
ORIENTED MEASURES

Raphaël CERF
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is positive. We study the range R of an oriented measure:
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◦
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1. Introduction

A theorem of Lyapunov states that the range R of a non–atomic vector measure µ on [a, b]

R = {µ(A) : A measurable subset of [a, b] }

coincides with the convex set {∫ b

a

ρ dµ : 0 ≤ ρ ≤ 1

}
.

However for a given ρ, 0 ≤ ρ ≤ 1, the usual proofs based on convexity–extreme points
arguments [4,5] do not give any information about the existence of a ”nice” set E such
that

µ(E) =
∫ b

a

ρ dµ.

Consider for instance the two–dimensional vector measure µ(A) = (|A|, |A|+ 2|A ∩B|)
where B is a borelian subset of [a, b] and | | denotes the Lebesgue measure. For each
set E, the equality µ(E) = µ(B) implies B = E.
When the measure µ admits a density f , Halkin [3] showed that if for each vector p ∈ Rn
the set {

t ∈ [a, b] : p · f(t) > 0
}

(where · is the usual scalar product) is a finite (respectively countable) union of intervals
then there exists a set E which is a finite (resp. countable) union of intervals.
In our paper [2] we introduced the stronger orientation condition ∆:
we say that n real functions f1, · · · , fn verify condition ∆ on an interval [a, b] if for each k
in {1, · · · , n}, the determinant∣∣∣∣∣∣∣∣

f1(x1) f1(x2) · · · f1(xk)
f2(x1) f2(x2) · · · f2(xk)

...
...

. . .
...

fk(x1) fk(x2) · · · fk(xk)

∣∣∣∣∣∣∣∣
is not equal to zero whenever the xi’s in [a, b] are distinct and its sign is constant on the
k–tuples (x1, · · · , xk) such that a ≤ x1 < x2 < · · · < xk ≤ b.
We showed that if a measure µ admits a density function whose components are continuous
and satisfy the orientation condition ∆ then the set E may be built in such a way that its
characteristic function has at most n discontinuity points. Moreover, if 0 < ρ < 1 there
exist two such sets E1 and E2 whose characteristic functions χE1 and χE2 have exactly n
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discontinuity points (one set is a neighbourhood of a whereas the other is not).
Our proofs relied upon the fact that the map

(α1, · · · , αn) 7−→
∫ α2

α1

f(x) dx+
∫ α4

α3

f(x) dx+ · · ·

is differentiable and has an invertible Jacobian whenever a < α1 < · · · < αn < b.
We also showed that whenever a function x satisfies x(0) = · · · = x(n−2)(0) = 0 and
x(n−1)(0) = 1 then the n functions (x(n−1), · · · , x′, x) verify ∆ on a neighbourhood of 0.
We applied these results to the study of reachable sets of constrained bang–bang solutions
and to non–convex problems of the calculus of variations.
In this paper we deal with measures which are not necessarily absolutely continuous with
respect to the Lebesgue measure.

Oriented measure. If A1, · · · , Ak are k measurable sets of [a, b], by A1 < · · · < Ak we
mean that for all k–tuple (x1, · · · , xk) of A1× · · · ×Ak we have x1 < · · · < xk. A measure
µ = (µ1, · · · , µn) is said to be oriented if for each k–tuple of measurable sets A1, · · · , Ak
such that A1 < · · · < Ak the determinant∣∣∣∣∣∣∣

µ1(A1) · · · µ1(Ak)
...

. . .
...

µk(A1) · · · µk(Ak)

∣∣∣∣∣∣∣
is positive.

In this more general framework we give a new proof of the results stated in [2].
We carry out a deep study of the range R of the measure:
• for each point q of its interior R◦ there exist exactly two distinct ”dual” sets E1, E2

whose characteristic functions have n discontinuity points such that µ(E1) = q = µ(E2);
• the set R◦ coincides with {∫ b

a

ρ dµ : 0 < ρ < 1

}
so that the above set is open;
• the set R is strictly convex;
• a point µ(E) belongs to the boundary ∂R of R if and only if the characteristic function
of E has less than n− 1 discontinuity points;
• finally we give a recursive decomposition of the boundary ∂R.

2. Oriented measures

Throughout the paper we will work with an interval [a, b] equipped with the Lebesgue σ–
field L. Measurable will mean measurable with respect to this σ–field. A negligible set
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is a measurable set of Lebesgue measure zero. A vector measure on [a, b] is a countably
additive set function defined on the Lebesgue σ–field with values in Rn for some integer n.

Notation. If A1, · · · , Ak are k measurable sets of [a, b], by A1 < · · · < Ak we mean that
A1, · · · , Ak have non–zero Lebesgue measure and for all k–tuple (x1, · · · , xk) of A1×· · ·×Ak
we have x1 < · · · < xk.
Let µ = (µ1, · · · , µk) be a vector measure. If ρ belongs to L1

µ([a, b]), we note

µi(ρ) =
∫ b

a

ρ dµi , µ(ρ) =
∫ b

a

ρ dµ =
(
µ1(ρ), · · · , µk(ρ)

)
.

Definition 2.1. A vector measure µ = (µ1, · · · , µn) on [a, b] is said to be oriented on
[a, b] if it is non–atomic and if for each k in {1, · · · , n} and for each k–tuple of measurable
sets A1, · · · , Ak such that A1 < · · · < Ak the determinant∣∣∣∣∣∣∣

µ1(A1) · · · µ1(Ak)
...

. . .
...

µk(A1) · · · µk(Ak)

∣∣∣∣∣∣∣
is positive.

Remark. If µ is oriented then µ1 is a positive measure which assigns positive values to
sets of positive Lebesgue measure. In particular, if I is a non–trivial interval, then µ(I) is
non–zero.

Remark. If µ is oriented and I1, · · · , In are n disjoint non–trivial intervals, then the vectors
µ(I1), · · · , µ(In) form a basis of Rn.

A very important fact concerning oriented measures is that their characteristic property
carries on from sets to positive functions.

Notation. If ρ is a function its support is the set supp ρ = {x : ρ(x) 6= 0 }.

Theorem 2.2. Let µ = (µ1, · · · , µn) be an oriented measure. If ρ1, · · · , ρn are n µ
integrable non–negative functions such that supp ρ1 < · · · < supp ρn then the determinant∣∣∣∣∣∣∣

µ1(ρ1) · · · µ1(ρn)
...

. . .
...

µn(ρ1) · · · µn(ρn)

∣∣∣∣∣∣∣
is positive.

Let us first state a preparatory lemma.
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Lemma 2.3. Let µ = (µ1, · · · , µn) be a vector measure and ρ1, · · · , ρn be n measurable µ–
integrable functions. The determinant∣∣∣∣∣∣∣∣∣∣

∫
ρ1 dµ1 · · ·

∫
ρn dµ1

...
. . .

...∫
ρ1 dµn · · ·

∫
ρn dµn

∣∣∣∣∣∣∣∣∣∣
is equal to∫

· · ·
∫
ρ1(s1) · · · ρn(sn) d

( ∑
σ∈Sn

ε(σ)µσ(1) ⊗ · · · ⊗ µσ(n)

)
(s1, · · · , sn).

Proof of the lemma. The identity is obviously true whenever ρ1, · · · , ρn are characteristic
functions. The monotone class theorem yields the result. �

Proof of theorem 2.2. We apply the lemma. The domain of integration of the n–fold
integral is reduced to supp ρ1 × · · · × supp ρn.
We first prove that the measure µ̂ =

∑
σ∈Σn

ε(σ)µσ(1) ⊗ · · · ⊗ µσ(n) is positive on the
product space (supp ρ1,L)×· · ·×(supp ρn,L) equipped with the product σ–field (where L
denotes the one–dimensional Lebesgue σ–field). Notice that the product σ–field L⊗n does
not coincide in general with the n–dimensional Lebesgue σ–field (i.e. the completion of
the n–dimensional Borel σ–field).
Consider first the case of a subset of supp ρ1 × · · · × supp ρn which is a product set
A1×· · ·×An (where the Ai’s are measurable). Necessarily, each Ai is a subset of supp ρi.
If none of the Ai’s is negligible, then we have A1 < · · · < An and µ̂(A1 × · · · × An) =
det[µ(A1), · · · , µ(An)] is positive by definition.
Suppose now some of the Ai’s are negligible. For each index i, 1 ≤ i ≤ n, there exists a
decreasing sequence (Bim)m∈N of non–negligible measurable subsets of supp ρi having an
empty intersection (this is a consequence of the fact that supp ρi is not negligible). Now
for each m we have A1 ∪ B1

m < · · · < An ∪ Bnm whence µ̂(A1 ∪ B1
m × · · · × An ∪ Bnm) is

positive. By the continuity of the measure µ we have

µ̂(A1 × · · · ×An) = lim
m→∞

µ̂(A1 ∪B1
m × · · · ×An ∪Bnm)

so that µ̂(A1 · · ·An) is non–negative. It follows that µ̂ is non–negative on the boolean
algebra of the finite (disjoint) union of product sets: its unique extension to the σ–field
L⊗n generated by these products is also non–negative.
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The function (s1, · · · , sn) 7→ ρ1(s1) · · · ρn(sn) is positive everywhere on this set and is mea-
surable with respect to the σ–field L⊗n: thus the integral

∫
ρ1(s1) · · · ρn(sn) dµ̂(s1, · · · , sn)

is positive. �

Remark. If µ is absolutely continuous with respect to the Lebesgue measure then Lyapunov
theorem yields an alternative proof of theorem 2.2. In fact

∀k ∈ {1, · · · , n} ∃Ek ⊂ supp ρk µ(ρk) = µ(Ek).

Necessarily µ(Ek) is non–zero for each k (see remark after definition 2.1) and the absolute
continuity hypothesis on µ implies that the Ek’s are not negligible.
It follows that E1 < · · · < En and det[µ(ρ1), · · · , µ(ρn)] = det[µ(E1), · · · , µ(En)] > 0.

We shall denote by Γk the subset

Γk = { (x1, · · · , xk) ∈ Rk : a ≤ x1 ≤ · · · ≤ xk ≤ b }.

Definition 2.4. The measure µ is said to be locally oriented if for each n–tuple x of
Γn there exists a neighbourhood V = V1 × · · · × Vn of x such that for each k–tuple of
measurable sets A1 < · · · < Ak satisfying A1 × · · · ×Ak ⊂ V1 × · · · × Vk, the determinant∣∣∣∣∣∣∣

µ1(A1) · · · µ1(Ak)
...

. . .
...

µk(A1) · · · µk(Ak)

∣∣∣∣∣∣∣
is positive.

As a curiosity, we prove the following

Proposition 2.5. A locally oriented measure on [a, b] is oriented on [a, b].

Proof. Let µ be a locally oriented measure. The compact set Γn can be covered by a finite
family of open sets (Vi)i∈Υ where Vi = Ii1 × · · · × Iin and (Iik) i∈Υ

1≤k≤n
are subintervals of

[a, b] in such a way that for each k–tuple of measurable sets A1 < · · · < Ak satisfying
A1× · · · ×Ak ⊂ Vi for some i ∈ Υ, the determinant formed with the first k components of
the vectors µ(A1), · · · , µ(Ak) is positive.
Let (Jl)l∈Σ be the finite family of the atoms of the algebra generated by the sets (Iik, i ∈
Υ, 1 ≤ k ≤ n) (thus the Jl’s are exactly the sets of the form

⋂
i,k:x∈Ii

k
Iik for some x ∈ [a, b]).

Let us remark that for each (l1, · · · , lk) in Σk, the product Jl1 × · · · × Jlk is contained in
some product Ii01 × · · · × I

i0
k . In fact

Jl1 × · · · × Jlk ⊂
⋃
i∈Υ

Ii1 × · · · × Iik
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so that there exits i0 such that Jl1 × · · · × Jlk ∩ I
i0
1 × · · · × I

i0
k is not empty. It follows

that Jl1 ∩ I
i0
1 6= ∅,· · · , Jlk ∩ I

i0
k 6= ∅ and by the very construction of the sets Jl’s we obtain

Jl1 ⊂ I
i0
1 , · · · , Jlk ⊂ I

i0
k . We denote by µ̂k the measure µ̂k =

∑
σ∈Σk

ε(σ)µσ(1)⊗· · ·⊗µσ(k).
Let (A1, · · · , Ak) be a k–tuple of measurable sets such that A1 < · · · < Ak. The product
A1×· · ·×Ak is the disjoint union of the sets (A1×· · ·×Ak)∩(Jl1×· · ·×Jlk) when (l1, · · · , lk)
varies in Σk. Let now (l1, · · · , lk) belong to Σk. Either (A1×· · ·×Ak)∩ (Jl1 ×· · ·×Jlk) is
empty (and thus has a zero µ̂k measure) or it is not empty and necessarily, Jl1 < · · · < Jlk .
Proceeding as in the proof of theorem 2.2, we show that µ̂k is a positive measure on
the set (Jl1 × · · · × Jlk) whence µ̂k((A1 × · · · × Ak) ∩ (Jl1 × · · · × Jlk)) is non–negative.
Since the set A1 × · · · × Ak is not negligible, at least one of these sets is not negligible.
Let (A1 × · · · × Ak) ∩ (Jl1 × · · · × Jlk) be such a set. It’s a subset of one of the Vi’s and
moreover (A1 ∩Jl1) < · · · < (Ak ∩Jlk) whence µ̂k((A1 ∩Jl1)× · · ·× (Ak ∩Jlk)) is positive.
Thus µ̂k(A1 × · · · ×Ak) is positive. �

3. Oriented measures with densities

Orientation condition ∆. We say that n real functions f1, · · · , fn verify condition ∆
on an interval [a, b] if for each k in {1, · · · , n}, the determinant

∣∣∣∣∣∣∣∣
f1(x1) · · · f1(xk)
f2(x1) · · · f2(xk)

...
. . .

...
fk(x1) · · · fk(xk)

∣∣∣∣∣∣∣∣
is positive whenever the xi’s in [a, b] are such that a ≤ x1 < x2 < · · · < xk ≤ b.

Remark. In our previous paper [2], we didn’t impose the sign of the above determinant
to be positive. When dealing with continuous functions, a connectedness argument shows
immediately that the sign is constant on the set Γk. In our present framework (at the
measure level), we find it convenient to work with this slightly more restrictive condition.

Examples. For n = 1, condition ∆ states that the function f1 is positive; for n = 2, the
functions f1, f2 satisfy ∆ if and only if f1 is positive and f2/f1 is strictly increasing.
The functions fi(t) = ti−1 (i ≥ 1) satisfy condition ∆ on R (the corresponding determi-
nants are Vandermonde determinants).

Proposition 3.1. Let f1, · · · , fn be n functions in L1([a, b]) satisfying the orientation
condition ∆ on [a, b]. Let µi be the measure on [a, b] whose density with respect to the
Lebesgue measure is fi. Then the measure µ = (µ1, · · · , µn) is oriented.

Proof. Let A1 < · · · < Ak be k measurable sets of [a, b]. Since the determinant is a
8



multilinear continuous form, we can write∣∣∣∣∣∣∣∣∣∣

∫
A1

f1 · · ·
∫
Ak

f1

...
. . .

...∫
A1

fk · · ·
∫
Ak

fk

∣∣∣∣∣∣∣∣∣∣
=
∫
· · ·
∫

A1×···×Ak

∣∣∣∣∣∣∣∣
f1(s1) · · · f1(sk)
f2(s1) · · · f2(sk)

...
. . .

...
fk(s1) · · · fk(sk)

∣∣∣∣∣∣∣∣ ds1 · · · dsk.

By condition ∆, the integrand is positive on A1 × · · · ×Ak. �

If f1, · · · , fk are of class Ck−1 on [a, b] we will denote their Wronskian by W (f1, · · · , fk).
The following operational criterion for the fulfilment of the orientation condition ∆ has
been used in [2].

Proposition 3.2. Let f1, · · · , fn ∈ Cn−1([a, b]) be such that

∀t ∈ [a, b] W (f1)(t) > 0, · · · ,W (f1, · · · , fn)(t) > 0.

Then f1, · · · , fn satisfy the orientation condition ∆ on [a, b].

4. Notations and preliminary lemmas

Let us introduce some notations.
If u1, · · · , un are vectors of Rn, their determinant is sometimes denoted by det [u1, · · · , un].
Let A be a n× n matrix with real coefficients; by det A or |A| we denote its determinant.
For each i, j ∈ {1, · · · , n}, by Aij we mean the (n − 1) × (n − 1) matrix obtained by
removing the i–th row and the j–th column from A. Surprisingly, the following simple
algebraic trick will play an essential role in the existence part of the proof of theorem 1.

Lemma 4.1. Let A = (aij)1≤i,j≤n be an n×n matrix with real coefficients. Let x1, · · · , xn
be such that 

a1,1x1 + · · ·+ a1,n−1xn−1 + a1,nxn = 0
a2,1x1 + · · ·+ a2,n−1xn−1 + a2,nxn = 0

...
. . .

...
...

an−1,1x1+ · · ·+an−1,n−1xn−1+an−1,nxn= 0

If detAnn 6= 0 then

an1x1 + · · ·+ annxn =
|A|
|Ann|

xn.

Proof. Cramer rule applied to the above system yields

∀i ∈ {1, · · · , n− 1} xi =
(−1)n+i|Ani|
|Ann|

xn
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so that

an1x1 + · · ·+ annxn =
∑n
i=1(−1)n+iani|Ani|

|Ann|
xn =

|A|
|Ann|

xn

since
∑n
i=1(−1)n+iani|Ani| is the development of the determinant |A| along the first

row. �

The next lemmas involve strongly the notion of oriented measure.

Lemma 4.2. Let F and G be two distinct subsets of [a, b] which are the union of l and
m disjoint closed intervals

F =
l⋃
i=1

Ii , G =
m⋃
j=1

Jj

and let µ = (µ1, · · · , µn) be an oriented measure. Assume µ(F ) = µ(G).
Then n < l +m; moreover if ∂F ∩ ∂G 6= ∅ then n < l +m− 1.

Proof. Let us first remark that the symmetric difference

(I1 ∪ · · · ∪ Il) ∆ (J1 ∪ · · · ∪ Jm) =
(⋃
i,j

(Ii ∪ Jj)
)
\
(⋃
i,j

(Ii ∩ Jj)
)

is the union of at most l+m non–trivial intervals and that whenever at least two intervals
have a common boundary point then this number is smaller than l + m − 1. Since the
intervals I1, · · · , Il are disjoint, as well as J1, · · · , Jm, we have

(I1∪· · ·∪Il)∪(J1∪· · ·∪Jm)\(I1∩J1) = (I1∪J1)\(I1∩J1)∪(I2∪· · ·∪Il)∪(J2∪· · ·∪Jm).

Now, the set (I2∪· · ·∪Il)∪ (J2∪· · ·∪Jm) is a union of at most l+m−2 disjoint intervals.
Either I1∩J1 = ∅ or I1∩J1 6= ∅ and (I1∪J1) is an interval. In both cases (I1∪J1)\(I1∩J1)
is the union of at most two intervals (at most one if I1 and J1 have a boundary point in
common). A straightforward induction gives the result.
Since the sets F and G are distinct, F∆G is not empty. Let A1 < · · · < Ap be the
connected components of F∆G. For k in {1, · · · , p} we have

Ak = (Ak ∩ F ) ∪ (Ak ∩G) ,
(Ak ∩ F ) ∩ (Ak ∩G) ⊂ Ak ∩ (F ∩G) ⊂ (F∆G) ∩ (F ∩G) = ∅ ;

the set Ak being connected, either Ak ⊂ F \G or Ak ⊂ G \ F . Put

λk =
{

+1 if Ak ⊂ F \G
−1 if Ak ⊂ G \ F
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so that the equality µ(F ) = µ(G) can be rewritten as
λ1µ1(A1)+ · · ·+λpµ1(Ap)= 0

...
. . .

...
λ1µn(A1)+ · · ·+λpµn(Ap)= 0

Suppose n ≥ p; the first p equations imply that the determinant∣∣∣∣∣∣∣
µ1(A1) · · · µ1(Ap)

...
. . .

...
µp(A1) · · · µp(Ap)

∣∣∣∣∣∣∣
vanishes, which contradicts the fact that µ is oriented. �

The following notations will be used throughout the paper.

Notations 4.3. We shall denote by Γk the set

Γk = { (γ1, · · · , γk) ∈ Rk : a ≤ γ1 ≤ · · · ≤ γk ≤ b }.

To each k–tuple γ = (γ1, · · · , γk) belonging to Γk we associate the two sets

E−γ =
⋃

0≤i≤k
i odd

[γi, γi+1] , E+
γ =

⋃
0≤i≤k
i even

[γi, γi+1]

where by convention γ0 = a, γk+1 = b.

Lemma 4.4 (Uniqueness). Let µ be a n–dimensional oriented measure on [a, b]. As-
sume the n–tuples γ = (γ1, · · · , γn) and δ = (δ1, · · · , δn) of Γn satisfy µ(E−γ ) = µ(E−δ )
(respectively µ(E+

γ ) = µ(E+
δ )). Then E−γ = E−δ (resp. E+

γ = E+
δ ).

Proof. Assume E−γ , E
−
δ are distinct and µ(E−γ ) = µ(E−δ ).

Now, two possible cases may occur according to the parity of n.
• If n = 2r the sets E−γ and E−δ are the union of at most r intervals. Lemma 4.2 implies
n < r + r which is absurd.
• If n = 2r+ 1 the sets E−γ and E−δ are the union of at most r+ 1 intervals. However b is
a common boundary point. Lemma 4.2 implies n < (r + 1) + (r + 1)− 1 which is absurd.
The dual case µ(E+

γ ) = µ(E+
δ ) can be treated similarly. �

The following essential lemma will be used repeatedly.
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Lemma 4.5. Let µ = (µ1, · · · , µn) be an oriented measure on the interval [a, b] and
I0 < I1 < · · · < In be n+ 1 subintervals of [a, b]. Then, given a positive ε, there exist n+ 1
positive real numbers λ0, · · · , λn such that

∀l ∈ {0, · · · , n} 0 < λl < ε and
n∑
l=0

(−1)lλl µ(Il) = 0.

Proof. Consider the n× n linear system

λ0µ(I0)− λ1µ(I1) + · · ·+ (−1)n−1λn−1µ(In−1) = (−1)n−1λnµ(In).

where λn is a parameter. The determinant of the system is

ωn = (−1)
n(n−1)

2 det [µ(I0), · · · , µ(In−1)].

The measure µ being oriented, ωn is not zero. Moreover, for each i in {0, · · · , n− 1},

ωi=

∣∣∣∣∣∣∣∣
µ1(I0) · · · (−1)i−2µ1(Ii−2) (−1)n−1µ1(In) (−1)iµ1(Ii) · · · (−1)n−1µ1(In−1)
µ2(I0) · · · (−1)i−2µ2(Ii−2) (−1)n−1µ2(In) (−1)iµ2(Ii) · · · (−1)n−1µ2(In−1)

...
. . .

...
...

...
. . .

...
µn(I0) · · · (−1)i−2µn(Ii−2) (−1)n−1µn(In) (−1)iµn(Ii) · · · (−1)n−1µn(In−1)

∣∣∣∣∣∣∣∣

i.e. ωi = (−1)
n(n−1)

2 det [µ(I0), · · · , µ(Ii−2), µ(Ii), · · · , µ(In)].

By Cramer formula, λi equals λnωi/ωn. The measure µ being oriented ωi and ωn have the
same sign so that λi is positive whenever λn is positive. Choosing λn such that

0 < λn < min(
ωn
ω0
ε, · · · , ωn

ωn−1
ε, ε)

we obtain an (n+ 1)–tuple which solves the problem. �

5. Main result

The statement of the main result involves the notations 4.3.
12



Theorem 5.1. Let µ be an oriented measure on [a, b] and let ρ be a measurable function
defined on [a, b] with values in [0, 1].
There exist two n–tuples α = (α1, · · · , αn) and β = (β1, · · · , βn) in Γn such that

µ(E−α ) =
∫ b

a

ρ dµ = µ(E+
β ). (∗)

If in addition 0 < ρ < 1 then α and β in Γn satisfying (∗) are unique and verify

a < α1 < · · · < αn < b , a < β1 < · · · < βn < b.

Remark. The measure µ being non–atomic we don’t care about boundary points of inter-
vals and we might write µ(α, β) for the measure of the interval µ([α, β]).

Proof. We consider first the case 0 < ρ < 1 and we prove the result by induction on n.
• n=1. The measure µ being oriented on [a, b], the maps α 7→ µ([α, b]) and β 7→ µ([a, β])
are continuous and strictly monotonic on [a, b]. It follows that there exist unique real
numbers α1 and β1 such that

µ([α1, b]) =
∫ b

a

ρ dµ = µ([a, β1]).

• Assume the result is true at rank n − 1. We deal only with the n–tuple β: existence
of the n–tuple α corresponding to ρ at rank n follows from the fact that it coincides with
the n–tuple β corresponding to 1− ρ.
Define for each k in {1, · · · , n}

µk(ρ) =
∫ b

a

ρ dµk

and for each n–tuple β in Γn
θk(β) = µk(E+

β ).

The inductive assumption yields the existence of two (n − 1)–tuples ᾱ = (ᾱ1, · · · , ᾱn−1)
and β̄ = (β̄1, · · · , β̄n−1) such that

a < ᾱ1 < · · · < ᾱn−1 < b , a < β̄1 < · · · < β̄n−1 < b

and for each k in {1, · · · , n− 1}

θk(a, ᾱ1, · · · , ᾱn−1) =
∑

0≤i≤n−1
i odd

µk(ᾱi, ᾱi+1) = µk(ρ) ,

θk(β̄1, · · · , β̄n−1, b) =
∑

0≤i≤n−1
i even

µk(β̄i, β̄i+1) = µk(ρ) .
(∗∗)
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Put

S =
{
β = (β1, · · · , βn) ∈ Γn : β1 ≤ β̄1, ∀k ∈ {1, · · · , n− 1} θk(β) = µk(ρ)

}
.

Since (β̄1, · · · , β̄n−1, b) and (a, ᾱ1, · · · , ᾱn−1) belong to S, the set S is not empty.
We show now that

either θn(β̄1, · · · , β̄n−1, b) < µn(ρ) < θn(a, ᾱ1, · · · , ᾱn−1)
or θn(a, ᾱ1, · · · , ᾱn−1) < µn(ρ) < θn(β̄1, · · · , β̄n−1, b).

The equalities (∗∗) yield for each k in {1, · · · , n− 1}

∑
0≤i≤n−1

i even

∫ β̄i+1

β̄i

(1− ρ) dµk −
∑

0≤i≤n−1
i odd

∫ β̄i+1

β̄i

ρ dµk = 0.

Put for k, j in {1, · · · , n}

xβj = (−1)j+1, aβkj =
∫ β̄j

β̄j−1

ρβj dµk, Aβ =
(
aβkj

)
1≤k,j≤n

where

ρβj =
{

ρ if j is even,
1− ρ if j is odd.

With these notations the above equalities become

∀k ∈ {1, · · · , n− 1}
n∑
j=1

aβkjx
β
j = 0.

Since the measure µ is oriented then the determinant |Aβnn| does not vanish by theorem 2.2.
We are thus in the position to apply lemma 4.1:

θn(β̄1, · · · , β̄n−1, b)− µn(ρ) =
n∑
j=1

aβnjx
β
j =

|Aβ |
|Aβnn|

(−1)n+1.

Similarly if we define for k, j in {1, · · · , n}

xαj = (−1)j , aαkj =
∫ ᾱj

ᾱj−1

ραj dµk, Aα =
(
aαkj
)

1≤k,j≤n

14



where

ραj =
{

ρ if j is odd,
1− ρ if j is even,

we have

θn(a, ᾱ1, · · · , ᾱn−1)− µn(ρ) =
|Aα|
|Aαnn|

(−1)n.

The measure µ being oriented, the determinants |Aα| and |Aβ | have the same sign, as do
|Aαnn| and |Aβnn|. It follows that θn(β̄1, · · · , β̄n−1, b)−µn(ρ) and θn(a, ᾱ1, · · · , ᾱn−1)−µn(ρ)
have opposite signs.
At this stage, we prove that the set S is the graph of a continuous function, this will imply
that S is connected.
Let β1 belong to [a, β̄1]. We are looking for a (n − 1)–tuple (β2, · · · , βn) satisfying for
each k in {1, · · · , n− 1}

µk(a, β1) +
∑

2≤i≤n
i even

µk(βi, βi+1) = µk(ρ) = µk(a, β̄1) +
∑

2≤i≤n−1
i even

µk(β̄i, β̄i+1)

or equivalently

∀k ∈ {1, · · · , n− 1}
∑

2≤i≤n
i even

µk(βi, βi+1) = µk(β1, β̄1) +
∑

2≤i≤n−1
i even

µk(β̄i, β̄i+1)

Suppose first β1 = β̄1. The above equations become

∀k ∈ {1, · · · , n− 1}
∑

2≤i≤n
i even

µk(βi, βi+1) =
∑

2≤i≤n−1
i even

µk(β̄i, β̄i+1).

We put β = (β2, · · · , βn−1, βn) and β̂ = (β̄2, · · · , β̄n−1, b).
If n is odd then

E−β = [β2, β3] ∪ · · · ∪ [βn−1, βn], E−
β̂

= [β̄2, β̄3] ∪ · · · ∪ [β̄n−1, b];

if n is even then

E−β = [β2, β3] ∪ · · · ∪ [βn, b], E−
β̂

= [β̄2, β̄3] ∪ · · · ∪ [β̄n−2, β̄n−1].

In both cases the preceding formulae can be rewritten as

∀k ∈ {1, · · · , n− 1} µk(E−β ) = µk(E−
β̂

);
15



lemma 4.4 implies that E−β = E−
β̂

. Since in addition β̄2 < · · · < β̄n−1 < b then necessarily

β2 = β̄2, · · · , βn−1 = β̄n−1, βn = b.
Suppose now β < β̄1. Since β1 < β̄1 < · · · < β̄n−1 < b then lemma 4.5 yields the existence
of n real numbers λ1, · · · , λn in ]0, 1/2[ such that for each k in {1, · · · , n− 1}

−λ1µk(β1, β̄1) +
∑

1≤i≤n−1

(−1)i+1λi+1µk(β̄i, β̄i+1) = 0.

The function

ρ̃ = (1− λ1)χ[β1,β̄1] +
∑

1≤i≤n−1
i odd

λi+1χ[β̄i,β̄i+1] +
∑

2≤i≤n−1
i even

(1− λi+1)χ[β̄i,β̄i+1]

satisfies 0 < ρ̃ < 1 on [β1, b] and for each k in {1, · · · , n− 1}∫ b

β1

ρ̃ dµk = µk(β1, β̄1) +
∑

2≤i≤n−1
i even

µk(β̄i, β̄i+1).

We are thus led to find a (n − 1)–tuple (β2, · · · , βn) such that (β1 ≤)β2 ≤ · · · ≤ βn(≤ b)
and for each k in {1, · · · , n− 1}

∑
2≤i≤n
i even

µk(βi, βi+1) =
∫ b

β1

ρ̃ dµk,

or equivalently, if we put β̃ = (β2, · · · , βn),

∀k ∈ {1, · · · , n− 1} µk(E−
β̃

) =
∫ b

β1

ρ̃ dµk.

Existence and uniqueness of β̃ follow from the inductive assumption at rank n− 1.
In addition, since 0 < ρ̃ < 1 on [β1, b], we have β1 < β2 < · · · < βn < b.
We can thus define a map ψ : [a, β̄1]→ Rn−1 such that for all n–tuple (β1, · · · , βn) in Γn

(β1, · · · , βn) ∈ S ⇐⇒ (β2, · · · , βn) = ψ(β1).

Thus S is the graph of ψ.
By the continuity of the measure µ, the maps θk, 1 ≤ k ≤ n − 1, are continuous so
that the set S is closed; moreover, the function ψ takes its values in the compact set
[a, b]n−1. It follows that ψ is continuous. Henceforth S is connected. As a consequence,
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the map θn, being continuous on S, reaches all the values between θn(β̄1, · · · , β̄n−1, b) and
θn(a, ᾱ1, · · · , ᾱn−1). In particular, there exists a n–tuple β in S such that θn(β) = µn(ρ).
This n–tuple β solves the problem.
Since θn(a, ᾱ1, · · · , ᾱn−1) 6= µn(ρ) and θn(β̄1, · · · , β̄n−1, b) 6= µn(ρ) then a < β1 < β̄1 so
that a < β1 < β2 < · · · < βn < b. Uniqueness of β follows from lemma 4.4.

Consider now the case 0 ≤ ρ ≤ 1. Let (ρm)m∈N be a sequence of measurable functions
such that 0 < ρm < 1 and ρm converges to ρ in L1

µ([a, b]). For each function ρm there
exists a unique n-tuple βm such that

µ(E+
βm) =

∫ b

a

ρm dµ.

By compactness, we may assume that βm converges to some n–tuple β of Γn. Passing to
the limit, we obtain µ(E+

β ) = µ(ρ). �

6. The range of an oriented measure

Let µ be an oriented measure on [a, b]. We denote by R the range of µ i.e.

R = {µ(A) : A measurable subset of [a, b] }.

Lemma 6.1. Let ρ̄ be a measurable function on [a, b], 0 ≤ ρ̄ ≤ 1. Suppose there exist a
non–trivial interval I of [a, b] and a positive real number ε such that ε ≤ ρ̄ ≤ 1 − ε on I.
Then the set {∫ b

a

ρ dµ : ρ = νχI + ρ̄, ν ∈ L1
µ(I), |ν| < ε

}
is a neighbourhood of

∫ b
a
ρ̄ dµ in Rn.

Proof. Let I1 < · · · < In be n non–trivial subintervals of I. The measure µ being oriented,
the vectors µ(I1), · · · , µ(In) form a basis of Rn. The map

Λ : (λ1, · · · , λn) ∈ Rn 7−→
∑

1≤i≤n

λi µ(Ii) ∈ Rn

is a linear isomorphism and is thus open. Let

Vε = { (λ1, · · · , λn) : max
1≤i≤n

|λi| < ε }.

Since Λ(Vε) is a neighbourhood of the origin and is contained in the set{∫
I

ν dµ : ν ∈ L1
µ(I), |ν| < ε

}
,
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then the conclusion follows. �

Remark. The hypothesis ε ≤ ρ̄ ≤ 1− ε implies that µ(ρ̄) belongs to the interior of R.

Remark. The conclusion of lemma 6.1 does not hold for an arbitrary vector measure:
consider for instance the n–dimensional Lebesgue measure.

Let θ : Γn → R be the function defined by θ(γ) = µ(E−γ ).
The interior of Γn is the set Γ

◦
n = { (γ1, · · · , γn) ∈ Rn : a < γ1 < · · · < γn < b }.

Corollary 6.2. The set θ(Γ
◦
n) is contained in R◦.

Lemma 6.3. The set θ(Γ
◦
n) coincides with the set

F =

{∫ b

a

ρ dµ : 0 < ρ < 1

}
.

Proof. Existence part of theorem 5.1 implies that F is contained in θ(Γ
◦
n).

Conversely, let γ = (γ1, · · · , γn) belong to Γ
◦
n; applying lemma 4.5 to µ, γ and ε < 1/2, we

obtain a (n+ 1)–tuple (λ0, · · · , λn) such that

∀i ∈ {0, · · · , n} 0 < λi < ε and
n∑
i=0

(−1)iλi µ(γi, γi+1) = 0.

Put
ρ =

∑
0≤i≤n
i even

λiχ[γi,γi+1] +
∑

0≤i≤n
i odd

(1− λi)χ[γi,γi+1].

By construction we have 0 < ρ < 1 and∫ b

a

ρ dµ = µ(E−γ ) = θ(γ)

so that θ(γ) belongs to F . �

We have the following

Theorem 6.4. The range of θ coincides with R; the map θ induces an homeomorphism
from Γ

◦
n onto R◦ and maps ∂Γn onto ∂R.

Proof. The surjectivity of θ follows directly from theorem 5.1. Injectivity of the restriction
of θ to Γ

◦
n is a consequence of the uniqueness part of theorem 5.1 together with lemma 6.3.

We claim that θ(Γ
◦
n) is open. Let γ belong to Γ

◦
n. Lemma 4.5 allows as usual to find a
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piecewise constant function ρ̄ such that 0 < ρ̄ < 1 and µ(ρ̄) = θ(γ). Clearly there exist a
positive ε and a subinterval I of [a, b] on which ε ≤ ρ̄ ≤ 1− ε. Put

V I,ερ̄ = { νχI + ρ̄ : ν ∈ L1
µ(I), |ν| < ε }.

Lemma 6.1 implies that the set

µ(V I,ερ̄ ) =

{∫ b

a

ρ dµ : ρ ∈ V I,ερ̄

}

is a neighbourhood of µ(ρ̄) in Rn. Since each element ρ of V I,ερ̄ satisfies 0 < ρ < 1 then
µ(V I,ερ̄ ) is entirely contained in F . Moreover F coincides with θ(Γ

◦
n) and thus θ(Γ

◦
n) is a

neighbourhood of θ(γ).
Now each open convex set in Rn is the interior of its closure; by lemma 6.3, the set θ(Γ

◦
n)

is convex and its closure is R, whence θ(Γ
◦
n) = R◦.

Finally we show that the map θ is proper (i.e. that the inverse image of a compact subset
is compact). Let K be a compact subset of F and (γm)m∈N be a sequence in θ−1(K)
such that θ(γm) converges to µ(ρ) for some ρ, 0 < ρ < 1. Since the sequence (γm)m∈N is
contained in Γn, by compactness, we may assume that γm converges to γ in Γn. By the
continuity of θ, we have

θ(γ) = µ(E−γ ) =
∫ b

a

ρ dµ.

Uniqueness part of theorem 5.1 implies that γ belongs to Γ
◦
n.

The map θ is proper and thus closed. It follows that its inverse θ−1 is continuous.
The equality θ(∂Γn) = ∂R is a consequence of the inclusion θ(Γ

◦
n) ⊂ R◦ and the fact that θ

is one to one. �

We refer to [7] for the definitions of classical notions associated with convex sets. We have
the following

Theorem 6.5. The range R of an oriented measure is strictly convex.

Proof. Let µ(E), µ(F ) be two distinct points ofR. By theorem 5.1 we may assume that the
sets E and F are finite unions of closed intervals. Let λ ∈]0, 1[ and put ρ̄ = λχE+(1−λ)χF .
Assume for instance E \ F 6= ∅. Then there exists a non–trivial interval I such that

∀x ∈ I ρ̄(x) = λχE(x) + (1− λ)χF (x) = λ.

Put ε = min(λ, 1− λ). Lemma 6.1 applied to ρ̄, I, ε shows that µ(ρ̄) belongs to R◦. �
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Corollary 6.6. Let E be a measurable subset of [a, b]. Then µ(E) belongs to the boundary
of R if and only if there exists a set F which is a finite union of intervals such that χF
has less than n − 1 discontinuity points and E∆F is µ–negligible (such a set has also a
zero Lebesgue measure).

Proof. We first remark that the family of the sets which are a finite union of intervals and
whose characteristic function has less than n − 1 discontinuity points coincides with the
family {E−γ : γ ∈ ∂Γn }.
Theorem 6.4 shows that µ(F ) belongs to ∂R whenever F = E−γ for some γ ∈ ∂Γn.
Conversely let E be such that µ(E) belongs to ∂R. Theorem 6.4 yields the existence of
a n–tuple γ belonging to ∂Γn such that µ(E−γ ) = µ(E); a consequence of theorem 6.5 is
that µ(E) is an extreme point of R. Olech Theorem [5, Th. 1] implies that E∆E−γ is
µ–negligible. �

Our approach discloses the recursive structure of the boundary of the range of an oriented
measure. For k belonging to {0, · · · , n} let

R−k = {µ(E−γ ) : γ ∈ Γk } , R+
k = {µ(E+

γ ) : γ ∈ Γk }.

Notice that Γ0 = ∅, R−0 = {0}, R+
0 = {µ(a, b)}.

Proposition 6.7. The function γ ∈ Γ
◦
k 7−→ µ(E−γ ) ∈ R−k (resp. γ ∈ Γ

◦
k 7−→ µ(E+

γ ) ∈ R+
k )

is a homeomorphism from Γ
◦
k onto its range which coincides with R◦−k (resp. R◦+

k ).

Proof. Injectivity follows directly from corollary 6.6. The rest of the proof uses the tech-
niques of the proof of theorem 6.4. �

Remark. For each k in {1, · · · , n− 1}, the set Rk \Rk−1 is partitioned into two connected
components R◦−k ,R

◦+
k . However, for k = n, R−n = R+

n = R.
These results yield the following

Proposition 6.8. The boundary of the range R of an oriented n–dimensional measure
admits the decomposition

∂R = R
◦−
n−1 ∪ · · · ∪ R

◦−
1 ∪ {0} ∪ {µ(a, b)} ∪ R

◦+
1 ∪ · · · ∪ R

◦+
n−1.

Let T be the symmetry with respect to µ(a, b)/2 (so that for each measurable subset A
of [a, b], T (µ(A)) = µ([a, b] \A)). Then for each k belonging to {0, · · · , n} we have

T (R
◦−
k ) = R

◦+
k , T (Rk) = Rk.
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