The map

t 7→ β∗I
((1− F (1− ρ∗)

)
π

σ(1− p∗)
,
t

β∗

)
is continuous at ρ∗, thus there exists a neighborhood U of ρ∗ such that

∀ρ ∈ U V1(ρ∗, ρ) ≤ ε .

Since s > 0, the sequence (φn(s))n∈N converges towards ρ∗ and φh(s) ∈ U
for some h ≥ 1. In particular,

lim
n→∞

ρ
φ(n)
h = φh(s) ∈ U ,

so that, for n large enough, ρ
φ(n)
h is in U and

V (ρ∗, t) ≤ V1

(
ρ∗, ρ

φ(n)
h

)
+ V

(
ρ
φ(n)
h , t

)
≤ ε+

1

n
.

Letting successively n go to ∞ and ε go to 0 we obtain that V (ρ∗, t) = 0.
Let δ ∈ ]0, ρ∗/2[ and let U = ]ρ∗ − δ, ρ∗ + δ[. Let α be the infimum

α = inf
{
V1

(
ρ0, ρ1

)
: ρ0 ∈ U, ρ1 6∈ U

}
.
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Since V1 is lower semicontinuous on the compact set U ×
(
[0, 1] \ U

)
, then

∃(ρ∗0, ρ∗1
)
∈ U ×

(
[0, 1] \ U

)
α = V1

(
ρ∗0, ρ

∗
1

)
.

The function φ is non–decreasing and continuous, therefore

φ
(
U
)

= φ
(
[ρ∗ − δ, ρ∗ + δ]

)
=
[
φ(ρ∗ − δ), φ(ρ∗ + δ)

]
.

Since ρ∗ is the unique fixed point of φ in ]0, 1], then φ(ρ) > ρ for ρ ∈]0, ρ∗[
and φ(ρ) < ρ for ρ ∈]ρ∗, 1[. Therefore we have

ρ∗ − δ < φ(ρ∗ − δ) ≤ φ(ρ∗ + δ) < ρ∗ + δ .

Thus φ(U) ⊂ U and necessarily ρ∗1 6= φ(ρ∗0) and α > 0. It follows that any
sequence (ρ0, . . . , ρl) such that

ρ0 ∈ U ,
l−1∑
k=0

V1

(
ρk, ρk+1

)
< α

is trapped in U . As a consequence, a point t satisfying V (ρ∗, t) = 0 must
belong to U =]ρ∗ − δ, ρ∗ + δ[. This is true for any δ > 0, hence for any
neighborhood of ρ∗, thus t = ρ∗. �

6.5 Creation of a quasispecies

Our goal in this section is to prove a lower bound for the probability of the
creation of a quasispecies around the current best fit chromosome in the
population. The delicate situation is when there is only one chromosome
in the population which has the best fitness. This chromosome might be
destroyed or it might invade a positive fraction of the population. We will
obtain a lower bound on the fixation probability by estimating the prob-
ability that the progeny of the best fit chromosome grows geometrically.
The key estimate is stated in the next proposition.

Proposition 6.7 Let π > 1 be fixed. There exist

δ0 > 0 , ρ > 1 , c0 > 0 , m0 ≥ 1 ,

which depend on π only, such that: for any set of parameters `, pC , pM
satisfying π = σ(1− pC)(1− pM )`, we have

∀m ≥ m0 ∀i ∈
{

1, . . . , bδ0mc
}

P
(
Nn+1 ≤ ρi

∣∣Nn = i
)
≤ exp(−c0i) .
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Proof. We recall that, conditionally on Nn = i, the law of Nn+1 is the
same as the law of the random variable

2Bn∑
k=1

Y ik ,

where the law of Bn is the binomial law B(m/2, 1 − pC), the variables
Y ik , k ∈ N, i ∈ { 1, . . . ,m }, are Bernoulli i.i.d. random variables with
parameter

εm(i) =
(
Fm(m− i+ 1) + · · ·+ Fm(m)

)
(1− pM )` .

Let ε > 0 be such that π(1− ε)2 > 1 and let

l(m, ε) =
⌊m

2
(1− pC)(1− ε)

⌋
+ 1 +

m

4
(1− pC)ε .

For m large enough, we have

l(m, ε) <
m

2
(1− pC) .

Let ρ > 1. We write

P
(
Nn+1 < ρi

∣∣Nn = i
)

= P
( 2Bn∑
k=1

Y ik < ρi
)

≤ P
(
Bn ≤ l(m, ε)

)
+ P

( 2l(m,ε)∑
k=1

Y ik < ρi
)
.

We control the first probability with the help of Hoeffding’s inequality (see
appendix E). The expected value of Bn is m(1− pC)/2 > l(m, ε), thus

P
(
Bn ≤ l(m, ε)

)
≤ exp

(
− 2

m

(m
2

(1− pC)− l(m, ε)
)2)

.

Recall that 1− pC > 1/σ. For m large enough, we have

m

2
(1− pC)− l(m, ε) ≥ m

2
(1− pC)

ε

2
− 1 ≥ mε

4σ
− 1 ≥ mε

8σ
.

It follows that

P
(
Bn ≤ l(m, ε)

)
≤ exp

(
− m

32

ε2

σ2

)
.

To control the second probability, we decompose the sum into i blocks
and we use the Tchebytcheff exponential inequality. Each block follows a
binomial law, and we bound the Cramér transform of each block by the

44



Cramér transform of a Poisson law having the same mean. More precisely,
we choose for the block size

b =
⌊2l(m, ε)− m

4
(1− pC)ε

i
+ 1
⌋
,

and we define the sum associated to each block of size b:

∀j ∈ { 1, . . . , i } Y ′j =

bj∑
k=b(j−1)+1

Y ik .

Notice that Y ′1 follows the binomial law with parameters b, εm(i). We will
next estimate from below the product bεm(i). By the choice of b and l, we
have

b ≥ 1

i

(
2l(m, ε)− m

4
(1− pC)ε

)
,

l(m, ε) ≥ m

2
(1− pC)

(
1− ε

2

)
,

whence
b ≥ m

i
(1− pC)

(
1− ε

)
.

Let δ0 > 0 be such that

δ0 <
1

4
(1− pC)ε .

Let m0 ≥ 1 be associated to ε as in the hypothesis on Fm (see section 3.1).
We have, for m ≥ m0 and i ∈

{
1, . . . , bδ0mc

}
,

εm(i) ≥ σ(1− ε) i
m

(1− pM )`

and we conclude from the previous inequalities that

bεm(i) ≥ (1− pC)(1− ε)2σ(1− pM )` = π(1− ε)2 .

We choose ρ such that 1 < ρ < π(1− ε)2, this implies in particular that

ρ < E(Y ′1) = bεm(i) .

We have also that

bi ≤ 2l(m, ε)− m

4
(1− pC)ε+ i

≤ 2l(m, ε)− m

4
(1− pC)ε+ δ0m ≤ 2l(m, ε) .
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We have then, using Tchebytcheff exponential inequality (see appendix E):

P
( 2l(m,ε)∑

k=1

Y ik ≤ ρi
)
≤ P

( bi∑
k=1

Y ik ≤ ρi
)

≤ P
( i∑
j=1

Y ′j ≤ ρi
)
≤ P

( i∑
j=1

−Y ′j ≥ −ρi
)
≤ exp

(
− iΛ∗−Y ′1 (−ρ)

)
,

where Λ∗−Y ′1
is the Cramér transform of −Y ′1 . Let Y ′′1 be a random variable

following the Poisson law of parameter bεm(i). By lemma C.3, we have

Λ∗−Y ′1 (−ρ) ≥ Λ∗−Y ′′1 (−ρ) = ρ ln
( ρ

bεm(i)

)
− ρ+ bεm(i) .

The map

λ 7→ ρ ln
(ρ
λ

)
− ρ+ λ

is non–decreasing on [ρ,+∞[, thus

Λ∗−Y ′′1 (−ρ) ≥ ρ ln
( ρ

π(1− ε)2

)
− ρ+ π(1− ε)2 .

Let us denote by c0 the righthand quantity. Then c0 is positive and it de-
pends only on ρ, π and ε. Finally, we have for m ≥ m0, i ∈

{
1, . . . , bδ0mc

}
,

P
( 2l(m,ε)∑

k=1

Y ik ≤ ρi
)
≤ exp(−c0i)

whence

P
(
Nn+1 ≤ ρi

∣∣Nn = i
)
≤ exp

(
− m

32

ε2

σ2

)
+ exp(−c0i) .

Let η ∈]0, 1[ be small enough so that

∃m1 ∀m ≥ m1 exp
(
− m

32

ε2

σ2

)
≤ exp

(
−ηmc0

2

)(
1−exp

(
−η c0

2

))
.

For m ≥ max(m0,m1) and i ∈
{

1, . . . , bδ0mc
}

, we have

P
(
Nn+1 ≤ ρi

∣∣Nn = i
)

≤ exp
(
− η ic0

2

)(
1− exp

(
− η c0

2

))
+ exp

(
− ηic0

)
≤ exp

(
− η ic0

2

)
46



and this inequality yields the claim of the proposition. �

We define
τ0 = inf

{
n ≥ 1 : Nn = 0

}
.

For δ > 0, let T (δ) be the first time the process (Nn)n≥0 becomes larger
than δm:

T (δ) = inf {n ≥ 0 : Nn ≥ δm } .

Proposition 6.8 Let π > 1 be fixed. There exist δ0 > 0 and p0 > 0 which
depend only on π such that

∀m ≥ 1 P
(
T (δ0) ≤ κ lnm, τ0 > T (δ0) |N0 = 1

)
≥ p0 .

Proof. Let Tk be the first time the process (Nn)n≥0 hits k:

Tk = inf {n ≥ 0 : Nn = k } .

Let δ0, ρ > 1, c0, m0 be as given in proposition 6.7. We suppose that the
process (Nn)n≥0 starts from N0 = 1. Let E be the event:

E =
{
∀k ∈

{
1, . . . , bδ0mc

}
NTk+1 > ρNTk

}
.

We claim that, on the event E , we have

∀n ≤ T (δ0) Nn+1 > ρNn .

Let us prove this inequality by induction on n. We have T0 = 0 and
N1 > ρN0, so that the inequality is true for n = 0. Suppose that the
inequality has been proved until rank n < T (δ0), so that

∀k ≤ n Nk+1 > ρNk .

This implies in particular that

N0 < N1 < . . . < Nn < mδ0 .

Suppose that Nn = i. The above inequality implies that Ti = n and

NTi+1 = Nn+1 > ρNn ,

so that the inequality still holds at rank n + 1. Iterating the inequality
until time T (δ0)− 1, we see that

NT (δ0)−1 > ρT (δ0)−1 .

Moreover NT (δ0)−1 ≤ mδ0, thus

T (δ0) ≤ 1 +
ln(mδ0)

ln ρ
.
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Let m1 ≥ 1 and κ > 0 such that

∀m ≥ m1 1 +
ln(mδ0)

ln ρ
≤ κ lnm.

The constants m1, κ depend only on δ0 and ρ, and we have

P
(
T (δ0) ≤ κ lnm, τ0 > T (δ0) |N0 = 1

)
≥ P (E) .

By lemma A.2, the random variables NTk+1, k ≤ δ0m, are independent. To
be precise, we cannot directly apply lemma A.2, because the Markov chain
(Nn)n≥0 has an absorbing state at 0 and therefore it is not irreducible. So
we consider the modified Markov chain (Ñn)n≥0 which has the same transi-
tion probabilities as (Nn)n≥0, except that we set the transition probability
from 0 to 1 to be 1. The event we wish to estimate in the lemma has the
same probability for both processes. Indeed, we require that T (δ0) ≤ κ lnm
and τ0 > T (δ0), so that the processes do not visit 0 before T (δ0). Using
proposition 6.7, we obtain, for m larger than m0 and m1,

P (E) ≥
bδ0mc∏
k=1

P
(
NTk+1 > ρNTk)

=

bδ0mc∏
k=1

(
1− P

(
N1 ≤ ρk

∣∣N0 = k
))

≥
bδ0mc∏
k=1

(
1− exp(−c0k)

)
≥
∞∏
k=1

(
1− exp(−c0k)

)
.

The last infinite product is converging. Let us denote its value by p1. Let
also

p2 = min
{
P
(
T (δ0) ≤ κ lnm, τ0 > T (δ0) |N0 = 1

)
: m ≤ max(m0,m1)

}
.

The value p2 is positive and the inequality stated in the proposition holds
with p0 = min(p1, p2). �

Lemma 6.9 Let π > 1 be fixed. For any δ > 0, there exist h ≥ 1, c > 0,
m0 ≥ 1, which depend only on δ and π, such that: for any set of parameters
`, pC , pM satisfying π = σ(1− pC)(1− pM )`, we have, for any m ≥ m0,

P
(
N1 > 0, . . . , Nh−1 > 0, Nh > m(ρ∗ − δ) |N0 = bmδc

)
≥ 1− exp(−cm) .

Proof. Let δ > 0. The sequence (φn(δ))n∈N converges to ρ∗, thus there
exists h ≥ 1 such that φh(δ) > ρ∗ − δ. By continuity of the map φ, there
exist ρ0, ρ1, . . . , ρh > 0 such that ρ0 = δ, ρh > ρ∗ − δ and

∀k ∈ { 1, . . . , h } φ(ρk−1) > ρk .
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Now,

P
(
N1 > 0, . . . , Nh−1 > 0, Nh > m(ρ∗ − δ) |N0 = bmδc

)
≥

P
(
∀k ∈ { 1, . . . , h } Nk ≥ mρk |N0 = bmδc

)
.

Passing to the complementary event, we have

P
(
∃k ∈ { 1, . . . , h− 1 } Nk = 0 or Nh ≤ m(ρ∗ − δ) |N0 = bmδc

)
≤ P

(
∃k ∈ { 1, . . . , h } Nk < mρk |N0 = bmδc

)
≤

∑
1≤k≤h

P
(
N1 ≥ mρ1, . . . , Nk−1 ≥ mρk−1, Nk < mρk |N0 = bmδc

)
≤

∑
1≤k≤h

∑
i≥mρk−1

P
(
Nk−1 = i, Nk < mρk |N0 = bmδc

)
≤

∑
1≤k≤h

∑
i≥mρk−1

P
(
Nk < mρk |Nk−1 = i

)
P
(
Nk−1 = i |N0 = bmδc

)
≤

∑
1≤k≤h

P
(
N1 < mρk |N0 = bmρk−1c

)
.

The large deviations upper bound for the transition probabilities of the
Markov chain (Nn)n≥0 stated in proposition 6.4 implies that

∀k ∈ { 1, . . . , h }

lim sup
m→∞

1

m
lnP

(
N1 < mρk |N0 = bmρk−1c

)
≤ − inf

{
V1

(
ρk−1, t

)
: t ≤ ρk

}
< 0 .

Since h is fixed, we conclude that

lim sup
m→∞

1

m
lnP

(
∃k ∈ { 1, . . . , h− 1 } Nk = 0

or Nh ≤ m(ρ∗ − δ)

∣∣∣N0 = bmδc
)
< 0

and this yields the desired estimate. �

With the estimate of lemma 6.9, we show that the process is very unlikely
to stay a long time in [mδ,m(ρ∗ − δ)].

Corollary 6.10 Let π > 1 be fixed. For any δ > 0, there exist h ≥ 1,
c > 0, m0 ≥ 1, which depend only on δ and π, such that: for any set of
parameters `, pC , pM satisfying π = σ(1− pC)(1− pM )`, we have, for any
m ≥ m0,

∀k ∈ [mδ,m(ρ∗ − δ)] ∀n ≥ 0

P
(
mδ ≤ Nt ≤ m(ρ∗ − δ) for 0 ≤ t ≤ n |N0 = k

)
≤ exp

(
− cm

⌊n
h

⌋)
.
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Proof. Let k ∈ [mδ,m(ρ∗ − δ)]. Let δ > 0 and let h ≥ 1 and c > 0
be associated to δ as in lemma 6.9. We divide the interval { 0, . . . , n } into
subintervals of length h and we use repeatedly the estimate of lemma 6.9.
Let i ≥ 0. We write

P
(
mδ ≤ Nt ≤ m(ρ∗ − δ) for 0 ≤ t ≤ (i+ 1)h |N0 = k

)
=∑

δm≤j≤(ρ∗−δ)m

P
(
mδ ≤ Nt ≤ m(ρ∗−δ) for 0 ≤ t ≤ (i+1)h, Nih = j |N0 = k

)
=

∑
δm≤j≤(ρ∗−δ)m

P
(
mδ ≤ Nt ≤ m(ρ∗ − δ) for 0 ≤ t ≤ ih, Nih = j |N0 = k

)
× P

(
mδ ≤ Nt ≤ m(ρ∗ − δ) for ih ≤ t ≤ (i+ 1)h |Nih = j

)
≤

∑
δm≤j≤(ρ∗−δ)m

P
(
mδ ≤ Nt ≤ m(ρ∗ − δ) for 0 ≤ t ≤ ih, Nih = j |N0 = k

)
× P

(
Nh ≤ m(ρ∗ − δ) |N0 = bmδc

)
≤ P

(
mδ ≤ Nt ≤ m(ρ∗ − δ) for 0 ≤ t ≤ ih |N0 = k

)
exp(−cm) .

Iterating this inequality, we obtain

∀i ≥ 0 P
(
mδ ≤ Nt ≤ m(ρ∗−δ) for 0 ≤ t ≤ ih |N0 = k

)
≤ exp(−cmi) .

The claim of the corollary follows by applying this inequality with i equal
to the integer part of n/h. �

6.6 The catastrophe

We have computed the relevant estimates to reach the neighborhood of ρ∗.
Our next goal is to study the hitting time τ0 starting from a neighborhood
of ρ∗. Since we need only a lower bound, we shall study the hitting time
of a neighborhood of 0. For δ > 0, we define

τδ = inf
{
n ≥ 0 : Nn < mδ

}
.

Proposition 6.11 Let π > 1 be fixed. For any δ > 0, there exists m0 ≥ 1,
which depend only on δ and π, such that: for any set of parameters `, pC , pM
satisfying π = σ(1− pC)(1− pM )`, we have

∀m ≥ m0 ∀i ≥ b(ρ∗ − δ)mc ∀n ≥ 1

P
(
τδ ≤ n |N0 = i

)
≤ n exp

(
−mV (ρ∗ − δ, δ) +mδ

)
.
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Proof. Let i ≥ b(ρ∗ − δ)mc. The strategy consists in looking at the
portion of the trajectory starting at the last visit to the neighborhood of
ρ∗ before reaching the neighborhood of 0. Accordingly, we define

S = max
{
n ≤ τδ : Nn > (ρ∗ − δ)m

}
.

Notice that S is not a Markov time. We write, for n, k ≥ 1,

P
(
τδ ≤ n |N0 = i

)
=

∑
1≤s<t≤n

P
(
τδ = t, S = s |N0 = i

)
=

∑
1≤s<t≤n
s<t≤s+k

P
(
τδ = t, S = s |N0 = i

)
+

∑
1≤s<n
s+k<t≤n

P
(
τδ = t, S = s |N0 = i

)
.

Let h ≥ 1 and c > 0 be associated to δ as in corollary 6.10. For 1 ≤ s < n
and t > s+ k,

P
(
τδ = t, S = s |N0 = i

)
=

∑
mδ≤j≤(ρ∗−δ)m

P
(
τδ = t, S = s, Ns+1 = j |N0 = i

)
≤

∑
mδ≤j≤(ρ∗−δ)m

P
(
δm ≤ Nr ≤ (ρ∗ − δ)m
for s+ 1 ≤ r ≤ t− 1

∣∣∣∣Ns+1 = j
)

≤ m exp
(
− cm

⌊ t− s− 2

h

⌋)
,

whence∑
1≤s<n
s+k<t≤n

P
(
τδ = t, S = s |N0 = i

)
≤ n

∑
t≥k

m exp
(
− cm

⌊ t− 1

h

⌋)
.

For 1 ≤ s < t ≤ n and t ≤ s+ k,

P
(
τδ = t, S = s |N0 = i

)
≤

∑
j>(ρ∗−δ)m

P
(
τδ = t, S = s, Ns = j |N0 = i

)
≤

∑
j>(ρ∗−δ)m

P
(
Nt < δm |Ns = j

)
≤ mP

(
Nt−s < δm |N0 = b(ρ∗ − δ)mc

)
,

whence∑
1≤s<n
s<t≤s+k

P
(
τδ = t, S = s |N0 = i

)
≤

n
∑

1≤t≤k

mP
(
Nt < δm |N0 = b(ρ∗ − δ)mc

)
.
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Putting together the previous inequalities, we obtain

P
(
τδ ≤ n |N0 = i

)
≤ n

∑
t≥k

m exp
(
− cm

⌊ t− 1

h

⌋)
+ n

∑
1≤t≤k

mP
(
Nt < δm |N0 = b(ρ∗ − δ)mc

)
.

We choose k large enough so that

lim sup
m→∞

1

m
ln

(∑
t≥k

m exp
(
− cm

⌊ t− 1

h

⌋))
< −V (ρ∗ − δ, δ) ,

and we use the large deviations upper bound stated in corollary 6.5 to
estimate the second sum:

lim sup
m→∞

1

m
ln

( ∑
1≤t≤k

mP
(
Nt < δm |N0 = b(ρ∗ − δ)mc

))
≤ − min

1≤t≤k
Vt(ρ

∗ − δ, δ) ≤ −V (ρ∗ − δ, δ) .

Therefore there exists m0 ≥ 1 such that,

∀m ≥ m0 P
(
τδ ≤ n |N0 = i

)
≤ n exp

(
−mV (ρ∗ − δ, δ) +mδ

)
.

This proves the proposition. �

Lemma 6.12 Let V ∗ < V (ρ∗, 0). There exists δ > 0 such that

V (ρ∗ − δ, δ)− 2δ ≥ V ∗ .

Proof. Let V ∗ < V (ρ∗, 0). Let ε > 0 be such that V (ρ∗, 0) − 4ε > V ∗.
For δ > 0, we have

V (ρ∗, 0) ≤ V (ρ∗, ρ∗ − δ) + V (ρ∗ − δ, δ) + V (δ, 0) .

We bound next V (ρ∗, ρ∗ − δ) and V (δ, 0):

V (ρ∗, ρ∗ − δ) ≤ I
((1− F (1− ρ∗)

)
π

σ
, ρ∗ − δ

)
= I

(
ρ∗, ρ∗ − δ

)
,

V (δ, 0) ≤ I
((1− F (1− δ)

)
σ

, 0
)
≤ − ln

(
1−

(
1− F (1− δ)

)
σ

)
,

and the righthand terms go to 0 when δ goes to 0. Thus we can choose
δ > 0 such that

δ < ε , V (δ, 0) < ε , V (ρ∗, ρ∗ − δ) < ε .
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We have then

V (ρ∗ − δ, δ)− 2δ ≥ V (ρ∗, 0)− 2δ − 2ε ≥ V ∗

and the lemma is proved. �

Corollary 6.13 For any V ∗ < V (ρ∗, 0), there exist δ > 0 and m0 ≥ 1
such that

∀m ≥ m0 P
(
τδ > exp(mV ∗) |N0 = b(ρ∗ − δ)mc

)
≥ 1− exp(−mδ) .

Proof. Let δ > 0 be associated to V ∗ as in lemma 6.12. We apply
proposition 6.11 with δ and n = exp(mV ∗): there exists m0 ≥ 1 such that

∀m ≥ m0 P
(
τδ ≤ exp(mV ∗) |N0 = b(ρ∗ − δ)mc

)
≤ exp(−mδ) .

This is the desired inequality. �

For δ > 0, let T (ρ∗ − δ) be the first time the process (Nn)n≥0 becomes
larger than (ρ∗ − δ)m:

T (ρ∗ − δ) = inf {n ≥ 0 : Nn ≥ (ρ∗ − δ)m } .

Proposition 6.14 Let π > 1 be fixed. For any δ > 0, there exist κ > 0
and p1 > 0, which depend only on π and δ, such that: for any set of
parameters `, pC , pM satisfying π = σ(1− pC)(1− pM )`, we have

∀m ≥ 1 P
(
T (ρ∗ − δ) ≤ κ lnm

∣∣N0 = 1
)
≥ p1 .

Proof. Let κ, δ0 be given by proposition 6.8. Let δ > 0 be associated to
V ∗ as in corollary 6.13. We suppose in addition that δ < δ0. We have

P
(
T (ρ∗ − δ) ≤ 2κ lnm

∣∣N0 = 1
)

≥
κ lnm∑
k=1

∑
i≥mδ

P
(
T (ρ∗ − δ) ≤ 2κ lnm, T (δ) = k, Nk = i

∣∣N0 = 1
)

=

κ lnm∑
k=1

∑
i≥mδ

P
(
T (ρ∗ − δ) ≤ 2κ lnm

∣∣T (δ) = k, Nk = i
)

× P
(
T (δ) = k, Nk = i

∣∣N0 = 1
)

=

κ lnm∑
k=1

∑
i≥mδ

P
(
T (ρ∗ − δ) ≤ 2κ lnm− k

∣∣N0 = i
)

× P
(
T (δ) = k, Nk = i

∣∣N0 = 1
)

≥ P
(
T (ρ∗ − δ) ≤ κ lnm

∣∣N0 = bmδc
)
P
(
T (δ) ≤ κ lnm

∣∣N0 = 1
)
.
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Let h ≥ 1, c > 0 as in lemma 6.9. We suppose that m is large enough so
that κ lnm ≥ h. Using again the Markov property, we obtain

P
(
T (ρ∗ − δ) ≤ κ lnm

∣∣N0 = bmδc
)
≥

P
(
N1 > 0, . . . , Nh−1 > 0, Nh > m(ρ∗ − δ)

∣∣N0 = bmδc
)

≥ 1− exp(−cm) .

Putting together the previous inequalities, and using the inequality of
proposition 6.8, we conclude that for m large enough,

P
(
T (ρ∗ − δ) ≤ 2κ lnm

∣∣N0 = 1
)
≥
(
1− exp(−cm)

)
p0 .

This implies the result stated in the proposition. �

Corollary 6.15 Let π > 1 be fixed. For any V ∗ < V (ρ∗, 0), there ex-
ists p∗ > 0, which depends only on V ∗ and π, such that: for any set of
parameters `, pC , pM satisfying π = σ(1− pC)(1− pM )`, we have

∀m ≥ 1 P
(
τ0 ≥ exp(mV ∗)

∣∣N0 = 1
)
≥ p∗ .

Proof. Let V ∗ < V (ρ∗, 0). Let δ > 0 and m0 ≥ 1 be associated to
V ∗ as in corollary 6.13. Let κ > 0 and p1 > 0 be associated to δ as in
proposition 6.14. We write

P
(
τ0 ≥ exp(mV ∗)

∣∣N0 = 1
)
≥

P
(
τ0 ≥ exp(mV ∗), T (ρ∗ − δ) ≤ κ lnm |N0 = 1

)
≥∑

i>(ρ∗−δ)m

P
(
τ0 ≥ exp(mV ∗), T (ρ∗ − δ) ≤ κ lnm, NT (ρ∗−δ) = i |N0 = 1

)
≥

∑
i>(ρ∗−δ)m

P
(
τ0 ≥ exp(mV ∗)

∣∣NT (ρ∗−δ) = i, τ0 > T (ρ∗ − δ)
)

P
(
NT (ρ∗−δ) = i, τ0 > T (ρ∗ − δ), T (ρ∗ − δ) ≤ κ lnm |N0 = 1

)
≥ P

(
τ0 ≥ exp(mV ∗)

∣∣N0 = b(ρ∗ − δ)mc
)

×P
(
τ0 > T (ρ∗ − δ), T (ρ∗ − δ) ≤ κ lnm |N0 = 1

)
.

Since τ0 ≥ τδ, we have by corollary 6.13 that for m ≥ m0,

P
(
τ0 ≥ exp(mV ∗) |N0 = b(ρ∗ − δ)mc

)
≥ 1− exp(−mδ) ,

whence, by proposition 6.14,

P
(
τ0 ≥ exp(mV ∗)

∣∣N0 = 1
)
≥ (1− exp(−mδ)) p1 .

For m < m0, the above probability is still positive, and we obtain the
desired conclusion. �
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7 Proof of theorems 2.2, 2.3 2.4, 2.5, 2.6

7.1 Proof of theorem 2.2

Let f∗0 be as in theorem 2.2. By proposition 6.1, we have

∀n ≥ 0 N(Xn, f
∗
0 ) ≥ Nn

(
0, 1) .

Let V ∗ > 0 be such that V ∗ < V (ρ∗, 0). By corollary 6.15, there exists
p∗ > 0, which depends on π and V ∗ only, such that

∀m ≥ 1 P
(
∀n ≤ exp(mV ∗) Nn(0, 1) ≥ 1

)
≥ p∗ .

This yields the conclusion of theorem 2.2.

7.2 Proof of theorem 2.3

We apply proposition 6.1 with n = t, starting time s, λ = Λ
(
Xs, bρ∗mc

)
.

By definition of Λ,

N
(
Xs,Λ

(
Xs, bρ∗mc

))
≥ bρ∗mc ,

therefore

∀t ≥ s N
(
Xt,Λ

(
Xs, bρ∗mc

))
≥ Nt

(
s, bρ∗mc

)
.

If for some time t > s, we have

max
1≤i≤m

f
(
Xt(i)

)
< Λ

(
Xs, bρ∗mc

)
,

then
N
(
Xt,Λ

(
Xs, bρ∗mc

))
= 0 ,

and from the previous inequality, we conclude that Nt
(
s, bρ∗mc

)
= 0. Yet

P
(
Nt
(
s, bρ∗mc

)
= 0
)
≤ P

(
τ0 ≤ t− s

∣∣N0 = bρ∗mc
)
.

Let V ∗ > 0 be such that V ∗ < V (ρ∗, 0). Let δ > 0 as in lemma 6.12. By
proposition 6.11, there exists m0 ≥ 1 such that, for m ≥ m0,

P
(
τ0 ≤ t− s

∣∣N0 = bρ∗mc
)
≤ (t− s) exp(−V ∗m) .

We sum this inequality over s, t such that s < t ≤ exp(V ∗m/4) to obtain

P
(
∃ t ≤ exp(V ∗m/4) max

1≤i≤m
f
(
Xt(i)

)
< max

0≤s≤t
Λ
(
Xs, bρ∗mc

))
≤

∑
0≤s<t≤exp(V ∗m/4)

(t− s) exp(−V ∗m) ≤ exp(−V ∗m/4) .

This proves theorem 2.3.
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7.3 Proof of theorems 2.4, 2.5

For E a subset of
(
{ 0, 1 }`

)m
, we define the entrance time of the genetic

algorithm in E as

τ(E) = inf
{
n ≥ 0 : Xn ∈ E

}
.

For λ ∈ R and k ≥ 1, we define L(λ, k) as the set of the populations
containing at least k chromosomes with a fitness larger than or equal to λ:

L(λ, k) =
{
x ∈

(
{ 0, 1 }`

)m
: Λ(x, k) ≥ λ

}
.

Recall that the quantity ∆(λ, γ) is defined just before theorem 2.4.

Lemma 7.1 Let π > 1. Let V ∗ < V (ρ∗, 0). There exist positive constants
δ, κ∗,m0 which depend only on π and V ∗ such that

∀λ < γ ∀x0 ∈ L
(
λ, b(ρ∗ − δ)mc

)
∀m ≥ m0

P
(
τ
(
L
(
γ, b(ρ∗ − δ)mc

))
>
κ∗

2
(lnm)m2(pM )−∆(λ,γ)

∣∣X0 = x0

)
≤

κ∗(lnm)m2(pM )−∆(λ,γ) exp
(
−mV ∗

)
.

Proof. Let π > 1. Let V ∗ < V (ρ∗, 0). Let δ > 0 and m0 ≥ 1 be
associated to V ∗ as in corollary 6.13. Let p1 > 0 be associated to δ as
in proposition 6.14. Let us fix λ < γ ∈ R. By the very definition of
∆(λ, γ), any chromosome in L(λ) can be transformed with at most ∆(λ, γ)
mutations into a chromosome of L(γ), and the corresponding probability
is bounded from below by

(pM )∆(λ,γ)(1− pM )`−∆(λ,γ) .

Let x0 belong to L
(
λ, 1
)
. The population x0 contains at least one chromo-

some belonging to L(λ). By estimating the probability that this chromo-
some is selected, that there is no crossover on it, and that it is transformed
by mutation into a chromosome in L(γ), we obtain that

P
(
X1 ∈ L(γ, 1)

∣∣X0 = x0

)
≥ Fm(m)(1− pC)(pM )∆(λ,γ)(1− pM )`−∆(λ,γ) .

The hypothesis on Fm (see section 3.1) implies that, for m large enough,
Fm(m) ≥ σ/(2m). Since we have also π > 1, then

P
(
X1 ∈ L(γ, 1)

∣∣X0 = x0

)
≥ 1

2m
(pM )∆(λ,γ) .

Suppose next that X1 belongs to L
(
γ, 1
)
. Then the population X1 contains

at least one chromosome in L(γ), hence N(X1, γ) ≥ 1, and by proposi-
tion 6.1, we have

∀n ≥ 1 N(Xn, γ) ≥ Nn
(
1, 1) .
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Thus, by proposition 6.14, there exist κ > 0 and p1 > 0 such that, for any
x1 ∈ L

(
γ, 1
)
, and any m ≥ 1,

P
(
τ
(
L
(
γ, b(ρ∗ − δ)mc

))
≤ κ lnm+ 1

∣∣X1 = x1

)
≥ P

(
T (ρ∗ − δ) ≤ κ lnm+ 1

∣∣N1 = 1
)
≥ p1 .

Combining the previous bounds, we get

∀x0 ∈ L
(
λ, 1
)

P
(
τ
(
L
(
γ, b(ρ∗ − δ)mc

))
≤ κ lnm+ 1

∣∣X0 = x0

)
≥ p1

1

2m
(pM )∆(λ,γ) .

We decompose { 1, . . . , n } into subintervals of length bκ lnm + 1c and we
use the previous estimate: we obtain that for any x0 ∈ L(λ, 1) and n ≥ 1,

P
(
τ
(
L(λ, 1)c

)
> n, τ

(
L
(
γ, b(ρ∗ − δ)mc

))
> n

∣∣X0 = x0

)
≤(

1− p1
1

2m
(pM )∆(λ,γ)

)⌊ n

bκ lnm+ 1c

⌋
.

Let next x0 ∈ L
(
λ, b(ρ∗−δ)mc

)
. We use proposition 6.11 and the previous

estimate: there exists m0 ≥ 1 such that, for n ≥ 1,

P
(
τ
(
L
(
γ, b(ρ∗ − δ)mc

))
> n

∣∣X0 = x0

)
≤ P

(
τ
(
L(λ, 1)c

)
≤ n

∣∣X0 = x0

)
+P
(
τ
(
L(λ, 1)c

)
> n, τ

(
L
(
γ, b(ρ∗ − δ)mc

))
> n

∣∣X0 = x0

)
≤ n exp

(
−mV ∗

)
+ exp

(
− p1

1

2m
(pM )∆(λ,γ)

⌊ n

bκ lnm+ 1c

⌋)
.

We choose

κ∗ =
8κV ∗

p1
, n =

1

2
κ∗(lnm)m2(pM )−∆(λ,γ) ,

and for m large enough, we obtain the estimate stated in the lemma. �

Let now λ0 < · · · < λr be an increasing sequence such that

λ0 = min
{
f(u) : u ∈ { 0, 1 }`

}
, λr = max

{
f(u) : u ∈ { 0, 1 }`

}
.

Let π > 1, V ∗ < V (ρ∗, 0) and let δ, κ∗,m0 as given by lemma 7.1. We write

τ∗ ≤
r∑

k=1

(
τ
(
L
(
λk, b(ρ∗ − δ)mc

))
− τ
(
L
(
λk−1, b(ρ∗ − δ)mc

)))
.
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Thus, for any starting population x0, we have

P
(
τ∗ ≤ κ∗

2
(lnm)m2

r∑
k=1

(pM )−∆(λk−1,λk)
∣∣X0 = x0

)
≥

P
(
∀k ∈ { 1, . . . , r } τ

(
L
(
λk, b(ρ∗ − δ)mc

))
− τ
(
L
(
λk−1, b(ρ∗ − δ)mc

))
≤ κ∗

2
(lnm)m2(pM )−∆(λk−1,λk)

∣∣X0 = x0

)
.

To control this last probability, we use repeatedly the Markov property and
the estimate of lemma 7.1. Finally, we obtain

P
(
τ∗ ≤ κ∗

2
(lnm)m2

r∑
k=1

(pM )−∆(λk−1,λk)
∣∣X0 = x0

)
≥

≥
r∏

k=1

(
1− κ∗(lnm)m2(pM )−∆(λk−1,λk) exp

(
−mV ∗

))
.

We complete now the proof of theorem 2.4. We suppose that m ≥ c∗` ln `
and that pM ≥ c∗/`. Since ∆(λk−1, λk) ≤ ` for any k, we have for m large
enough

∀k ∈ { 1, . . . , r } κ∗(lnm)m2(pM )−∆(λk−1,λk) ≤ exp
(
2m/c∗

)
.

We take c∗ such that 2/c∗ < V ∗/2 and we obtain, for m large enough,

P
(
τ∗ ≤ κ∗

2
(lnm)m2

r∑
k=1

(pM )−∆(λk−1,λk)
∣∣X0 = x0

)
≥
(

1− exp
(
−mV ∗/2

))2`

≥ 1

2
.

The bound on the expectation of τ∗ is a consequence of this estimate and
lemma A.3. This completes the proof of theorem 2.4.

We complete next the proof of theorem 2.5. The proof is a variant of
the previous argument. We take c∗ such that

c∗ > κ∗ , c∗ >
4

V ∗
, c∗ >

2γ

V ∗∆
.

We suppose that m ≥ c∗∆ ln ` and that pM ≥ c∗/`. Let k ∈ { 1, . . . , r }.
Since ∆(λk−1, λk) ≤ ∆, we have for m large enough,

κ∗(lnm)m2(pM )−∆(λk−1,λk) ≤ (lnm)m2`∆ ≤ exp
(
2m/c∗

)
.

It follows that

P
(
τ∗ ≤ 1

2
(lnm)m2`γ+∆

∣∣X0 = x0

)
≥
(

1− exp
(
−mV ∗/2

))`γ
≥ 1

2
.

We conclude as before with the help of lemma A.3.
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7.4 Proof of theorem 2.6

Let V ∗ < V (ρ∗, 0) and let δ > 0 as in lemma 6.12. Let

λ∗ = max
{
f(u) : u ∈ { 0, 1 }`

}
.

We apply the estimate on the invariant measure given in lemma A.1 with
the following sets:

V = Λ
(
λ∗, b(ρ∗ − δ)mc

)
, G = Λ

(
λ∗, 1

)c
.

We obtain

µ(G) ≤ sup
x∈V

P
(
τG < τV

∣∣X0 = x
)

sup
y∈G

E
(
τV
∣∣X0 = y

)
.

Let x ∈ V and n ≥ 1. We have

P
(
τG < τV

∣∣X0 = x
)
≤ P

(
τG ≤ n

∣∣X0 = x
)

+ P
(
n < τG < τV

∣∣X0 = x
)
.

We estimate separately each term. Let i = N
(
x, λ∗

)
. Then i ≥ b(ρ∗−δ)mc

and

P
(
τG ≤ n

∣∣X0 = x
)

= P
(
∃ k ≤ n N

(
Xk, λ

∗) = 0
∣∣X0 = x

)
.

From proposition 6.1, if X0 = x, we have

∀k ≥ 0 N
(
Xk, λ

∗) ≥ Nk(0, i) .

Applying proposition 6.11, we obtain, for m large enough,

P
(
τG ≤ n

∣∣X0 = x
)
≤ P

(
τ0 ≤ n

∣∣N0 = i
)
≤ n exp(−mV ∗) .

For the second term, we remark that, on the event {n < τG < τV }, we
have that

∀k ∈ { 1, . . . , n } 1 ≤ Nk(0, 1) < b(ρ∗ − δ)mc .

We use proposition 6.14 and we decompose { 1, . . . , n } into subintervals of
length κ lnm+ 1 to conclude that

P
(
n < τG < τV

∣∣X0 = x
)
≤ (1− p1)

⌊
n

κ lnm+1

⌋
.

Putting together the previous inequalities, we have, for n ≥ 1,

P
(
τG < τV

∣∣X0 = x
)
≤ n exp(−mV ∗) + (1− p1)

⌊
n

κ lnm+1

⌋
.
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We take n = m2 and we conclude that, for m large enough,

P
(
τG < τV

∣∣X0 = x
)
≤ 2m2 exp(−mV ∗) .

Let next y ∈ G. Using the bounds obtained in theorem 2.4 with r = 1 and
∆ = `, we have

∀y ∈ G E(τ∗
∣∣X0 = y

)
≤ 2 + κ∗(lnm)m2 (pM )−` .

Inspecting the proof of theorem 2.4, we see that we have in fact proved
this estimate for τV (this is a little stronger since τV ≥ τ∗). Thus, for
pM ≥ c∗/`, m ≥ c∗` ln ` and m large enough, we have

µ(G) ≤ 2m2 exp(−mV ∗)×
(

2 + κ∗(lnm)m2 (pM )−`
)

≤ m5 exp
(
− ` ln pM −mV ∗

)
.

We choose c∗ large enough in order to obtain the conclusion of theorem 2.6.

A Markov chains

We state here some results on Markov chains with finite state space which
we use in the main proofs. In the sequel, we consider a discrete time Markov
chain (Xt)t≥0 with values in a finite state space E and with transition
matrix (p(x, y))x,y∈E .

Invariant probability measure. If the Markov chain is irreducible and
aperiodic, then it admits a unique invariant probability measure µ, i.e., the
set of equations

µ(y) =
∑
x∈E

µ(x) p(x, y) , y ∈ E ,

admits a unique solution.

Representation formula. Let us suppose that the Markov chain (Xt)t≥0

is irreducible and aperiodic. Let µ be the invariant probability measure of
(Xt)t≥0. Let V be a non–empty subset of E . We define

τV = min
{
n ≥ 1 : Xn ∈ V

}
.

We have then, for any subset G of E ,

µ(G) =
1

µ(V )

∫
V

dµ(x)E
( τV −1∑
k=0

1G(Xk)
∣∣∣X0 = x

)
.

This formula can be found in the book of Freidlin and Wentzell (see chap-
ter 6, section 4 of [23]), where it is attributed to Khas’minskii, and in the
book of Kifer [30, 31].
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Lemma A.1 For any subsets V,G of E , we have

µ(G) ≤ sup
x∈V

P
(
τG < τV

∣∣X0 = x
)

sup
y∈G

E
(
τV
∣∣X0 = y

)
.

Proof. From the representation formula for the invariant measure, we
obtain that

µ(G) ≤ sup
x∈V

E
( τV −1∑
k=0

1G(Xk)
∣∣∣X0 = x

)
.

Let us try to bound the last expectation. We denote by Ex the expectation
for the Markov chain starting from x. We have

Ex

( τV −1∑
k=0

1G(Xk)
)

= Ex

(∑
y∈G

1τG<τV 1XτG=y

τV −1∑
k=0

1G(Xk)
)

=
∑
y∈G

Ey

( τV −1∑
k=0

1G(Xk)
)
Px
(
τG < τV , XτG = y

)
≤
∑
y∈G

Ey
(
τV
)
Px
(
τG < τV , XτG = y

)
≤ sup

y∈G
Ey
(
τV
)
Px
(
τG < τV

)
.

Taking the supremum over x ∈ V , we obtain the inequality stated in the
lemma. �

For x ∈ E , we define

T (x) = inf
{
n ≥ 0 : Xn = x

}
.

Lemma A.2 Let k ≥ 1 and let x1, . . . , xk be k distinct points of E . The
random variables XT (x1)+1, . . . , XT (xk)+1 are independent.

Proof. We do the proof by induction over k. For k = 1, there is nothing
to prove. Let k ≥ 2 and suppose that the result has been proved until rank
k − 1. Let x1, . . . , xk be k distinct points of E . Let y1, . . . , yk be k points
of E . Let us set

T = min
{
T (xi) : 1 ≤ i ≤ k

}
.
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Let us compute

P
(
XT (x1)+1 = y1, . . . , XT (xk)+1 = yk

)
=∑

1≤i≤k

P
(
XT (x1)+1 = y1, . . . , XT (xk)+1 = yk, T = T (xi)

)
=

∑
1≤i≤k

P
(
XT (x1)+1 = y1, . . . , XT (xk)+1 = yk |T = T (xi)

)
P
(
T = T (xi)

)
=

∑
1≤i≤k

P
(
∀j 6= i XT (xj)+1 = yj , X1 = yi |X0 = xi

)
P
(
T = T (xi)

)
=

∑
1≤i≤k

p(xi, yi)P
(
∀j 6= i XT (xj)+1 = yj |X0 = yi

)
P
(
T = T (xi)

)
.

We use the induction hypothesis:

P
(
∀j 6= i XT (xj)+1 = yj |X0 = yi

)
=
∏
j 6=i

p(xj , yj) .

Reporting in the sum, we get

P
(
XT (x1)+1 = y1, . . . , XT (xk)+1 = yk

)
=

=
∑

1≤i≤k

∏
1≤j≤k

p(xj , yj)P
(
T = T (xi)

)
=

∏
1≤j≤k

p(xj , yj) .

This completes the induction step and the proof. �

Lemma A.3 Let τ be a stopping time associated to the Markov chain
(Xt)t≥0. If there exists an integer k and β positive such that

∀x ∈ E P
(
τ ≤ k |X0 = x

)
≥ β ,

then we have

∀x ∈ E E
(
τ |X0 = x

)
≤ k

β
.

Proof. Reversing the inequality, we have

∀x ∈ E P
(
τ > k |X0 = x

)
≤ 1− β .

Since the bound is uniform with respect to x, we prove by induction on n
that

∀x ∈ E ∀n ≥ 1 P
(
τ > nk |X0 = x

)
≤ (1− β)n .

62



We compute next the expectation of τ as follows: for x ∈ E ,

E
(
τ |X0 = x

)
=

∞∑
n=0

P
(
τ > n |X0 = x

)
≤
∞∑
i=0

k−1∑
l=0

P
(
τ > ik + l |X0 = x

)
≤
∞∑
i=0

kP
(
τ > ik |X0 = x

)
≤
∞∑
i=0

k(1− β)i ≤ k

β

as requested. �

B Monotonicity

We first recall some standard definitions concerning monotonicity and cou-
pling for stochastic processes. A classical reference is Liggett’s book [32],
especially for applications to particle systems. In the next two definitions,
we consider a discrete time Markov chain (Xn)n≥0 with values in a space
E . We suppose that the state space E is finite and that it is equipped with
a partial order ≤. A function f : E → R is non–decreasing if

∀x, y ∈ E x ≤ y ⇒ f(x) ≤ f(y) .

Definition B.1 The Markov chain (Xn)n≥0 is said to be monotone if, for
any non–decreasing function f , the function

x ∈ E 7→ E
(
f(Xn) |X0 = x

)
is non–decreasing.

A natural way to prove monotonicity is to construct an adequate coupling.

Definition B.2 A coupling for the Markov chain (Xn)n≥0 is a family of
processes (Xx

n)n≥0 indexed by x ∈ E , which are all defined on the same
probability space, and such that, for x ∈ E , the process (Xx

n)n≥0 is the
Markov chain (Xn)n≥0 starting from X0 = x. The coupling is said to be
monotone if

∀x, y ∈ E x ≤ y ⇒ ∀n ≥ 1 Xx
n ≤ Xy

n .

If there exists a monotone coupling, then the Markov chain is monotone.
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C Stochastic domination

Let µ, ν be two probability measures on R. We say that ν stochastically
dominates µ, which we denote by µ � ν, if for any non–decreasing positive
function f , we have µ(f) ≤ ν(f).

Lemma C.1 Let n ≥ 1, p ∈ [0, 1], λ > 0 be such that (1−p)n ≥ exp(−λ).
Then the binomial law B(n, p) of parameters n, p is stochastically domi-
nated by the Poisson law P(λ) of parameter λ.

Proof. Let X1, . . . , Xn be independent random variables with common
law the Poisson law of parameter − ln(1− p). Let Y be a further random
variable, independent of X1, . . . , Xn, with law the Poisson law of parameter
λ− n ln(1− p). Obviously, we have

Y +X1 + · · ·+Xn ≥ min(X1, 1) + · · ·+ min(Xn, 1) .

Moreover, the law of the lefthand side is the Poisson law of parameter λ,
while the law of the righthand side is the binomial law B(n, p). �

Lemma C.2 Let λ > 0 and let Y be a random variable with law the
Poisson law P(λ) of parameter λ. For any t ≥ λ, we have

P (Y ≥ t) ≤
(λe
t

)t
.

Proof. We write

P (Y ≥ t) =
∑
k≥t

λk

k!
exp(−λ) =

∑
k≥t

λk−t

k!
exp(−λ)λt

≤
∑
k≥t

tk−t

k!
exp(−λ)λt ≤

(λe
t

)t
.

�

Let Y be a random variable following the Poisson law P(λ). For any t ∈ R,
we have

ΛY (t) = lnE
(

exp(tY )
)

= ln
( ∞∑
k=0

λk

k!
exp(−λ+ kt)

)
= λ

(
exp(t)− 1

)
.

For any α, t ∈ R,

ΛαY (t) = ΛY (αt) = λ
(

exp(αt)− 1
)
.
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Let us compute the Fenchel–Legendre transform Λ∗αY . By definition, for
x ∈ R,

Λ∗αY (x) = sup
t∈R

(
tx− λ

(
exp(αt)− 1

))
.

The maximum is attained at t = (1/α) ln(x/(λα)), hence

Λ∗αY (x) =
x

α
ln
( x

λα

)
− x

α
+ λ .

Lemma C.3 Let p ∈ [0, 1] and let n ≥ 1. Let X be a random variable
following the binomial law B(n, p). Let Y be a random variable following
the Poisson law P(np). For any α ∈ R, we have Λ∗αX ≥ Λ∗αY .

Proof. For any t ∈ R, we have

ΛX(t) = lnE
(

exp(tX)
)

= n ln
(
1− p+ p exp(t)

)
≤ np

(
exp(t)− 1

)
.

For any α, t ∈ R,

ΛαX(t) = ΛX(αt) ≤ np
(

exp(αt)− 1
)
.

Thus, taking λ = np, we conclude that

∀t ∈ R ΛαX(t) ≤ ΛαY (t) .

Taking the Fenchel–Legendre transform, we obtain

∀x ∈ R Λ∗αX(x) ≥ Λ∗αY (x)

as required. �

D Binomial estimate

We recall a basic estimate for the binomial coefficients.

Lemma D.1 For any n ≥ 1, any k ∈ { 0, . . . , n }, we have∣∣∣ ln n!

k!(n− k)!
+ k ln

k

n
+ (n− k) ln

n− k
n

∣∣∣ ≤ 2 lnn+ 3 .

Proof. The proof is standard (see for instance [19]). Setting, for n ∈ N,
φ(n) = lnn!− n lnn+ n, we have

ln
n!

k!(n− k)!
= lnn!− ln k!− ln(n− k)!

= n lnn−n+φ(n)−
(
k ln k−k+φ(k)

)
−
(
(n−k) ln(n−k)−(n−k)+φ(n−k)

)
= −k ln

k

n
− (n− k) ln

n− k
n

+ φ(n)− φ(k)− φ(n− k) .
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Comparing the discrete sum lnn! =
∑

1≤k≤n ln k to the integral
∫ n

1
lnx dx,

we see that 1 ≤ φ(n) ≤ lnn+ 2 for all n ≥ 1. On one hand,

φ(n)− φ(k)− φ(n− k) ≤ lnn ,

on the other hand,

φ(n)− φ(k)− φ(n− k) ≥ 1− (ln k + 2)− (ln(n− k) + 2) ≥ −3− 2 lnn

and we have the desired inequalities. �

E Exponential inequalities

Hoeffding’s inequality. We state Hoeffding’s inequality for Bernoulli
random variables [26]. Suppose that X is a random variable with law the
binomial law B(n, p). We have

∀t < np P (X < t) ≤ exp
(
− 2

n

(
np− t)2

)
.

Tchebytcheff exponential inequality. Let X1, . . . , Xn be i.i.d. random
variables with common law µ. Let Λ be the Log–Laplace of µ, defined by

∀t ∈ R Λ(t) = ln
(∫

R
exp(ts) dµ(s)

)
.

Let Λ∗ be the Cramér transform of µ, defined by

∀x ∈ R Λ∗(x) = sup
t∈R

(
tx− Λ(t)

)
.

We suppose that µ is integrable and we denote by m its mean, i.e., m =∫
R x dµ(x). We have then

∀x ≥ m P
( 1

n

(
X1 + · · ·+Xn

)
≥ x

)
≤ exp

(
− nΛ∗(x)

)
.
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