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Abstract

We present an alternative proof of Perron’s theorem, which is proba-
bilistic in nature. It rests on the representation of the Perron eigen-
vector as a functional of the trajectory of an auxiliary Markov chain.

In 1907, Oskar Perron proved the following theorem.

Theorem 1 Let A be a square matrix with posivite entries. Then the
matrix A admits a positive eigenvalue λ such that:
i) to λ is associated an eigenvector µ whose components are all positive;
ii) if α is another eigenvalue of A, possibly complex, then |α| < λ;

iii) any other eigenvector associated to λ is a multiple of µ.

This theorem was subsequently generalized by Frobenius in his work on
non–negative matrices in 1912, leading to the so–called Perron–Frobenius
theorem [5]. A myriad of mathematical models involve non–negative ma-
trices and their powers, thereby calling for the use of the Perron–Frobenius
theorem. Mathematicians have developped generalizations in several di-
rections, notably in infinite dimensions (for infinite matrices [6], for non–
negative kernels in arbitrary spaces [1]) and a whole Perron–Frobenius
theory has emerged. Hawkins wrote an historical account on the initial
developpement of this theory [3]. MacCluer [4] describes several applica-
tions of Perron’s theorem and review the different proofs that have been
found over the years. The original proof of Perron rested on an induction
over the size the matrix. A few years later Perron found a proof involving
the resolvent of the matrix. A nowadays popular proof, which is found in
most textbooks, is due to Wielandt and it rests on a miraculous max–min
functional.

We present here an alternative proof of Perron’s theorem, which is prob-
abilistic in nature. It rests on an auxiliary Markov chain, and the repre-
sentation of the Perron eigenvector as a functional of the trajectory of
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this Markov chain [2]. This formula generalizes the well–known formula
for the invariant probability measure of a finite state Markov chain. To
ease the exposition, we restrict ourselves to the Perron theorem, and we
work with matrices whose entries are all positive. However our proof can
be readily extended to primitive matrices, thereby yielding the classical
Perron–Frobenius theorem. Our proof might seem lengthy compared to
other proofs, yet it is completely self–contained and it requires only classi-
cal results of basic algebra and power series.

We introduce next some notation in order to define the auxiliary Markov
chain. Let d be a positive integer. Throughout the text, we consider a
square matrix A = (A(i, j))1≤i,j≤d of size d × d with positive entries. For
i ∈ { 1, . . . , d }, we denote by S(i) the sum of the entries on the i–th row of
A, i.e.,

∀i ∈ { 1, . . . , d } S(i) =

d∑
j=1

A(i, j) ,

and we create a new matrix M = (M(i, j))1≤i,j≤d by setting

∀i, j ∈ { 1, . . . , d } M(i, j) =
A(i, j)

S(i)
.

Obviously, the sum of each row of M is now equal to one, i.e., M is stochas-
tic, and we think of it as the transition matrix of a Markov chain. So, let
(Xn)n∈N be a Markov chain with state space { 1, . . . , d } and transition ma-
trix M . Let us fix i ∈ { 1, . . . , d }. We denote by Ei the expectation of the
Markov chain issued from i and we introduce the time τi of the first return
of the chain to i, defined by

τi = inf
{
n ≥ 1 : Xn = i

}
.

Finally, we define a function φi by setting

∀λ ≥ 0 φi(λ) = Ei

(
λ−τi

τi−1∏
n=0

S(Xn)

)
.

The quantity in the expectation is non–negative, so the function φi is well
defined and it might take infinite values.

Proposition 2 The function φi is continuous, decreasing on R+ and

lim
λ→0

φi(λ) = +∞ , lim
λ→+∞

φi(λ) = 0 .

Proof. In fact, the function φi can be written as a power series in the
variable 1/λ, as follows:
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φi(λ) =

∞∑
k=1

1

λk
Ei

((
1{τi=k}

k−1∏
n=0

S(Xn)
))

=

∞∑
k=1

1

λk

∑
i1,...,ik−1 6=i

S(i)S(i1) · · ·S(ik−1)P
(
X1 = i1, . . . , Xk−1 = ik−1, Xk = i

)
=

∞∑
k=1

1

λk

∑
i1,...,ik−1 6=i

S(i)M(i, i1) · · ·S(ik−1)M(ik−1, i)

=

∞∑
k=1

1

λk

∑
i1,...,ik−1 6=i

A(i, i1) · · ·A(ik−1, i) .

Since A has positive entries, the series contains non vanishing terms, and
this implies that φi is decreasing and tends to ∞ as λ goes to 0. Let R
be the radius of the convergence circle of this series. From classical results
on powers series, we know that φi(λ) is continuous for λ > R. To prove
that φi is continuous, we have to show that φi(R) = +∞. Let B be the
matrix obtained from A by removing the i–th row and the i–th column
and let γ1, . . . , γd−1 be its eigenvalues (possibly complex), arranged so that
|γ1| ≥ · · · ≥ |γd|. Let m (respectively M) be the minimum (respectively
the maximum) of the entries of A. For any k ≥ 1, we have

∑
i1,...,ik−1 6=i

A(i, i1) · · ·A(ik−1, i) ≥
m2

M

∑
i1,...,ik−1 6=i

A(i1, i2) · · ·A(ik−1, i1)

=
m2

M
trace(Bk) =

m2

M

(
γk1 + · · ·+ γkd−1

)
.

Although the eigenvalues γ1, . . . , γd−1 might be complex numbers, the trace
of Bk is a positive real number. We can also a prove a similar inequality
in the reverse direction, and we conclude that the power series defining φi
converges if and only if the series

∞∑
k=1

1

λk

(
γk1 + · · ·+ γkd−1

)
converges. This is certainly the case if |λ| > |γ1|, therefore R ≤ |γ1|. Let
us define, for n ≥ 1,

Sn(λ) =

n∑
k=1

1

λk

(
γk1 + · · ·+ γkd−1

)
.

We shall rely on the following result on geometric series.
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Lemma 3 Let z be a complex number such that |z| ≤ 1. Then

lim
n→∞

1

n

(
z + · · ·+ zn

)
=

{
0 if z 6= 1 ,

1 if z = 1 .

Proof. For z = 1, the result is obvious. For z 6= 1, we compute

1

n

(
z + · · ·+ zn

)
=

z − zn+1

n(1− z)
,

and we observe that this quantity goes to 0 when n goes to ∞. �

Lemma 3 implies that, for λ a complex number such that |λ| = |γ1|,

lim
n→∞

1

n
Sn(λ) = card

{
j : 1 ≤ j ≤ d, λ = γj

}
.

This implies in particular that
∣∣Sn(γ1)

∣∣ goes to ∞ with n. Observing that∣∣Sn(γ1)
∣∣ ≤ Sn(|γ1|), we conclude that

φi(|γ1|) = lim
n→∞

Sn(|γ1|) = +∞ .

Therefore R = |γ1| and moreover φi(R) = +∞. �

Proposition 2 implies that φi is one to one from ]R,+∞[ onto ]0,+∞[, thus
there exists a unique positive real number λi such that φi(λi) = 1. The
next result is the key to our proof of the Perron–Frobenius theorem. We
define a vector µi by setting

∀j ∈ { 1, . . . , d } µi(j) = Ei

(
τi−1∑
n=0

(
1{Xn=j}λ

−n
i

n−1∏
k=0

S(Xk)
))

.

Theorem 4 The value λi is an eigenvalue of A and the vector µi is an
associated left eigenvector whose components are all positive and finite.

Proof. Let us note Ei, τi, λi, µi simply by E, τ, λ, µ. Let us compute

d∑
j=1

µ(j)A(j, k) =

d∑
j=1

µ(j)S(j)M(j, k)

=

d∑
j=1

∑
n≥0

E

(
1{τ>n}λ

−n
( n−1∏
t=0

S(Xt)
)

1{Xn=j}f(j)M(j, k)

)

=

d∑
j=1

∑
n≥0

E

(
1{τ>n}λ

−n
( n∏
t=0

S(Xt)
)

1{Xn=j}1{Xn+1=k}

)
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= E

(
τ−1∑
n=0

1{Xn+1=k}λ
−n
( n∏
t=0

S(Xt)
))

= λE

(
τ∑
n=1

1{Xn=k}λ
−n
( n−1∏
t=0

S(Xt)
))

.

Suppose that k 6= i. Then the term in the last sum vanishes for n = 0 or
n = τ , and we obtain

d∑
j=1

µ(j)A(j, k) = λµ(k) .

For k = i, we obtain, noticing that µ(i) = 1,

d∑
j=1

µ(j)A(j, i) = λE

(
λ−τ

τ−1∏
t=0

S(Xt)

)
= λφi(λ) = λµ(i) .

Thus we have proved that µA = λµ. Since µ(i) = 1, these equations imply
that µ(1), . . . , µ(d) are all positive and finite. �

Proposition 5 Let α be an eigenvalue of A, possibly complex, and let ν
be an associated left eigenvector. Let i ∈ { 1, . . . , d } be such that ν(i) 6= 0.
Either ν and µi are proportional (in which case α = λi) or |α| < λi.

Proof. Let α, ν and i be as in the statement of the proposition. We
suppose that α 6= 0, otherwise there is nothing to prove. Let ν be an
associated left eigenvector. We have

∀k ∈ { 1, . . . , d } ν(k) =
1

α

d∑
j=1

ν(j)A(j, k) .

Let us focus on the equation for k = i. We divide by ν(i) (which is assumed
to be non zero) and we isolate the term j = i in the sum to obtain

1 =
1

α
A(i, i) +

1

α

∑
j 6=i

ν(j)

ν(i)
A(j, i) .

We expand ν(j) in the above equation as a sum, and we get

1 =
1

α
A(i, i) +

1

α2

∑
j 6=i

∑
j′

ν(j′)

ν(i)
A(j′, j)A(j, i)
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=
1

α
A(i, i) +

1

α2

∑
j 6=i

A(i, j)A(j, i) +
1

α2

∑
j 6=i

∑
j′ 6=i

ν(j′)

ν(i)
A(j′, j)A(j, i) .

Iterating n times this procedure, we get

1 =
1

α
A(i, i) + · · ·+ 1

αn+1

∑
i1,...,in 6=i

A(i, i1)A(i1, i2) · · ·A(in, i)

+
1

αn+1

∑
i0,i1,...,in 6=i

ν(i0)

ν(i)
A(i0, i1)A(i1, i2) · · ·A(in, i) .

If φi(|α|) = +∞, then it follows from proposition 2 and the defintion of
λi that |α| < λi and we are done. From now onwards, we suppose that
φi(|α|) < +∞. In the proof of proposition 2, we worked out a power series
expansion of φi. The convergence of this series at |α| implies in particular
that the general term of this series goes to 0, hence

lim
n→∞

1

αn+1

∑
i1,...,in 6=i

A(i, i1)A(i1, i2) · · ·A(in, i) = 0 .

Let m (respectively M) be the minimum (respectively the maximum) of
the entries of A. For any i0 6= i, we have∑

i1,...,in 6=i

A(i0, i1)A(i1, i2) · · ·A(in, i) ≤

M

m

∑
i1,...,in 6=i

A(i, i1)A(i1, i2) · · ·A(in, i) .

It follows that, for any n ≥ 1,

1

|α|n+1

∑
i0,i1,...,in 6=i

ν(i0)

ν(i)
A(i0, i1)A(i1, i2) · · ·A(in, i) ≤

Mdmax1≤j≤d |ν(j)|
m|ν(i)|

1

|α|n+1

∑
i1,...,in 6=i

A(i, i1)A(i1, i2) · · ·A(in, i)

and we conclude from the previous inequality that

lim
n→∞

1

αn+1

∑
i0,i1,...,in 6=i

ν(i0)

ν(i)
A(i0, i1)A(i1, i2) · · ·A(in, i) = 0 .

We send now n to ∞ in the identity and we get

1 =
1

α
A(i, i) +

+∞∑
n=1

1

αn+1

∑
i1,...,in 6=i

A(i, i1)A(i1, i2) · · ·A(in, i) .
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Recall that α might be complex. Taking the modulus, we conclude that
φi(|α|) ≥ 1, and since φi is decreasing, then |α| ≤ λi. It remains to examine
the case |α| = λi. We suppose that the eigenvector ν associated to α is
normalized so that ν(i) = 1. We denote by |ν| the vector whose coordinates
are the modulus of the coordinates of ν, i.e., |ν|(j) = |ν(j)| for 1 ≤ j ≤ d.
Since νA = αν and the entries of A are positive, then

∀k ∈ { 1, . . . , d } |ν|(k) ≤ 1

λ

d∑
j=1

|ν|(j)A(j, k) .

Starting from this inequality, we proceed as previously, that is, we isolate
the term corresponding to j = i in the sum, we bound from above the
term |ν(j)| for j 6= i, we iterate the procedure n times. We check that the
ultimate term goes to 0 when we send n to ∞, as we get the inequality

∀k ∈ { 1, . . . , d } |ν|(k) ≤ µi(k) .

For k ∈ { 1, . . . , d }, we have

λ|ν|(k) =
∣∣∣ d∑
j=1

ν(j)A(j, k)
∣∣∣ ≤ d∑

j=1

|ν|(j)A(j, k) .

It follows that

d∑
k=1

(
µi(k)− |ν|(k)

)
A(k, i) ≤ λ

(
µ(i)− ν(i)

)
= 0 .

This equation implies that µi = |ν| and that all the intermediate inequal-
ities were in fact equalities. Since all the entries of A are positive and
ν(i) = 1, then necessarily all the components of ν are non–negative real
numbers and ν = µi and α = λ. �

The λi’s are positive eigenvalues of A, the eigenvectors µi have positive
coordinates, thus proposition 5 readily implies the following result.

Corollary 6 The values λ1, . . . , λd are all equal. Their common value λ
is a simple eigenvalue of A. The eigenvectors µ1, . . . , µd are proportional.

Finally, we normalize these eigenvectors by imposing that the sum of the
components is equal to 1, thereby getting a probability distribution.

Corollary 7 The left Perron–Frobenius eigenvector µ of A is given by

∀i ∈ { 1, . . . , d } µ(i) =
1

Ei

(
τi−1∑
n=0

(
λ−n

n−1∏
t=0

S(Xt)
)) .
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This formula (already proved in [2]) is a generalization of the classical
formula for the invariant probability measure of a Markov chain. Indeed,
in the particular case where A is stochastic, S is constant equal to 1, λ
is also equal to 1, the formula of the corollary becomes the well–known
formula

∀i ∈ { 1, . . . , d } µ(i) =
1

Ei(τi)
.
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