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Abstract

The quasispecies model was introduced in 1971 by Manfred Eigen

to discuss the first stages of life on Earth. It provides an appealing

mathematical framework to study the evolution of populations in

biology, for instance viruses. We present briefly the model and we

focus on its stationary solutions. These formulae have a surprisingly

rich combinatorial structure, involving for instance the Eulerian and

Stirling numbers, as well as the up–down coe�cients of permutations.

1 Introduction

The very concept of quasispecies is actively debated in theoretical biol-
ogy. Loosely speaking, a quasispecies is a group of individuals which are
closely related to each other. At the genetic level, it is a model for a
cloud of mutants around a well fitted genotype, called the wild type or the
master sequence. Some biologists argue that natural evolution operates
on quasispecies rather than on single individuals. Ideas coming from the
quasispecies theory have been successfully applied to model populations of
viruses. Viruses have simple genomes which can be analyzed with modern
sequencing techniques. Moreover they mutate very fast, thereby giving rise
to complex quasispecies. Some medical strategies to prevent the develop-
ment of viruses, like the HIV virus, are based on the quasispecies model (see
[3] for a recent review). It is therefore crucial to improve our mathematical
understanding of the quasispecies model, in order to derive quantitative
results which can be confronted with experimental data. In this text, we
shall present briefly the quasispecies model of Eigen and we shall study
its stationary solutions. In doing so, we will embark on an enriching jour-
ney around a wealth of mathematical tools: Perron Frobenius theory, the
polylogarithm or Jonquière’s function, Eulerian and Stirling numbers, the
up–down coe�cients of permutations, the Poisson random walk.
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2 The quasispecies model

Manfred Eigen introduced the quasispecies model in his celebrated article
from 1971 about the first stages of life on Earth [4]. Most presumably,
the first living creatures were long macromolecules. Eigen suggested that,
at the macroscopic level, their evolution could be adequately described by
a collection of chemical reactions. The main forces driving this evolution
are selection and mutation. Accordingly, the chemical reactions model the
replication or the degradation of each type of macromolecule. Moreover
the replication process is subject to errors caused by mutations. Each
type of macromolecule is classified according to its genotype. We denote
by E the set of the possible genotypes. The speed of reproduction of a
macromolecule is a function of its genotype and it is given by a fitness
function f : E ! R+. Finally, the probability that a macromolecule with
genotype u mutates into a macromolecule with genotype v is denoted by
M(u, v). The concentration x(v) of the genotype v 2 E evolves according
to the di↵erential equation

d

dt
xt(v) =

X

u2E

xt(u)f(u)M(u, v)� xt(v)
X

u2E

xt(u)f(u) .

The first term accounts for the production of individuals having genotype
v, production due to erroneous replication of other genotypes as well as
faithful replication of itself. The negative term accounts for the loss of
individuals having genotype v, and keeps the total concentration of indi-
viduals constant.

3 Stationary solutions

We shall focus on the stationary solutions of Eigen’s system, that is, the
solutions of the system

8u 2 E x(u)
X

v2E

x(v)f(v) =
X

v2E

x(v)f(v)M(v, u) (S)

subject to the constraint

8u 2 E x(u) � 0 ,
X

u2E

x(u) = 1 . (C)

Suppose that (x(u))u2E is a solution to (S) which satisfies (C). Let � be the
mean fitness, given by � =

P
v2E x(v)f(v) and let us set y(v) =

p
f(v)x(v)

for v 2 E. These new variables satisfy

8u 2 E �y(u) =
X

v2E

y(v)
p
f(v)M(v, u)

p
f(u) . (S 0)
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Therefore (y(u))u2E is an eigenvector of the matrix
p
f(v)M(v, u)

p
f(u).

The question of the existence and uniqueness of the stationary solutions
will be settled with the help of a result from linear algebra and the following
hypothesis.

Hypothesis (H). We suppose that the genotype space E is finite, that
the fitness function f is positive, that the mutation matrix M is symmetric
and that all its entries are positive.

Suppose that hypothesis (H) holds. We can apply proposition A.1 of the
appendix to the matrix

A(u, v) =
p
f(v)M(v, u)

p
f(u) .

If (y(u))u2E is a solution to (S 0) with non negative entries, then � has to
be the largest eigenvalue of A and (y(u))u2E is an eigenvector associated
to �. Since the corresponding eigenspace has dimension one, there is a
unique choice satisfying the constraint (C). Therefore, under hypothesis
(H), the system (S) admits a unique solution satisfying the constraint
(C). In fact, this result still holds if we relax the hypothesis that the
mutation matrix M is symmetric. We would then make appeal to the
Perron–Frobenius theorem [7] to get the conclusion.

4 Genotypes and mutations

Ideally, we would like to have explicit formulae for � and x in terms of f and
M . There is little hope of obtaining such explicit formulae in the general
case. Therefore, we focus on a particular choice of the set of genotypes E
and of the mutation matrix M . Both for practical and historical reasons,
we make the same choice as Eigen did.

Genotypes. We consider the di↵erent genotypes to be sequences of length
` � 1 over the alphabet { 0, 1 }. The space E = { 0, 1 }` is often referred
to as the `–dimensional hypercube. The hypercube is endowed with a
natural distance, called the Hamming distance, which counts the number
of di↵erent digits between two di↵erent sequences:

8u, v 2 { 0, 1 }` d(u, v) = card
�
1  i  ` : u(i) 6= v(i)

 
.

Mutations. We suppose that mutations happen independently over each
site of the sequence, with probability q 2 ]0, 1[ . For u, v 2 { 0, 1 }`, the
mutation probability M(u, v) is thus given by

M(u, v) = qd(u,v)(1� q)`�d(u,v) .
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We have not specified the fitness function yet. Let us consider first the
simplest possible scenario, a constant fitness function: f(u) = c > 0 for all
u 2 { 0, 1 }`. When the fitness function is constant, there is no selection
among di↵erent genotypes, and we say that the population is selectively
neutral. Under the constraint (C), since f is constant,

� =
X

v2E

x(v)f(v) = c .

With our choice of the mutation scheme, the matrixM is symmetric, thanks
to the symmetry of the Hamming distance. The matrixM is also stochastic,
that is, each row of the matrix adds up to 1. It is thus doubly stochastic,
that is, each column of the matrix adds up to 1 too. We conclude that,
for a constant fitness function, the unique solution of (S) satisfying the
constraint (C) is given by

x(u) =
1

|E| =
1

2`
, u 2 { 0, 1 }` .

However, adaptive neutrality is seldom found in biological populations. We
thus embark on a quest for explicit formulae involving more complex fitness
functions.

5 Sharp peak landscape

The simplest non neutral fitness function which comes to mind is the sharp
peak: there is a privileged genotype, w⇤ 2 { 0, 1 }`, referred to as the master
sequence, which has a higher fitness than the rest. Let � > 1 and let the
fitness function f be given by

8u 2 { 0, 1 }` f(u) =

(
� if u = w⇤ ,
1 if u 6= w⇤ .

This is the fitness function that Eigen studied in detail in his article [4].
One of the main advantages of working with the sharp peak is that we can
break the space of genotypes into Hamming classes. For k 2 { 0, . . . , ` },
the Hamming class k, denoted by Hk, is the subset of { 0, 1 }` containing all
the genotypes that are at Hamming distance k from the master sequence.
Let us define the function fH : { 0, . . . , ` } ! R+ by

8 k 2 { 0, . . . , ` } fH(k) =

(
� if k = 0 ,

1 if k > 0 .

For each k, the value fH(k) is the fitness common to all the genotypes in the
Hamming class k. As the next lemma shows, the mutation probabilities can
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also be lumped over Hamming classes. Let b, c 2 { 0, . . . , ` } and let X,Y be
independent random variables with binomial distributions X ⇠ Bin(b, q),
Y ⇠ Bin(`� b, q) and define

MH(b, c) = P
�
b�X + Y = c

�
.

Lemma 5.1 Let b, c 2 { 0, . . . , ` }. For any genotype u in the Hamming
class b, we have X

v2Hc

M(u, v) = MH(b, c) .

Proof. The quantity
P

v2Hc
M(u, v) is the probability of u ending up

in the class c after mutation. We call digits in a given genotype correct or
incorrect depending on whether they coincide with the master sequence or
not. Since u is in the Hamming class b, it has b incorrect digits and ` � b
correct ones. Each digit changes state according to a Bernoulli random
variable of parameter q. Therefore, the law of creating correct digits from
the incorrect ones is Bin(b, q). Likewise, the law of creating incorrect digits
from the correct ones is Bin(` � b, q). Noting that these binomial laws
are independent of the placement of the correct and incorrect digits (and
therefore of each other), we get the desired result. ⇤
Let k 2 { 0, . . . , ` }. Adding up the equations of the system (S) for u 2 Hk

we get
X

u2Hk

x(u)
X

0h`

X

v2Hh

x(v)f(v) =
X

0h`

X

v2Hh

x(v)f(v)
X

u2Hk

M(v, u) .

We set y(k) =
P

u2Hk
x(u). In view of the above remarks, we obtain the

system

y(k)
X

0h`

y(h)fH(h) =
X

0h`

y(h)fH(h)MH(h, k) , 0  k  ` .

The number of equations has been reduced from 2` to `+ 1. Moreover the
new system still has the same form as (S), and therefore all the consider-
ations of section 3 still hold for the new system. Under the constraint (C),
the mean fitness might be rewritten as

X

0h`

y(h)fH(h) = (� � 1)y(0) + 1 .

The above system becomes then

y(k)
�
(� � 1)y(0) + 1

�
=

X

0h`

y(h)fH(h)MH(h, k) , 0  k  ` .
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6 Long chain regime

Although this system of equations is much simpler than the initial one,
explicit formulae for y are still out of hand. In order to get simple and
useful formulae, we consider the asymptotic regime

` ! +1 q ! 0 `q ! a 2 ]0,+1[ .

This asymptotic regime, already considered by Eigen, arises naturally when
modeling a population of individuals with a very long genome, in which the
mean number of observed mutations per individual per generation is a.

Lemma 6.1 Let b, c � 0. The mutation probability MH(b, c) satisfies

lim
`!1, q!0

`q!a

MH(b, c) =

8
<

:
e�a ac�b

(c� b)!
if c � b ,

0 if c < b .

Proof. Recall that if X ⇠ Bin(b, q) and Y ⇠ Bin(`�b, q) are independent
random variables, then

MH(b, c) = P (�X + Y = c� b) .

Since b is fixed, the law Bin(b, q) converges to a Dirac mass at 0, and the
law Bin(` � b, q) converges to a Poisson law of parameter a. The formula
appearing in the lemma is precisely the probability of a Poisson random
variable of parameter a being equal to c� b. ⇤

In view of this lemma, passing to the limit in the finite system, we obtain
the infinite system of equations

y(k)
�
(� � 1)y(0) + 1

�
=

X

0hk

y(h)fH(h)e�a ak�h

(k � h)!
, k � 0. (Ssp)

Let’s take a look at the equation for k = 0 first:

y(0)
�
(� � 1)y(0) + 1

�
= y(0)�e�a .

The only two solutions to this equation are

y(0) = 0 and y(0) =
�e�a � 1

� � 1
.

On one hand, if y(0) = 0, it can be seen by induction that y is identically 0,
so this solution does not satisfy the constraint (C). On the other hand, the

6



second solution for y(0) is positive if and only if �e�a > 1. Let us suppose
that �e�a > 1, for we can only expect to find a solution satisfying the
constraint (C) in this case, and let us solve the recurrence relation defined
by (Ssp), with initial condition y(0) = (�e�a�1)/(��1). Replacing y(0) on
the left hand side of (Ssp) and dividing by e�a on both sides, the recurrence
relation becomes

y(k)� = y(0)�
ak

k!
+
X

1hk

y(h)
ak�h

(k � h)!
, k � 1 .

7 The distribution of the quasispecies

We choose to solve the recurrence relation by the method of generating
functions (a beautiful account of this method can be found in chapter 7
of [5]). Set

g(X) =
X

k�0

y(k)Xk .

Using the recurrence relation, we have

g(X)eaX =
X

k�0

kX

h=0

y(h)
ak�h

(k � h)!
Xk

=
X

k�0

⇣
y(k)� � y(0)(� � 1)

ak

k!

⌘
Xk = �g(X)� y(0)(� � 1)eaX .

Replacing y(0) by its value, we get

g(X) = (�e�a � 1)
eaX

� � eaX
= (�e�a � 1)

X

h�1

⇣eaX

�

⌘h

= (�e�a � 1)
X

h�1

1

�h

X

k�0

(ah)k

k!
Xk = (�e�a � 1)

X

k�0

ak

k!

X

h�1

hk

�h
Xk .

We deduce from here that

8 k � 0 y(k) = (�e�a � 1)
ak

k!

X

h�1

hk

�h
.

Eigen described the quasispecies as a population of individuals having a
positive concentration of the master sequence along with a cloud of mu-
tants. We now have an explicit formula for the concentrations of the master
sequence and the di↵erent mutant classes in Eigen’s original quasispecies
model.
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Definition 7.1 Let �, a be such that �e�a > 1. We say that a random
variable X has the distribution of the quasispecies of parameters � and a,
and we write X ⇠ Q(�, a), if

8k � 0 P (X = k) = (�e�a � 1)
ak

k!

X

h�1

hk

�h
.

The above formula is a genuine probability distribution, indeed all these
numbers add up to one, as can be seen by replacing X by 1 in the equality

g(X) = (�e�a � 1)
eaX

� � eaX
.

The quasispecies distribution Q(�, a) can be expressed in terms of the poly-
logarithm or Jonquière’s function. Let s, z 2 C, with |z| < 1. The polylog-
arithm of order s and argument z is defined by

Lis(z) =
X

h�1

zh

hs
.

In view of this definition,

8 k � 0 y(k) = (�e�a � 1)
ak

k!
Li�k

⇣ 1
�

⌘
.

Thanks to this formula, we can easily draw the quasispecies distribution
and study its dependance on the parameters �, a. In the quasispecies liter-
ature, this was previously done by integrating numerically the di↵erential
system (see for instance [3], figure 3, p.9).

8 Eulerian numbers

We look next for an expression of y(k) involving just a finite number of
terms, instead of a series. Let s = 1/� and consider the well known identity

X

h�1

sh =
s

1� s
.

We repeatedly derive and multiply by s this equality, thus getting

X

h�1

hsh =
s

(1� s)2
,

X

h�1

h2sh =
s

(1� s)3
(1 + s) ,
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X

h�1

h3sh =
s

(1� s)4
(1 + 4s+ s2) ,

X

h�1

h4sh =
s

(1� s)5
(1 + 11s+ 11s2 + s3) .

The numbers appearing on the right hand side are the Eulerian numbers,
and the polynomials are the Eulerian polynomials.

Definition 8.1 For 0  h < k, the Eulerian number
⌦
k
h

↵
is defined as the

number of permutations of { 1, . . . , k } having exactly k ascents, that is, k
elements that are greater than the previous element in the permutation.

The Eulerian numbers satisfy the following identity:

8k � 1
X

h�1

hksh =
s

(1� s)k+1

k�1X

h=0

⌧
k

h

�
sh .

Coming back to the variable �, we get

8k � 1
X

h�1

hk

�h
=

�

(� � 1)k+1

k�1X

h=0

⌧
k

h

�
�k�h�1 .

Using the classical identity
⌦
k
h

↵
=
⌦

k
k�1�h

↵
, and making the change of

variable h ! k � 1� h in the previous sum, we can express the quantities
y(k) in terms of the Eulerian numbers:

8 k � 1 y(k) = (�e�a � 1)
ak

k!

�

(� � 1)k+1

k�1X

h=0

⌧
k

h

�
�h .

9 Stirling numbers

We have just seen that the concentration of class k in the quasispecies distri-
bution is a rational fraction in the variable �, with denominator (� � 1)k+1

and numerator (�e�a � 1)� times the k–th Eulerian polynomial. Let us
compute the partial fraction decomposition of this rational fraction. More
precisely, we seek a sequence of real numbers A1, . . . , Ak such that

8 k � 1 y(k) = (�e�a � 1)
ak

k!

�

(� � 1)

kX

h=1

Ah

(� � 1)h
.

To find the values of the coe�cients Ah, we write the Eulerian polynomial
in terms of the powers of (� � 1):

k�1X

h=0

⌧
k

h

�
�h =

k�1X

h=0

⌧
k

h

� hX

j=0

✓
h

j

◆
(� � 1)j
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=
k�1X

j=0

 
k�1X

h=j

⌧
k

h

�✓
h

j

◆!
(� � 1)j .

Definition 9.1 For 0  h  k, the Stirling number
�
k
h

 
is defined as the

number of partitions of a set of cardinality k into h non empty subsets.

The Stirling and Eulerian numbers are linked through the classical identity

k�1X

h=j

⌧
k

h

�✓
h

j

◆
= (k � j)!

⇢
k

k � j

�
.

See for instance [6], Proposition 5.83. Reporting in the expression involving
the Eulerian polynomial, and reindexing the sum, we get

8 k � 1 y(k) = (�e�a � 1)
ak

k!

�

(� � 1)

kX

h=1

h!
�
k
h

 

(� � 1)h
.

10 Class–dependent fitness landscapes

We have obtained explicit formulae for the distribution of the quasispecies
on the sharp peak landscape. To get these formulae, two ingredients have
played a key role: the Hamming classes and the asymptotic regime. Yet, the
strategy employed for the sharp peak landscape still makes sense for a wider
class of fitness functions, namely, the fitness functions that only depend on
the distance to the master sequence. This is a natural class of fitness
functions, which is also considered in mathematical genetics. For instance,
when the fitness function has a single maximum and it decreases fast with
the distance, it is poetically called a mount Fujiyama type landscape. In
this and the two following sections, we consider the analogue of system
(Ssp) for a general function f : N ! R+:

y(k)
X

h�0

y(h)f(h) =
X

0hk

y(h)f(h)e�a ak�h

(k � h)!
, k � 0 . (SH)

We are only interested in the solutions of SH that satisfy constraint (C)
and such that y(0) > 0. For if y(0) is a solution of (SH) with y(0) = 0, we
can ignore the equation for k = 0, and the remaining system of equations
falls into the form of (SH) again. Thus, let us suppose that y(0) > 0. We
look first at the equation for k = 0:

y(0)
X

h�0

y(h)f(h) = y(0)f(0)e�a .
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Since we are assuming that y(0) is positive, the mean fitness, given byP
h�0 y(h)f(h), must be equal to f(0)e�a. We make the change of variables

z(k) = y(k)/y(0), we replace the mean fitness by f(0)e�a in (SH), and we
divide both sides by e�a, thus obtaining the recurrence relation

z(k)f(0) =
X

0hk

z(h)f(h)
ak�h

(k � h)!
, k � 1 ,

with initial condition z(0) = 1. In order to get positive solutions, we make
the following hypothesis.

Hypothesis (H0). We suppose that the fitness of the Hamming class 0 is
greater than the fitness of the other classes, i.e., f(0) > f(k) for all k � 1.

This hypothesis is coherent with the Hamming class 0 corresponding to the
master sequence, which is the fittest genotype. The method of generating
functions cannot be implemented as easily as on the sharp peak landscape.
However, it can be first guessed and then shown by induction that, for all
k � 1,

z(k) =
ak

k!

f(0)

f(k)

X

1hk
0=i0<···<ih=k

k!

(i1 � i0)! · · · (ih � ih�1)!

Y

1th

f(it)

f(0)� f(it)
.

The probabilistic eye will perceive the key role of the Poisson distribution
in this formula. We will discuss further this point in the last section.

11 Up–down coe�cients

If we apply the previous formula to the sharp peak landscape, we recover
the formula for the quasispecies involving the Stirling numbers. Indeed, in
this case, the last product depends only on h (it is equal to (� � 1)h) and
the sum of the multinomial coe�cients is precisely equal to h!

�
k
h

 
. There

is yet another formula for the quantities y(k), which is the analogue of
the formula involving the Eulerian numbers in the case of the sharp peak
landscape. In order to present this formula, we introduce the up–down
numbers or up–down coe�cients. Let n � 2, and let � = (�(1), . . . ,�(n))
be a permutation of 1, . . . , n. The ascents and descents of � are codified by
the Niven signature of �, that is, an array (q1, . . . , qn�1) 2 {�1,+1 }n�1

such that the product qi(�(i+1)� �(i)) is positive for all i. The up–down
numbers, which we define next, count the number of permutations sharing
the same pattern of ascents and descents.

Definition 11.1 Let n � 2 and let I be a subset of { 1, . . . , n�1 }. The up–
down coe�cient

�
n
I

 
is defined as the number of permutations of 1, . . . , n
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having ascents in the positions I and descents elsewhere. In another words,
it is the number of permutations of 1, . . . , n having for Niven’s signature

8 i 2 { 1, . . . , n� 1 } qi =

(
+1 if i 2 I ,

�1 if i 62 I .

It turns out that the quantities z(k) can be expressed with the help of the
up–down coe�cients. For all k � 1, we have

z(k) =
ak

k!

✓ Y

1jk

f(0)

f(0)� f(j)

◆ X

I⇢{ 1,...,k�1 }

✓⇢
k

I

�Y

i2I

f(i)

f(0)

◆
.

In the case of the sharp peak landscape, the last product depends only
on the cardinality of I, it is equal to ��|I|; if we sum all the terms corre-
sponding to subsets I of cardinality h, we obtain precisely the number of
permutations of 1, . . . , k having h ascents, which is equal to the Eulerian
number

⌦
k
h

↵
.

We obtained the above formula by writing explicitly the coe�cients
for small values of k. With the help of Sloane’s on–line encyclopedia of
integer sequences [8], we discovered that these coe�cients were the up–
down coe�cients. Our first proof of the formula, done in [2], relied on
a di�cult combinatorial identity due to Carlitz [1]. We present here a
simpler more direct derivation. The strategy is to think of this formula
as a rational fraction in the variables f(1), . . . , f(k) and to compute its
partial fraction decomposition, which turns out to be the formula given
in the previous section. Thus we follow the inverse road that led us from
the Eulerian numbers to the Stirling numbers when we were playing with
the quasispecies on the sharp peak landscape. Let us start. We define
K = { 1, . . . , k � 1 }, we rewrite the above formula as

z(k) =
ak

k!
f(0)

✓ Y

1jk

1

f(0)� f(j)

◆X

I⇢K

✓⇢
k

I

�
f(0)k�|I|�1

Y

i2I

f(i)

◆

and we expand the power f(0)k�|I|�1 as

f(0)k�|I|�1 =
Y

j2K\I

�
f(0)� f(j) + f(j)

�

=
X

J⇢K\I

✓Y

j2J

�
f(0)� f(j)

�◆✓ Y

j2(K\I)\J
f(j)

◆
.

Reporting and simplifying the factors (f(0)� f(j)), we obtain

z(k) =
ak

k!
f(0)

X

I⇢K

X

J⇢K\I

✓ Y

j2K[{k}\J

1

f(0)� f(j)

◆✓⇢
k

I

� Y

j2K\J
f(j)

◆
.
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We reindex the sum by setting H = K \ J and we get

z(k) =
akf(0)

k!f(k)

X

H⇢K

✓ Y

j2H[{k}

f(j)

f(0)� f(j)

◆✓X

I⇢H

⇢
k

I

�◆
.

Let us fix H ⇢ K, say H = { i1, . . . , ih�1 }, where 1  h  k and

i0 = 1  i1 < · · · < ih�1 < k = ih ,

and let us focus on the last sum
P

I⇢H

�
k
I

 
. This sum is the number of

permutations of 1, . . . , k whose ascents are located in the index set H. Let
B =

�
B1, . . . , Bh

�
be an ordered partition of { 1, . . . , k } in h subsets such

that
8j 2 { 1, . . . , h } |Bj | = ij � ij�1 .

We list the elements of each set Bj in decreasing order:

8j 2 { 1, . . . , h } Bj =
�
bj(1), . . . , bj(ij � ij�1)

�
.

We concatenate these lists into a single sequence:

b1(1), . . . , b1(i1), b2(1), . . . , b2(i2 � i1), . . . , bh(1), . . . , bh(ih � ih�1) .

This sequence corresponds to a permutation of 1, . . . , k. This construc-
tion defines a one to one correspondence between ordered partitions of
{ 1, . . . , k } into h subsets of respective sizes i1, . . . , ih � ih�1 and the set of
the permutations of 1, . . . , k whose ascents are located in the index set H.
The number of these partitions (called h–sharing in the terminology of [6],
see definition 1.17 and proposition 5.5 therein) is precisely the multinomial
coe�cient k!

(i1�i0)!···(ih�ih�1)!
and we conclude that

X

I⇢H

⇢
k

I

�
=

k!

(i1 � i0)! · · · (ih � ih�1)!
.

In fact, this combinatorial identity and the above argument are the starting
point of Carlitz work [1]. The goal of Carlitz was to invert this formula,
i.e., to express the up–down coe�cients as sums of multinomial coe�cients.
Plugging this identity in the formula for z(k), we are back to the formula
obtained by induction in section 10.

12 Re–expansion

Our first formula for the distribution of the quasispecies, given in defini-
tion 7.1, was a series. Summing this series, we got a closed formula involving
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the Eulerian numbers. With the help of a classical combinatorial identity,
we could rewrite this formula in terms of the Stirling numbers. On the
class–dependent fitness landscapes, these last two formlas were generalized
into two formulae, one involving multinomial coe�cients, the other involv-
ing up–down coe�cients. We shall finally expand these two formulae in a
series in order to obtain the generalization of our first quasispecies formula.
The strategy is straightforward. We expand each fraction as a geometric
series. Starting from the formula involving the up–down coe�cients, we
obtain directly

z(k) =
ak

k!

X

j1,...,jk�0

✓
f(1)

f(0)

◆j1

· · ·
✓
f(k)

f(0)

◆jk X

I⇢{ 1i<k:ji�1 }

⇢
k

I

�
.

Starting from the formula involving the multinomial coe�cients, we obtain,
after reordering the summation and setting s1 = i1, . . . , sh = ih � ih�1,

z(k) =
X

1hk
j1,...,jk�1

X

s1,...,sh�1
s1+···+sh=k

ak

s1! · · · sh!
✓
f(s1)

f(0)

◆j1

· · ·
✓
f(s1 + · · ·+ sh)

f(0)

◆jh

.

13 The killed Poisson walk

The Poisson distribution appeared recurrently in our formulae for the qua-
sispecies distribution. Let a > 0 and let (Xn)n�1 be a sequence of i.i.d.
random variables distributed according to the Poisson law of parameter a:

8n � 1 8k � 0 P (Xn = k) = e�a a
k

k!
.

We consider the associated random walk on the non–negative integers,
given by S0 = 0 and

8n � 1 Sn = X1 + · · ·+Xn .

Our final goal is to obtain a probabilistic representation of the quasispecies
distribution in terms of the Poisson random walk killed at a random time.
More precisely, we aim at constructing an integer–valued random variable
⌧ such that the concentrations

�
y(k)

�
k�0 of the Hamming classes in the

quasispecies are equal to the mean empirical distribution of the Poisson
random walk between times 1 and ⌧ , that is,

8k � 0 y(k) =
1

E(⌧)
E

✓ ⌧X

n=1

1{Sn=k}

◆
. (})

We start this program on the sharp peak landscape.
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Proposition 13.1 Let �, a be such that �e�a > 1. Let ⌧ be a random
variable, which is independent of the Poisson random walk, with geometric
distribution of parameter 1� (�e�a)�1. With this choice of ⌧ , the proba-
bilistic representation (}) holds for the quasispecies distribution Q(�, a).

We recall that the geometric distribution of parameter 1� (�e�a)�1 is

8n � 1 P (⌧ � n) =
⇣ 1

�e�a

⌘n�1
.

Proof. We compute the expectation by decomposing the sum according
to the value of ⌧ :

E

✓ ⌧X

n=1

1{Sn=k}

◆
=

1X

t=1

E

✓ tX

n=1

1{Sn=k, ⌧=t}

◆

=
1X

t=1

tX

n=1

P
�
Sn = k, ⌧ = t

�
=

1X

n=1

1X

t=n

P
�
Sn = k, ⌧ = t

�
.

Now, the variables Sn and ⌧ are independent. The distribution of ⌧ is
geometric, the distribution of Sn is Poisson of parameter na (it is a sum
of n independent Poisson distributions of parameter a). Thus the previous
sums become

1X

n=1

1X

t=n

P
�
Sn = k

�
P
�
⌧ = t

�
=

1X

n=1

P
�
Sn = k

�
P
�
⌧ � n

�

=
1X

n=1

e�na (an)
k

k!

⇣ 1

�e�a

⌘n�1
= �e�a a

k

k!

1X

n=1

nk

�n
.

Since E(⌧) = �e�a/(�e�a� 1), we recover the quasispecies distribution on
the sharp peak landscape. ⇤
The previous construction can be extended to a class–dependent fitness as
follows. Suppose that at time n, the random walk Sn is in state i � 1. We
toss an independent coin of parameter eaf(i)/f(0) to decide whether the
walk survives another unit of time or not. More precisely, we define, for
any i, n � 0,

P
�
⌧ � n+ 1

��Sn = i, ⌧ � n
�
=

8
<

:

1 if i = 0 ,

ea
f(i)

f(0)
if i � 1 .

This defines a random time ⌧ whose distribution is a predictable function of
the trajectory of the Poisson walk (Sn)n2N, i.e., the event ⌧ = n+1 depends
on n independent coins whose parameters are deterministic functions of the
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trajectory S0, . . . , Sn until time n. Of course, the definition of ⌧ makes sense
only when f(0) � eaf(k) for all k � 1. With these choices, the probabilistic
representation (}) holds for the quasispecies distribution associated to f .

Our probabilistic construction provides the following intuitive picture
for the structure of the quasispecies. The evolution of the genotype along
a lineage is modelled by a Poisson random walk in the genotype space,
starting from the master sequence. Because of the presence of the master
sequence in the population, the lineages are bound to become extinct, after
a random time which depends on their fitness history. A lineage is more
robust if it visits genotypes whose fitnesses are close to the fitness of the
master sequence. The time ⌧ models the survival time of a lineage.
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A Appendix

Proposition A.1 Let A be a square matrix, which is symmetric, and
whose entries are all positive. Then its eigenvalues are real, the largest
eigenvalue � is positive, and the corresponding eigenspace has dimension
one. Moreover there exists an eigenvector associated to � whose coordinates
are all positive. Finally any eigenvector of A whose coordinates are all non–
negative is associated to �.

Proof. Since A is symmetric and real, all its eigenvalues are real. The
sum of its eigenvalues is equal to its trace, which is positive, thus the
largest eigenvalue of A is positive. Let us call it �. Let y = (y(u))u2E be
an eigenvector associated to �:

8u 2 E �y(u) =
X

v2E

A(u, v)y(v) .

We can assume that the Euclidean norm of y is 1, i.e., hy, yi = 1, where
h·, ·i denotes the standard scalar product in RE . Multiplying the previous
equation by y(u) and summing over u 2 E, we get

� =
X

u,v2E

y(u)A(u, v)y(v) = hy,Ayi .

Let us denote by |y| the vector (|y(u)|)u2E . Since the entries of A are
positive, we deduce from the previous identity that

� = hy,Ayi  h|y|, A|y|i  sup
z:hz,zi=1

hz,Azi .
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However, since A is symmetric real, the last supremum is precisely equal
to �. Therefore all the previous inequalities were in fact equalities. Since
all the entries of A are positive, we conclude that all the entries of y have
the same sign. The eigenvector identity implies furthermore that no entry
of y is null. So far, we have prove than an eigenvector associated to � has
all its entries positive, or all negative, and none of them is zero. Let y, z be
two eigenvectors associated to �. We choose ↵ to that the first coordinate
of y � ↵z vanishes. Since we have A(y � ↵z) = �(y � ↵z), necessarily
y�↵z = 0. Thus the eigenspace associated to � has dimension one. Finally,
let y be an eigenvector associated to � with positive coordinates and let z
be another eigenvector of A with non–negative coordinates, associated to
an eigenvalue µ. We can find ↵ > 0 su�ciently small so that z(u) � ↵y(u)
for u 2 E. We have then, for any n � 1,

hz,Anzi = µnhz, zi � h↵y,An↵yi = ↵2�nhy, yi .
Sending n to infinity, we conclude that µ � �, therefore µ = �. ⇤
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