
ar
X

iv
:0

90
7.

55
01

v1
  [

m
at

h.
PR

] 
 3

1 
Ju

l 2
00

9

Lower large deviations for the maximal �ow through adomain of R
d in �rst passage perolationRaphaël CerfUniversité Paris Sud, Laboratoire de Mathématiques, bâtiment 42591405 Orsay Cedex, FraneE-mail: rerf�math.u-psud.frandMarie ThéretÉole Normale Supérieure, Département Mathématiques et Appliations, 45 rue d'Ulm75230 Paris Cedex 05, FraneE-mail: marie.theret�ens.frAbstrat: We onsider the standard �rst passage perolation model in the resaled graph Z

d/nfor d ≥ 2, and a domain Ω of boundary Γ in R
d. Let Γ1 and Γ2 be two disjoint open subsets of Γ,representing the parts of Γ through whih some water an enter and esape from Ω. We investigatethe asymptoti behaviour of the �ow φn through a disrete version Ωn of Ω between the orrespond-ing disrete sets Γ1

n and Γ2
n. We prove that under some onditions on the regularity of the domainand on the law of the apaity of the edges, the lower large deviations of φn/nd−1 below a ertainonstant are of surfae order.AMS 2000 subjet lassi�ations: 60K35.Keywords : First passage perolation, maximal �ow, minimal ut, large deviations.1 First de�nitions and main resultWe use many notations introdued in [8℄ and [9℄. Let d ≥ 2. We onsider the graph (Zd

n, Ed
n) havingfor verties Z

d
n = Z

d/n and for edges E
d
n, the set of pairs of nearest neighbours for the standard L1norm. With eah edge e in E

d
n we assoiate a random variable t(e) with values in R

+. We supposethat the family (t(e), e ∈ E
d
n) is independent and identially distributed, with a ommon law Λ: thisis the standard model of �rst passage perolation on the graph (Zd

n, Ed
n). We interpret t(e) as theapaity of the edge e; it means that t(e) is the maximal amount of �uid that an go through theedge e per unit of time.We onsider an open bounded onneted subset Ω of R

d suh that the boundary Γ = ∂Ω of Ωis pieewise of lass C1 (in partiular Γ has �nite area: Hd−1(Γ) < ∞). It means that Γ is inludedin the union of a �nite number of hypersurfaes of lass C1, i.e., in the union of a �nite number of
C1 submanifolds of R

d of odimension 1. Let Γ1, Γ2 be two disjoint subsets of Γ that are open in
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1 FIRST DEFINITIONS AND MAIN RESULT
Γ. We want to de�ne the maximal �ow from Γ1 to Γ2 through Ω for the apaities (t(e), e ∈ E

d
n).We onsider a disrete version (Ωn,Γn,Γ1

n,Γ2
n) of (Ω,Γ,Γ1,Γ2) de�ned by:





Ωn = {x ∈ Z
d
n | d∞(x,Ω) < 1/n} ,

Γn = {x ∈ Ωn | ∃y /∈ Ωn , 〈x, y〉 ∈ E
d
n} ,

Γi
n = {x ∈ Γn | d∞(x,Γi) < 1/n , d∞(x,Γ3−i) ≥ 1/n} for i = 1, 2 ,where d∞ is the L∞-distane, the notation 〈x, y〉 orresponds to the edge of endpoints x and y (see�gure 1).

Γ2
Γ1

Γ1
n

Γ2
n

Γ Γn

Figure 1: Domain Ω.We shall study the maximal �ow from Γ1
n to Γ2

n in Ωn. Let us de�ne properly the maximal�ow φ(F1 → F2 in C) from F1 to F2 in C, for C ⊂ R
d (or by ommodity the orresponding graph

C ∩ Z
d/n). We will say that an edge e = 〈x, y〉 belongs to a subset A of R

d, whih we denote by
e ∈ A, if the interior of the segment joining x to y is inluded in A. We de�ne Ẽ

d
n as the set of all theoriented edges, i.e., an element ẽ in Ẽ

d
n is an ordered pair of verties whih are nearest neighbours.We denote an element ẽ ∈ Ẽ

d
n by 〈〈x, y〉〉, where x, y ∈ Z

d
n are the endpoints of ẽ and the edge isoriented from x towards y. We onsider the set S of all pairs of funtions (g, o), with g : E

d
n → R

+and o : E
d
n → Ẽ

d
n suh that o(〈x, y〉) ∈ {〈〈x, y〉〉, 〈〈y, x〉〉}, satisfying:

• for eah edge e in C we have
0 ≤ g(e) ≤ t(e) ,

• for eah vertex v in C r (F1 ∪ F2) we have
∑

e∈C : o(e)=〈〈v,·〉〉

g(e) =
∑

e∈C : o(e)=〈〈·,v〉〉

g(e) ,where the notation o(e) = 〈〈v, .〉〉 (respetively o(e) = 〈〈., v〉〉) means that there exists y ∈ Z
d
n suhthat e = 〈v, y〉 and o(e) = 〈〈v, y〉〉 (respetively o(e) = 〈〈y, v〉〉). A ouple (g, o) ∈ S is a possiblestream in C from F1 to F2: g(e) is the amount of �uid that goes through the edge e, and o(e) givesthe diretion in whih the �uid goes through e. The two onditions on (g, o) express only the fat2



1 FIRST DEFINITIONS AND MAIN RESULTthat the amount of �uid that an go through an edge is bounded by its apaity, and that there isno loss of �uid in the graph. With eah possible stream we assoiate the orresponding �ow
flow(g, o) =

∑

u∈F2 , v /∈C : 〈u,v〉∈Ed
n

g(〈u, v〉)1o(〈u,v〉)=〈〈u,v〉〉 − g(〈u, v〉)1o(〈u,v〉)=〈〈v,u〉〉 .This is the amount of �uid that rosses C from F1 to F2 if the �uid respets the stream (g, o). Themaximal �ow through C from F1 to F2 is the supremum of this quantity over all possible hoies ofstreams
φ(F1 → F2 in C) = sup{flow(g, o) | (g, o) ∈ S} .We reall that we onsider an open bounded onneted subset Ω of R

d whose boundary Γ ispieewise of lass C1, and two disjoint open subsets Γ1 and Γ2 of Γ. We denote by
φn = φ(Γ1

n → Γ2
n in Ωn)the maximal �ow from Γ1

n to Γ2
n in Ωn. We will investigate the asymptoti behaviour of φn/nd−1when n goes to in�nity. More preisely, we will show that the lower large deviations of φn/nd−1below a onstant φΩ are of surfae order. The desription of φΩ will be given in setion 2, and pc(d)is the ritial parameter for the bond perolation on Z

d. Here we state the preise theorem:Theorem 1. If the law Λ of the apaity of an edge admits an exponential moment:
∃θ > 0

∫

R+

eθxdΛ(x) < +∞ ,and if Λ(0) < 1 − pc(d), then there exists a �nite onstant φΩ suh that for all λ < φΩ,
lim sup

n→∞

1

nd−1
log P[φn ≤ λnd−1] < 0 .Remark 1. The lower large deviations we obtain are of the relevant order. Indeed, if all the edgesin a �at layer that separates Γ1

n from Γ2
n in Ωn have abnormally small apaity, then φn will beabnormally small. Sine the ardinality of suh a set of edges is D′nd−1 for a onstant D′, theprobability of this event is of order exp−Dnd−1 for a onstant D.Remark 2. The ondition Λ(0) < 1 − pc(d) is optimal. Indeed, Zhang proved in [11℄ that in thepartiular ase where d = 3 and Ω is a straight ube of bottom Γ1 and top Γ2, if Λ admits anexponential moment and Λ(0) = 1 − pc(d), then limn→∞ φn/nd−1 = 0 a.s. The heuristi is thefollowing: if Λ(0) ≥ 1 − pc(d), then the edges of apaity stritly positive do not perolate, andtherefore they annot onvey a stritly positive amount of �uid through Ω when n goes to in�nity.Kesten obtained the �rst results about maximal �ows in this model in [9℄ under a stronger hypothesison Λ(0). Zhang sueeded in relaxing the onstraint on Λ in his remarkable artile [12℄.Remark 3. In the two ompanion papers [4℄ and [5℄, we prove in fat that φΩ is the almost surelimit of φn/nd−1 when n goes to in�nity, and that the upper large deviations of φn/nd−1 above φΩare of volume order. 3



2 COMPUTATION OF φΩ2 Computation of φΩ2.1 Geometri notationsWe start with some geometri de�nitions. For a subset X of R
d, we denote by Hs(X) the s-dimensional Hausdor� measure of X (we will use s = d − 1 and s = d − 2). The r-neighbourhood

Vi(X, r) of X for the distane di, that an be the Eulidean distane if i = 2 or the L∞-distane if
i = ∞, is de�ned by

Vi(X, r) = {y ∈ R
d | di(y,X) < r} .If X is a subset of R

d inluded in an hyperplane of R
d and of odimension 1 (for example a nondegenerate hyperretangle), we denote by hyp(X) the hyperplane spanned by X, and we denote by

cyl(X,h) the ylinder of basis X and of height 2h de�ned by
cyl(X,h) = {x + tv |x ∈ X , t ∈ [−h, h]} ,where v is one of the two unit vetors orthogonal to hyp(X) (see �gure 2).

h

h

v

x X

Figure 2: Cylinder cyl(X,h).For x ∈ R
d, r ≥ 0 and a unit vetor v, we denote by B(x, r) the losed ball entered at xof radius r, by disc(x, r, v) the losed dis entered at x of radius r and normal vetor v, and by

B+(x, r, v) (respetively B−(x, r, v)) the upper (respetively lower) half part of B(x, r) where thediretion is determined by v (see �gure 3), i.e.,
B+(x, r, v) = {y ∈ B(x, r) | (y − x) · v ≥ 0} ,

B−(x, r, v) = {y ∈ B(x, r) | (y − x) · v ≤ 0} .We denote by αd the volume of a unit ball in R
d, and αd−1 the Hd−1 measure of a unit dis.2.2 Flow in a ylinderHere are some partiular de�nitions of �ows through a box. It is important to know them, beauseall our work onsists in omparing the maximal �ow φn in Ωn with the maximal �ows in smallylinders. Let A be a non degenerate hyperretangle, i.e., a box of dimension d − 1 in R

d. Allhyperretangles will be supposed to be losed in R
d. We denote by v one of the two unit vetorsorthogonal to hyp(A). For h a positive real number, we onsider the ylinder cyl(A,h). The4



2 COMPUTATION OF φΩ 2.3 Max-�ow min-ut theorem
v

B+(x, r, v)

disc(x, r, v)

r
x

B−(x, r, v)Figure 3: Ball B(x, r).set cyl(A,h) r hyp(A) has two onneted omponents, whih we denote by C1(A,h) and C2(A,h).For i = 1, 2, let Ah
i be the set of the points in Ci(A,h) ∩ Z

d
n whih have a nearest neighbour in

Z
d
n r cyl(A,h):

Ah
i = {x ∈ Ci(A,h) ∩ Z

d
n | ∃y ∈ Z

d
n r cyl(A,h) , 〈x, y〉 ∈ E

d
n} .Let T (A,h) (respetively B(A,h)) be the top (respetively the bottom) of cyl(A,h), i.e.,

T (A,h) = {x ∈ cyl(A,h) | ∃y /∈ cyl(A,h) , 〈x, y〉 ∈ E
d
n and 〈x, y〉 intersets A + hv}and

B(A,h) = {x ∈ cyl(A,h) | ∃y /∈ cyl(A,h) , 〈x, y〉 ∈ E
d
n and 〈x, y〉 intersets A − hv} .For a given realisation (t(e), e ∈ E

d
n) we de�ne the variable τ(A,h) = τ(cyl(A,h), v) by

τ(A,h) = τ(cyl(A,h), v) = φ(Ah
1 → Ah

2 in cyl(A,h)) ,and the variable φ(A,h) = φ(cyl(A,h), v) by
φ(A,h) = φ(cyl(A,h), v) = φ(B(A,h) → T (A,h) in cyl(A,h)) ,where φ(F1 → F2 in C) is the maximal �ow from F1 to F2 in C, for C ⊂ R

d (or by ommodity theorresponding graph C ∩Z
d/n) de�ned previously. The dependene in n is impliit here, in fat wean also write τn(A,h) and φn(A,h) if we want to emphasize this dependene on the mesh of thegraph.2.3 Max-�ow min-ut theoremThe maximal �ow φ(F1 → F2 in C) an be expressed di�erently thanks to the max-�ow min-uttheorem (see [2℄). We need some de�nitions to state this result. A path on the graph Z

d
n from v0to vm is a sequene (v0, e1, v1, ..., em, vm) of verties v0, ..., vm alternating with edges e1, ..., em suhthat vi−1 and vi are neighbours in the graph, joined by the edge ei, for i in {1, ...,m}. A set E ofedges in C is said to ut F1 from F2 in C if there is no path from F1 to F2 in C r E. We all E an5



2.4 De�nition of ν 2 COMPUTATION OF φΩ

(F1, F2)-ut if E uts F1 from F2 in C and if no proper subset of E does. With eah set E of edgeswe assoiate its apaity whih is the variable
V (E) =

∑

e∈E

t(e) .The max-�ow min-ut theorem states that
φ(F1 → F2 in C) = min{V (E) |E is a (F1, F2)-ut } .2.4 De�nition of νThe asymptoti behaviour of the resaled expetation of τn(A,h) for large n is well known, thanksto the almost subadditivity of this variable. We reall the following result:Theorem 2. We suppose that ∫

[0,+∞[
x dΛ(x) < ∞ .Then for eah unit vetor v there exists a onstant ν(d,Λ, v) = ν(v) (the dependene on d and Λ isimpliit) suh that for every non degenerate hyperretangle A orthogonal to v and for every stritlypositive onstant h, we have

lim
n→∞

E[τn(A,h)]

nd−1Hd−1(A)
= ν(v) .For a proof of this proposition, see [10℄. We emphasize the fat that the limit depends on thediretion of v, but not on h nor on the hyperretangle A itself.In fat, Rossignol and Théret proved in [10℄ that under some moment onditions and/or someondition on A, ν(v) is the limit of the resaled variable τn(A,h)/(nd−1Hd−1(A)) almost surely andin L1. We also know, thanks to the works of Kesten [9℄, Zhang [12℄ and Rossignol and Théret [10℄that the variable φn(A,h)/(nd−1Hd−1(A)) satis�es the same law of large numbers in the partiularase where A is a straight hyperretangle, i.e., a hyperretangle of the form ∏d−1

i=1 [0, ki] × {0} forsome ki > 0. In his artile [12℄, Zhang obtains a ontrol on the number of edges in a minimal utset.We will present and use this result in setion 4.We reall some geometri properties of the map ν : v ∈ Sd−1 7→ ν(v), under the only onditionon Λ that E(t(e)) < ∞. They have been stated in setion 4.4 of [10℄. There exists a unit vetor
v0 suh that ν(v0) = 0 if and only if for all unit vetor v, ν(v) = 0, and it happens if and only if
Λ(0) ≥ 1 − pc(d). This property has been proved by Zhang in [11℄. Moreover, ν satis�es the weaktriangle inequality, i.e., if (ABC) is a non degenerate triangle in R

d and vA, vB and vC are theexterior normal unit vetors to the sides [BC], [AC], [AB] in the plane spanned by A, B, C, then
H1([AB])ν(vC ) ≤ H1([AC])ν(vB) + H1([BC])ν(vA) .This implies that the homogeneous extension ν0 of ν to R

d, de�ned by ν0(0) = 0 and for all w in
R

d,
ν0(w) = |w|2ν(w/|w|2) ,is a onvex funtion; in partiular, sine ν0 is �nite, it is ontinuous on R

d. We denote by νmin(respetively νmax) the in�mum (respetively supremum) of ν on Sd−1.The last result we reall is Theorem 3.9 in [10℄ onerning the lower large deviations of thevariable τn(A,h) below ν(v): 6



2 COMPUTATION OF φΩ 2.5 De�nition of φΩTheorem 3 (Rossignol and Théret). We suppose that ∫[0,+∞[ x dΛ(x) < ∞ and that Λ(0) < 1 −
pc(d). Then for every ε there exists a positive onstant K(d,Λ, ε) suh that for every unit vetor
v and every non degenerate hyperretangle A orthogonal to v, there exists a onstant K ′(d,Λ, A, ε)suh that for every stritly positive onstant h we have

P

[
τn(A,h)

nd−1Hd−1(A)
≤ ν(v) − ε

]
≤ K ′(d,Λ, A, ε) exp

(
−K(d,Λ, ε)nd−1Hd−1(A)

)
.We shall rely on this result for proving Theorem 1. Moreover, Theorem 1 is a generalisation ofTheorem 3, where we work in the domain Ω instead of a parallelepiped.2.5 De�nition of φΩWe give here a de�nition of φΩ in terms of the map ν. For a subset F of R

d, we de�ne the perimeterof F in Ω by
P(F,Ω) = sup

{∫

F
div f(x)dLd(x), f ∈ C∞

c (Ω, B(0, 1))

}
,where C∞

c (Ω, B(0, 1)) is the set of the funtions of lass C∞ from R
d to B(0, 1), the ball entered at

0 and of radius 1 in R
d, having a ompat support inluded in Ω, and div is the usual divergeneoperator. The perimeter P(F ) of F is de�ned as P(F, Rd). We denote by ∂F the boundary of F ,and by ∂∗F the redued boundary of F . At any point x of ∂∗F , the set F admits a unit exteriornormal vetor vF (x) at x in a measure theoreti sense (for de�nitions see for example [6℄, setion13). For all F ⊂ R

d of �nite perimeter in Ω, we de�ne
IΩ(F ) =

∫

∂∗F∩Ω
ν(vF (x))dHd−1(x) +

∫

Γ2∩∂∗(F∩Ω)
ν(v(F∩Ω)(x))dHd−1(x)

+

∫

Γ1∩∂∗(ΩrF )
ν(vΩ(x))dHd−1(x) .If P(F,Ω) = +∞, we de�ne IΩ(F ) = +∞. Finally, we de�ne

φΩ = inf{IΩ(F ) |F ⊂ R
d} = inf{IΩ(F ) |F ⊂ Ω} .In the ase where ∂F is C1, IΩ(F ) has the simpler following expression:

IΩ(F ) =

∫

∂F∩Ω
ν(vF (x))dHd−1(x) +

∫

Γ2∩∂(F∩Ω)
ν(v(F∩Ω)(x))dHd−1(x)

+

∫

Γ1∩∂(ΩrF )
ν(vΩ(x))dHd−1(x) .The loalization of the set along whih the previous integrals are done is illustrated in �gure 4.Sine ν(v) is the average amount of �uid that an ross a hypersurfae of area one in the diretion

v per unit of time, it an be interpreted as the apaity of a unitary hypersurfae orthogonal to v.Thus IΩ(F ) an be interpreted as the apaity of (∂F ∩ Ω) ∪ (Γ2 ∩ ∂(F ∩ Ω)) ∪ (Γ1 ∩ ∂(Ω r F )).7



4 NUMBER OF EDGES IN A MINIMAL CUTSET AND COMPACTNESS
Γ2Γ1

Ω

vF (x)

x

F

vΩ(z)

z

v(F∩Ω)(y)

y

(∂F ∩ Ω) ∪ (Γ2
∩ ∂(F ∩ Ω)) ∪ (Γ1

∩ ∂(Ω r F ))Figure 4: The set (∂F ∩ Ω) ∪ (Γ2 ∩ ∂(F ∩ Ω)) ∪ (Γ1 ∩ ∂(Ω r F )).3 Sketh of the proofWe are studying the lower large deviations of φn/nd−1: they are ontrolled by what happens arounda minimal utset. First, we will use the estimate of the number of edges in a minimal utset madeby Zhang in [12℄ to restrit the problem to utsets having a number of edges at most cnd−1 for aonstant c; we an then onlude that the minimal utset is "near" the boundary of a subset F of
Ω belonging to a ompat spae. By making an adequate overing of this spae, we need only todeal with a �nite number of sets and their neighbourhoods. We will then over the boundary ofsuh a set F by balls of very small radius, suh that ∂F is "almost �at" in eah ball; we will alsoshow that if φn is smaller than φΩ(1− ε)nd−1 for some positive ε, then some loal event happens ineah ball of the overing of ∂F (this event will be denoted by G(B, vF (x)) for the ball B enteredat x ∈ ∂F ). After that, we will onstrut a link between this loal event in a ball and the fatthat the maximal �ow through a ylinder (inluded in the ball) is abnormally small. The lowerlarge deviations for the maximal �ow through a ylinder are already known (see [10℄). Finally, wealibrate the onstants to get Theorem 1.This proof is largely inspired by the methods used to study the Wul� rystal in Ising model indimension d ≥ 3 (see for example [6℄).4 Number of edges in a minimal utset and ompatnessWe onsider a (Γ1

n,Γ2
n)-ut En in Ωn of minimal apaity, i.e., φn = V (En), and of minimal numberof edges (if there are more than one suh utset, we selet one of them by a deterministi algorithm).Aording to Theorem 1 in [12℄, adapted to our ase as said in Remark 2 in [12℄, we know that:Theorem 4 (Zhang). If the law of the apaity of the edges admits an exponential moment, andif Λ(0) < 1 − pc(d), then there exist onstants β0 = β0(Λ, d), Ci = Ci(Λ, d) for i = 1, 2 and

N = N(Λ, d,Ω,Γ,Γ1,Γ2) suh that for all β ≥ β0, for all n ≥ N , we have
P[card(En) ≥ βnd−1] ≤ C1 exp(−C2βnd−1) .We will always onsider suh large n ≥ N . Thus with high probability the (Γ1

n,Γ2
n)-ut En hasnot "too muh" edges. We want now to hange a little bit our point of view in order to work with a8



5 COVERING OF ∂F BY BALLSsubset of R
d rather than the utset En. We de�ne for eah edge e the variable t′(e) = 1{e/∈En}, andthe set Ẽn ⊂ Z

d
n by

Ẽn = {x ∈ Ωn |x is in an open luster onneted to Γ1
n for the perolation proess (t′(e))e∈Ωn

}.Then the edge boundary ∂eẼn of Ẽn, de�ned by
∂eẼn = {e = 〈x, y〉 ∈ Z

d
n ∩ Ωn |x ∈ Ẽn and y /∈ Ẽn} ,is exatly equal to En. We onsider now the "non disrete version" En of Ẽn de�ned by

En = {x ∈ Ω | d∞(x, Ẽn) ≤ 1/(2n)} =
(
Ẽn + [−1/(2n), 1/(2n)]d

)
∩ Ω .For all F ⊂ R

d, we reall that the perimeter of F in Ω is de�ned by
P(F,Ω) = sup

{∫

F
div f(x)dLd(x), f ∈ C∞

c (Ω, B(0, 1))

}
.We know that if card(En) ≤ βnd−1, then P(En,Ω) ≤ β.We de�ne

Cβ = {F ⊂ Ω | P(F,Ω) ≤ β} ,endowed with the topology L1 assoiated to the distane d(F,F ′) = Ld(F△F ′), where F△F ′ is thesymmetri di�erene between these two sets. For this topology the set Cβ is ompat. With every Fin Cβ we assoiate a positive εF , that we will hoose later. The olletion of sets V(F, εF ), F ∈ Cβ,where V(F, εF ) is the neighbourhood of F of size εF for the distane de�ned previously, overs Cβso we an extrat a �nite overing: Cβ ⊂ ∪i=1...NV(Fi, εFi
). We then obtain that for a �xed β ≥ β0,for all λ we have

P[φn ≤ λnd−1] ≤ e−βnd−1
+ P[V (En) ≤ λnd−1 and P(En,Ω) ≤ β]

≤ e−βnd−1
+

N∑

i=1

P[V (En) ≤ λnd−1 and Ld(En△Fi) ≤ εi] .It remains to study
P[V (En) ≤ λnd−1 and Ld(En△F ) ≤ εF ]for a generi F in Cβ and the orresponding εF .5 Covering of ∂F by balls5.1 Geometri toolsWe reall an important result about the Minkowski ontent of a subset of R

d (see for exampleAppendix A in [3℄). Whenever E is a losed (d − 1)-reti�able subset of R
d (i.e., there exists aLipshitz funtion mapping some bounded subset of R

d−1 onto E), the Minkowski ontent of E,de�ned by
lim
r→0

1

2r
Ld(V2(E, r)) ,9



5.1 Geometri tools 5 COVERING OF ∂F BY BALLSexists and is equal to Hd−1(E).We will also use the Vitali overing theorem for Hd−1. A olletion of sets U is alled a Vitalilass for a Borel set E of R
d if for eah x ∈ E and δ > 0, there exists a set U ∈ U ontaining x suhthat 0 < diam U < δ, where diam U is the diameter of the set U . We now reall the Vitali overingtheorem for Hd−1 (see for instane [7℄, Theorem 1.10):Theorem 5. Let E be a Hd−1 measurable subset of R

d and U be a Vitali lass of losed sets for E.Then we may selet a (ountable) disjoint sequene (Ui)i∈I from U suh thateither ∑
i∈I

(diam Ui)
d−1 = +∞ or Hd−1(E r ∪i∈IUi) = 0 .If Hd−1(E) < ∞, then given ε > 0, we may also require that

Hd−1(E) ≤ αd−1

2d−1

∑

i∈I

(diam Ui)
d−1 .We reall next the Besiovith di�erentiation theorem in R
d (see for example [1℄):Theorem 6. Let M be a �nite positive Radon measure on R

d. For any Borel funtion f ∈ L1(M),the quotient
1

M(B(x, r))

∫

B(x,r)
f(y)dM(y)onverges M-almost surely towards f(x) as r goes to 0.We state a result of overing that we will use in our study of the lower deviations of φn:Lemma 1. Let F be a subset of Ω of �nite perimeter. For every positive onstants δ and η, thereexists a �nite family of losed disjoint balls (Bi)i∈I∪J∪K = (B(xi, ri), vi)i∈I∪J∪K suh that (thevetor vi de�nes B−

i )
∀i ∈ I , xi ∈ ∂∗F ∩ Ω , ri ∈]0, 1[ , Bi ⊂ Ω , Ld((F ∩ Bi)△B−

i ) ≤ δαdr
d
i ,

∀i ∈ J , xi ∈ Γ1 ∩ ∂∗(Ω r F ) , ri ∈]0, 1[ , ∂Ω ∩ Bi ⊂ Γ1 , Ld((Bi ∩ Ω)△B−
i ) ≤ δαdr

d
i ,

∀i ∈ K , xi ∈ Γ2 ∩ ∂∗F , ri ∈]0, 1[ , ∂Ω ∩ Bi ⊂ Γ2 , Ld((F ∩ Bi)△B−
i ) ≤ δαdr

d
i ,and �nally ∣∣∣∣∣IΩ(F ) −

∑

i∈I∪K

αd−1r
d−1
i ν(vF (xi)) −

∑

i∈J

αd−1r
d−1
i ν(vΩ(xi))

∣∣∣∣∣ ≤ η .We will prove Lemma 1 with the help of Theorems 5 and 6, following the proof of Lemma 14.6in [6℄. First notie that for F ⊂ Ω, we have
IΩ(F ) =

∫

∂∗F∩Ω
ν(vF (x))dHd−1(x) +

∫

Γ2∩∂∗F
ν(vF (x))dHd−1(x)

+

∫

Γ1∩∂∗(ΩrF )
ν(vΩ(x))dHd−1(x) .For E a set of �nite perimeter, we denote by ||∇χE

|| the measure de�ned by
∀A Borel set in R

d ||∇χE
||(A) = Hd−1(A ∩ ∂∗E) .10



5 COVERING OF ∂F BY BALLS 5.1 Geometri toolsWe onsider a subset F of Ω of �nite perimeter. We reall that the funtion ν : Sd−1 → R
+ isontinuous. The map x ∈ ∂∗F ∩Ω 7→ vF (x) is ||∇χF

||-measurable, so we an apply the Besiovithdi�erentiation theorem in R
d to the maps x ∈ ∂∗F ∩Ω 7→ ν(vF (x)) and x ∈ ∂∗F ∩Ω 7→ 1 to obtainthat for Hd−1-almost all x ∈ ∂∗F ∩ Ω

lim
r→0

1

αd−1rd−1
Hd−1(B(x, r) ∩ ∂∗F ∩ Ω) = 1 ,

lim
r→0

1

αd−1rd−1

∫

B(x,r)∩∂∗F∩Ω
ν(vF (y))dHd−1(y) = ν(vF (x)) .We denote by R1 the set of the points of ∂∗F ∩ Ω where the two preeding identities hold simulta-neously, thus Hd−1((∂∗F ∩ Ω) r R1) = 0. Similarly, let R2 be the set of the points x belonging to

Γ2 ∩ ∂∗F suh that
lim
r→0

1

αd−1rd−1
Hd−1(B(x, r) ∩ Γ2 ∩ ∂∗F ) = 1 ,

lim
r→0

1

αd−1rd−1

∫

B(x,r)∩Γ2∩∂∗F
ν(vF (y))dHd−1(y) = ν(vF (x)) .We also know that Hd−1((Γ2 ∩ ∂∗F ) r R2) = 0. Sine the map x ∈ Γ1 ∩ ∂∗(Ω r F ) 7→ vΩ(x) is

||∇χΩ
||-measurable, the same arguments imply that the set R3 of the points x of Γ1 ∩ ∂∗(Ω r F )suh that

lim
r→0

1

αd−1rd−1
Hd−1(B(x, r) ∩ Γ1 ∩ ∂∗(Ω r F )) = 1 ,

lim
r→0

1

αd−1rd−1

∫

B(x,r)∩Γ1∩∂∗(ΩrF )
ν(vΩ(y))dHd−1(y) = ν(vΩ(x)) ,satis�es Hd−1(Γ1 ∩ ∂∗(Ω r F ) rR3) = 0. Moreover, from the theory of sets of �nite perimeter (seefor example setion 13 in [6℄), we know that

{
∀x ∈ ∂∗F , limr→0 r−dLd(F△B−(x, r, vF (x))) = 0 ,
∀x ∈ ∂∗(Ω r F ) , limr→0 r−dLd(Ω△B−(x, r, vΩ(x))) = 0 .We �x two parameters η > 0 and δ > 0. For all x ∈ R1, there exists a positive r(x, η, δ) suh thatfor all r < r(x, η, δ) we have
|Hd−1(B(x, r) ∩ ∂∗F ∩ Ω) − αd−1r

d−1| ≤ ηαd−1r
d−1 ,

∣∣∣∣∣
1

αd−1rd−1

∫

B(x,r)∩∂∗F∩Ω
ν(vF (y))dHd−1(y) − ν(vF (x))

∣∣∣∣∣ ≤ η ,

Ld((F ∩ B(x, r))△B−(x, r, vF (x))) ≤ δαdr
d and B(x, r) ⊂ Ω .For all x in R2, there exists a positive r(x, η, δ) suh that for all r < r(x, η, δ) we have

|Hd−1(B(x, r) ∩ Γ2 ∩ ∂∗F ) − αd−1r
d−1| ≤ ηαd−1r

d−1 ,

∣∣∣∣∣
1

αd−1rd−1

∫

B(x,r)∩Γ2∩∂∗F
ν(vF (y))dHd−1(y) − ν(vF (x))

∣∣∣∣∣ ≤ η ,11



5.1 Geometri tools 5 COVERING OF ∂F BY BALLS
Ld((F ∩ B(x, r))△B−(x, r, vF (x))) ≤ δαdr

d and B(x, r) ∩ Γ ⊂ Γ2 .For all x in R3, there exists a positive r(x, η, δ) suh that for all r < r(x, η, δ) we have
|Hd−1(B(x, r) ∩ Γ1 ∩ ∂∗(Ω r F )) − αd−1r

d−1| ≤ ηαd−1r
d−1 ,

∣∣∣∣∣
1

αd−1rd−1

∫

B(x,r)∩Γ1∩∂∗(ΩrF )
ν(vΩ(y))dHd−1(y) − ν(vΩ(x))

∣∣∣∣∣ ≤ η ,

Ld((Ω ∩ B(x, r))△B−(x, r, vF (x))) ≤ δαdr
d and B(x, r) ∩ Γ ⊂ Γ1 .The family of balls

(B(x, r), x ∈ R1 ∪R2 ∪R3, r < r(x, η, δ))is a Vitali relation for R1 ∪R2 ∪R3. By the Vitali overing theorem for Hd−1, we may selet fromthis olletion of balls a �nite or ountable olletion of disjoint balls B(xi, ri), i ∈ I1 suh thateither
Hd−1


(R1 ∪R2 ∪R3) r

⋃

i∈I1

B(xi, ri)


 = 0or ∑

i∈I1

rd−1
i = ∞ .We know that Ω and F have �nite perimeter, and that

(∂∗F ∩ Ω) ∪ (Γ2 ∩ ∂∗F ) ∪ (Γ1 ∩ ∂∗(Ω r F )) ⊂ Γ ∪ ∂∗F ,so
(1 − η)

∑

i∈I1

αd−1r
d−1
i ≤ Hd−1

(
(∂∗F ∩ Ω) ∪ (Γ2 ∩ ∂∗F ) ∪ (Γ1 ∩ ∂∗(Ω r F ))

)

≤ Hd−1(Γ ∪ ∂∗F ) < ∞ ,thus the �rst ase ours in the Vitali overing theorem, so we may selet a �nite subset I2 of I1suh that
Hd−1


(R1 ∪R2 ∪R3) r

⋃

i∈I2

B(xi, ri)


 ≤ ηHd−1(R1 ∪R2 ∪R3) .We laim that the olletion of balls (B(xi, ri), i ∈ I2) enjoys the desired properties. We de�ne thesets

I = {i ∈ I2 |xi ∈ ∂∗F ∩ Ω} ,

J = {i ∈ I2 |xi ∈ Γ1 ∩ ∂∗(Ω r F )} ,

K = {i ∈ I2 |xi ∈ Γ2 ∩ ∂∗F} ,and vi = vF (xi) for i ∈ I ∪ K and vi = vΩ(xi) for i ∈ J . Finally, we only have to hek that
∣∣∣∣∣IΩ(F ) −

∑

i∈I∪K

αd−1r
d−1
i ν(vF (xi)) −

∑

i∈J

αd−1r
d−1
i ν(vΩ(xi))

∣∣∣∣∣ ≤ η .12



5 COVERING OF ∂F BY BALLS 5.2 De�nition of a loal eventWe reall that νmax is the supremum of ν over Sd−1; we have
∣∣∣∣∣IΩ(F ) −

∑

i∈I∪K

αd−1r
d−1
i ν(vF (xi)) −

∑

i∈J

αd−1r
d−1
i ν(vΩ(xi))

∣∣∣∣∣

≤
∣∣∣∣∣

∫

R1

ν(vF (y))dHd−1(y) −
∑

i∈I

αd−1r
d−1
i ν(vF (xi))

∣∣∣∣∣

+

∣∣∣∣∣

∫

R2

ν(vF (y))dHd−1(y) −
∑

i∈K

αd−1r
d−1
i ν(vF (xi))

∣∣∣∣∣

+

∣∣∣∣∣

∫

R3

ν(vΩ(y))dHd−1(y) −
∑

i∈J

αd−1r
d−1
i ν(vΩ(xi))

∣∣∣∣∣

≤
∫

R1r∪i∈IB(xi,ri)
ν(vF (y))dHd−1(y)

+
∑

i∈I

∣∣∣∣∣

∫

R1∩B(xi,ri)
ν(vF (y))dHd−1(y) − αd−1r

d−1
i ν(vF (x))

∣∣∣∣∣

+

∫

R2r∪i∈KB(xi,ri)
ν(vF (y))dHd−1(y)

+
∑

i∈K

∣∣∣∣∣

∫

R2∩B(xi,ri)
ν(vF (y))dHd−1(y) − αd−1r

d−1
i ν(vF (x))

∣∣∣∣∣

+

∫

R3r∪i∈JB(xi,ri)
ν(vΩ(y))dHd−1(y)

+
∑

i∈J

∣∣∣∣∣

∫

R3∩B(xi,ri)
ν(vΩ(y))dHd−1(y) − αd−1r

d−1
i ν(vΩ(x))

∣∣∣∣∣

≤ ηHd−1(R1 ∪R2 ∪R3)νmax + η
∑

i∈I∪J∪K

αd−1r
d−1
i

≤ ηHd−1(R1 ∪R2 ∪R3)νmax + 2ηHd−1(R1 ∪R2 ∪R3)

≤ η(νmax + 2)(P(F,Ω) + P(Ω)) .Sine (νmax + 2)(P(F,Ω) + P(Ω)) does not depend on η, we have the required estimate.5.2 De�nition of a loal eventWe onsider a set F in Cβ, and a positive εF that we have to hoose adequately. Thanks to Lemma1, we know that for every positive �xed δ and η, there exists a �nite family of losed disjoint balls
(Bi)i∈I∪J∪K = (B(xi, ri), vi)i∈I∪J∪K suh that (the vetor vi de�nes B−

i )
∀i ∈ I , xi ∈ ∂∗F ∩ Ω , ri ∈]0, 1[ , Bi ⊂ Ω , Ld((F ∩ Bi)△B−

i ) ≤ δαdr
d
i ,

∀i ∈ J , xi ∈ Γ1 ∩ ∂∗(Ω r F ) , ri ∈]0, 1[ , ∂Ω ∩ Bi ⊂ Γ1 , Ld((Bi ∩ Ω)△B−
i ) ≤ δαdr

d
i ,

∀i ∈ K , xi ∈ Γ2 ∩ ∂∗F , ri ∈]0, 1[ , ∂Ω ∩ Bi ⊂ Γ2 , Ld((F ∩ Bi)△B−
i ) ≤ δαdr

d
i ,13



5.2 De�nition of a loal event 5 COVERING OF ∂F BY BALLSand �nally ∣∣∣∣∣IΩ(F ) −
∑

i∈I∪K

αd−1r
d−1
i ν(vF (xi)) −

∑

i∈J

αd−1r
d−1
i ν(vΩ(xi))

∣∣∣∣∣ ≤ η .It is obvious that φΩ < ∞ beause
φΩ ≤ IΩ(Ω) =

∫

Γ2∩∂∗Ω
ν(vΩ(x))dHd−1(x) ≤ νmaxHd−1(Γ2) < ∞ .We suppose for the rest of the artile that φΩ > 0 otherwise we do not have to study any lowerlarge deviations. We onsider λ < φΩ. There exists a positive s (we an hoose it smaller than 1)suh that λ ≤ φΩ(1 − 2s) ≤ IΩ(F )(1 − 2s). We hoose

η =
sIΩ(F )

4
,and then we obtain that

∣∣∣∣IΩ(F ) −
∑

i∈I∪K

αd−1r
d−1
i ν(vF (xi)) −

∑

i∈J

αd−1r
d−1
i ν(vΩ(xi))

∣∣∣∣

≤
(
∑

i∈I∪K

αd−1r
d−1
i ν(vF (xi)) +

∑

i∈J

αd−1r
d−1
i ν(vΩ(xi))

)
s

2
,and that

λ ≤
(
∑

i∈I∪K

αd−1r
d−1
i ν(vF (xi)) +

∑

i∈J

αd−1r
d−1
i ν(vΩ(xi))

)
(1 − s) .Sine the (Bi)i∈I∪J∪K are disjoint, we also know that

φn ≥
∑

i∈I∪J∪K

V (En ∩ Bi) .Then
P[V (En) ≤ λnd−1 and Ld(En△F ) ≤ εF ]

≤ P



∑

i∈I∪J∪K V (En ∩ Bi) ≤ (1 − s) nd−1
(∑

i∈I∪K αd−1r
d−1
i ν(vF (xi))

+
∑

i∈J αd−1r
d−1
i ν(vΩ(xi))

)and Ld(En△F ) ≤ εF


 .From now on we hoose εF to be

εF = min
i∈I∪J∪K

αdr
d
i δ ,for a �xed δ that we will hoose later. For all i ∈ I, we then have

Ld((En ∩ Bi)△B−
i ) ≤ Ld((F ∩ Bi)△B−

i ) + Ld(En△F ) ≤ 2δαdr
d
i .We want to evaluate card(((En ∩ Bi)△B−

i ) ∩ Z
d
n). It is equivalent to evaluate

ndLd(((En ∩ Bi)△B−
i ) ∩ Z

d
n + [−1/2n, 1/2n]d) .14



5 COVERING OF ∂F BY BALLS 5.2 De�nition of a loal eventBy de�nition, for all x ∈ En ∩ Z
d
n = Ẽn, x + [−1/2n, 1/2n]d ⊂ En, so

((En ∩ Bi)△B−
i ) ∩ Z

d
n + [−1/2n, 1/2n]d

⊂ ((En ∩ Bi)△B−
i ) ∪ (V∞(Bi, 1/n) r Bi) ∪ (V∞(B−

i , 1/n) r B−
i )

⊂ ((En ∩ Bi)△B−
i ) ∪ (V2(Bi, 2d/n) r Bi) ∪ (V2(B

−
i , 2d/n) r B−

i ) .Sine ∂Bi and ∂B−
i are very regular, the result about the Minkowski ontent implies that

lim
n→∞

n

2d
Ld(V2(Bi, 2d/n) r Bi) = Hd−1(∂Bi)and

lim
n→∞

n

2d
Ld(V2(B

−
i , 2d/n) r B−

i ) = Hd−1(∂B−
i ) .For n large enough, we then obtain that

Ld(((En ∩ Bi)△B−
i ) ∩ Z

d
n + [−1/2n, 1/2n]d) ≤ 2δαdr

d
i +

4d(Hd−1(∂Bi) + Hd−1(∂B−
i ))

n
,and then for all n large enough

card(((En ∩ Bi)△B−
i ) ∩ Z

d
n) ≤ 2δαdr

d
i n

d + 4d(Hd−1(∂Bi) + Hd−1(∂B−
i ))nd−1

≤ 4δαdr
d
i n

d .For i ∈ K, exatly the same arguments imply that
card(((En ∩ Bi)△B−

i ) ∩ Z
d
n) ≤ 4δαdr

d
i n

dfor n large enough.We study now what happens in the balls Bi for i ∈ J . We reall that Ẽn = En ∩Z
d
n. We de�ne

Ẽ′
n = Ẽn ∪Ωc

n (where Ωc
n = Z

d
n r Ωn) and E′

n = Ẽ′
n + [−1/(2n), 1/(2n)]d−1 . Then E′

n ∩Ω = En. Ina ball Bi, we have ∂eẼ′
n ∩Bi = En ∩Bi. Indeed, we know that Γ∩Bi ⊂ Γ1. The sets Γ1 and Γ2 areopen in Γ and disjoint, so Γ1∩Γ2 = ∅, where Γ2 is the adherene of Γ2, and then Bi∩Γ2 = ∅. Sine

Bi is losed, we obtain that d(Bi,Γ2) > 0, and thus for n large enough, Γn ∩ Bi ⊂ Γ1
n. Moreover,we know that Γ1

n ⊂ Ẽn ⊂ Ẽ′
n. We obtain that ∂eẼ′

n ∩Ωc
n ∩Bi = ∅, i.e., all the edges of ∂eẼ′

n in Bihave both endpoints in Ωn (see �gure 5). Now we have
Ld((E′

n ∩ Bi)△B+
i ) ≤ Ld((E′

n ∩ Bi)△(Ωc ∩ Bi)) + Ld((Ωc ∩ Bi)△B+
i )

≤ Ld(E′
n ∩ Bi ∩ Ω) + Ld((Ωc

r E′
n) ∩ Bi) + Ld((Ω ∩ Bi)△B−

i )

≤ Ld(En△F ) + Ld(V∞(Γ, 1/n) ∩ Bi) + δαdr
d
i

≤ εF + Ld(V∞(Γ, 1/n) ∩ Bi) + δαdr
d
i

≤ 3δαdr
d
i ,for n large enough, where the last inequality is a onsequene of the properties of the Minkowskiontent. As previously, we obtain that for n large enough,

card(((E′
n ∩ Bi)△B+

i ) ∩ Z
d
n) ≤ 4δαdr

d
i n

d .15



5.2 De�nition of a loal event 5 COVERING OF ∂F BY BALLS
Bi

xi

edges of
En ∩ Bi

Γ ∩ Bi ⊂ Γ1

Γn ∩ Bi ⊂ Γ1
n ⊂ eEn

eEn + [−1/(2n), 1/(2n)]d

vi

Ωc

n + [−1/(2n), 1/(2n)]d

Figure 5: A ball Bi for i ∈ J .We onlude that for n large enough,
P[V (En) ≤ λnd−1 and Ld(En△F ) ≤ εF ]

≤
∑

i∈I

P

[
V (∂eẼn ∩ Bi) ≤ (1 − s)αd−1r

d−1
i ν(vF (xi)) and

card((Ẽn ∩ Bi)△(B−
i ∩ Z

d
n)) ≤ 4δαdr

d
i n

d

]

+
∑

i∈J

P

[
V (∂eẼ′

n ∩ Bi) ≤ (1 − s)αd−1r
d−1
i ν(vF (xi)) and

card((Ẽ′
n ∩ Bi)△(B+

i ∩ Z
d
n)) ≤ 4δαdr

d
i n

d

]

+
∑

i∈K

P

[
V (∂eẼn ∩ Bi) ≤ (1 − s)αd−1r

d−1
i ν(vF (xi)) and

card((Ẽn ∩ Bi)△(B−
i ∩ Z

d
n)) ≤ 4δαdr

d
i n

d

]

≤
∑

i∈I∪J∪K

P[G(xi, ri, vi)] ,where G(x, r, v) is the event that there exists a set U ⊂ B ∩ Z
d
n suh that:

{
card(U△B−) ≤ 4δαdr

dnd ,
V (∂eU ∩ B) ≤ (αd−1r

d−1ν(v(x)))(1 − s)nd−1 .Notie that this event depends only on the edges in B = B(x, r). This event seems to be ompliated,but indeed when G(x, r, v) happens, it means in a sense that the �ow between the lower half part16



6 SURGERY IN A BALL TO DEFINE AN ALMOST FLAT CUTSETof B(x, r) (for the diretion v) and the upper half part of B is abnormally small. We will examinethe onsequene of the event G(x, r, v) over the maximal �ow in B(x, r) in the next setion.6 Surgery in a ball to de�ne an almost �at utsetWe onsider a �xed ball B = B(x, r) and a unit vetor v (orresponding to one generi ball of theprevious overing). We want to interpret the event G(x, r, v) in term of the maximal �ow through aylinder whose basis is a dis, inluded in the ball B, and oriented along the diretion v. We de�ne
γmax = ρr ,where ρ is a onstant depending on δ and B whih we an imagine very small, it will be hosenlater. The onstant γmax is in fat the height of the ylinder we are onstruting, namely

C = cyl(disc(x, r′, v), γmax) .We want C to be inluded in B, so we hoose
r′ = r cos(arcsin ρ) .We would like to analyse the impliation of the event G(x, r, v) on the �ow φC between the topand the bottom of C for the diretion v (we will de�ne it properly soon). As we said previously,the event G(x, r, v) means that the maximal �ow between a set U that "looks like" B− (for thediretion given by v) and the set U c that "looks like" B+ is a bit too small. Here "looks like" meansthat B− and U are losed in volume, but the set U might have some thin strands (of small volume,but that an be long) that go deeply into B+ and symmetrially the set U c might have some thinstrands that go deeply into B− (see �gure 6). What we have to do to ontrol φC is to ut these
B

U

Uc

x

v

Figure 6: Event G(x, r, v).strands: by adding edges to ∂eU at a �xed height in C to lose the strands, we obtain a utset in
C. The point is that we have to ontrol the apaity of these edges we have added to ∂eU . This isthe reason why we hoose the height at whih we add edges to be sure we add not too many edges,and then we ontrol their apaity thanks to a property of independene.We suppose that the event G(x, r, v) happens, and we denote by U a �xed set satisfying theproperties desribed in the de�nition of G(x, r, v). For eah γ in {1/n, ..., (⌊nγmax⌋ − 1)/n}, we17



6 SURGERY IN A BALL TO DEFINE AN ALMOST FLAT CUTSETde�ne 



D(γ) = cyl(disc(x, r′, v), γ) ,
∂+D(γ) = {y ∈ D(γ) | ∃z ∈ Z

d
n , (z − x) · v > γ and |z − y| = 1} ,

∂−D(γ) = {y ∈ D(γ) | ∃z ∈ Z
d
n , (z − x) · v < −γ and |z − y| = 1} .These sets are represented in �gure 7. The sets ∂+D(γ)∪ ∂−D(γ) are pairwise disjoint for di�erent

γ

B+(x, r, v)

v

x

r

B−(x, r, v)

∂+D(γ)

∂−D(γ)

r′

Figure 7: Representation of D(γ).
γ, and we know that

∑

γ=1/n,...,(⌊nγmax⌋−1)/n

card((∂+D(γ) ∩ U) ∪ (∂−D(γ) ∩ U c)) ≤ 4δαdr
dnd ,so there exists a γ0 in {1/n, ..., (⌊nγmax⌋ − 1)/n} suh that

card((∂+D(γ0) ∩ U) ∪ (∂−D(γ0) ∩ U c)) ≤ 4δαdr
dnd

⌊nγmax⌋ − 1
≤ 5δαdr

dnd−1

γmaxfor n su�iently large. We de�ne the event G∗(x, r, v, γ) (depending only on the edges in D(γ))) tobe the existene of a set X ⊂ D(γ) ∩ Z
d
n with the following properties:

{
card((∂+D(γ) ∩ X) ∪ (∂−D(γ) ∩ Xc)) ≤ 5δαdr

dnd−1γ−1
max = 5δαdρ

−1rd−1nd−1 ,
V (∂eX ∩ D(γ)) ≤ αd−1r

d−1ν(v)(1 − s)nd−1 .We have proved that if G(x, r, v) ours, there exists a γ in {1/n, ..., (⌊nγmax⌋ − 1)/n} suh that
G∗(x, r, v, γ) happens. On G∗(x, r, v, γ), we selet a set of edges X that satis�es the propertiesdesribed in the de�nition of G∗(B, v(x), γ) with a deterministi proedure, and we de�ne

{
X+ = {〈x, y〉 |x ∈ ∂+D(γ) ∩ X , y /∈ D(γ)} ,
X− = {〈x, y〉 |x ∈ ∂−D(γ) r X , y /∈ D(γ)} .18



6 SURGERY IN A BALL TO DEFINE AN ALMOST FLAT CUTSETThe set of edges (∂eX ∩D(γ))∪X+ ∪X− uts the top ∂+D(γmax) from the bottom ∂−D(γmax) of
C = D(γmax). If we de�ne

φC = φ(∂+D(γmax) → ∂−D(γmax) in C) ,on G∗(x, r, v, γ), we have
φC ≤ V (∂eX ∩ D(γ)) + V (X+ ∪ X−) .(Reall that ∂eX ∩ D(γ) is the set of the edges of ∂eX whih are inluded in D(γ)). Moreover

card(X+ ∪ X−) ≤ 2d card((∂+D(γ) ∩ X) ∪ (∂−D(γ) r X))

≤ 2d
5δαdr

dnd−1

γmax
= Crd−1δρ−1nd−1 ,where C = 10dαd is a onstant depending on the dimension. We obtain that

P[G(x, r, v)] ≤
∑

γ=1/n,...,(⌊nγmax⌋−1)/n

P[G∗(x, r, v, γ)]

≤
∑

γ

P[G∗(x, r, v, γ) ∩ {V (X+ ∪ X−) ≤ αd−1r
d−1ν(v)nd−1s/4}]

+ P[G∗(x, r, v, γ) ∩ {V (X+ ∪ X−) ≥ αd−1r
d−1ν(v)nd−1s/4}] .On one hand, we have proved that

P[G∗(x, r, v, γ) ∩ {V (X+ ∪ X−) ≤ αd−1r
d−1ν(v)nd−1s/4}]

≤ P[φC ≤ αd−1r
d−1ν(v)(1 − 3s/4)nd−1] .On the other hand, we have

P[G∗(x, r, v, γ) ∩ {V (X+ ∪ X−) ≥ αd−1r
d−1ν(v)nd−1s/4}]

≤ E

(
P(G∗(x, r, v, γ) ∩ {V (X+ ∪ X−) ≥ αd−1r

d−1ν(v)nd−1s/4} | (t(e))e∈D(γ))
)

≤ E

(
P(G∗(x, r, v, γ) ∩

⋃

F⊂Ed
n

({X+ ∪ X− = F}

∩ {V (F ) ≥ αd−1r
d−1ν(v)nd−1s/4}) | (t(e))e∈D(γ))

)

≤ E

(1G∗(x,r,v,γ)

∑

F⊂Ed
n

1{X+∪X−=F}P(V (F ) ≥ αd−1r
d−1ν(v)nd−1s/4)

)

≤ P




Crd−1δρ−1nd−1∑

i=1

t(ei) ≥ αd−1r
d−1ν(v)nd−1s/4


 ,where the last inequality omes from the fat that for all F suh that P[X+ ∪ X− = F ] > 0,

card(F ) ≤ Crd−1δρ−1nd−1. Here we have used the following essential property of X+ ∪ X−:19



6 SURGERY IN A BALL TO DEFINE AN ALMOST FLAT CUTSETthe position of the edges of X+ ∪ X− is σ(t(e), e ∈ D(γ))-measurable, but their apaities areindependent of (t(e))e∈D(γ). Finally, we obtain that
P[G∗(x, r, v, γ)] ≤ γmaxnP[φC ≤ (αd−1r

d−1ν(v))(1 − 3s/4)nd−1]

+ γmaxnP




Crd−1δρ−1nd−1∑

i=1

t(ei) ≥ (αd−1r
d−1ν(v))nd−1s/4


 .We want to onsider ylinders whose basis are hyperretangles instead of diss, and the variable τinstead of φ in these ylinders, beause we only know the lower large deviations of the �ow in thisase (see [10℄). There exists a onstant c = c(d) suh that, for any positive κ, there exists a �nitefamily (Ai)i∈I of disjoint losed hyperretangles inluded in disc(x, r′, v) suh that

{ ∑
i∈I Hd−1(Ai) ≥ αd−1r

′d−1 − κ ,∑
i∈I Hd−2(∂Ai) ≤ cr′d−2 ,(see �gure 8). Thanks to the max-�ow min-ut theorem, we know that for eah i, the maximal

Ai

x

r′

disc(x, r′, v)

Figure 8: Dis disc(x, r′, v).�ow τ(cyl(Ai, γmax), v) is equal to the smallest apaity of a set of edges in cyl(Ai, γmax) that utsthe lower half part from the upper half part of the boundary of the ylinder along the diretiongiven by v. We denote by Ei suh a utset in cyl(Ai, γmax). This set of edges is pinned at theboundary of Ai (whih is the ommon boundary of the two halves of the boundary of the ylinder
cyl(Ai, γmax) between whih the �ow τ(cyl(Ai, γmax), v) goes). Thus the di�erent sets Ei in eahylinder cyl(Ai, γmax) an be glued together along ∪i∈I∂Ai to reate a utset in C if we providesome "glue", i.e., if we add some edges in a small neighbourhood of ∪i∈I∂Ai. For eah i ∈ I, wede�ne the set Pi(n) ⊂ R

d by
Pi(n) = cyl(V(∂Ai, ζ/n) ∩ hyp(Ai), γmax) ,where ζ is a �xed onstant bigger than 2d, and we denote by Pi(n) the set of the edges inluded in

Pi(n). Then ∪i∈IEi ∪ Pi(n) uts the top from the bottom of C. Thanks to the max-�ow min-uttheorem again, we thus obtain that
φC ≤

∑

i∈I

τ(cyl(Ai, γmax), v) + V (∪i∈IPi(n)) .20



7 CALIBRATION OF THE CONSTANTSWe an evaluate the number of edges in ∪i∈IPi(n) as follows:
card(∪i∈IPi(n)) ≤ c′r′d−2γmaxn

d−1 ≤ c′ρrd−1nd−1 ,where c′ is a onstant depending on ζ and d. Therefore
P[φC ≤ αd−1r

d−1ν(v)(1 − 3s/4)nd−1]

≤ P

[
∑

i∈I

τ(cyl(Ai, γmax), v) ≤ αd−1r
d−1ν(v)(1 − s/2)nd−1

]

+ P




c′ρrd−1nd−1∑

i=1

t(ei) ≥ αd−1r
d−1ν(v)

s

4
nd−1




≤ P

[
∑

i∈I

τ(cyl(Ai, γmax), v) ≤ (1 − s/4)nd−1
∑

i∈I

Hd−1(Ai)ν(v)

]

+ P




c′ρrd−1nd−1∑

i=1

t(ei) ≥ αd−1r
d−1ν(v)

s

4
nd−1


 ,as soon as the onstants satisfy the ondition

(κ + αd−1(r
d−1 − r′d−1))(1 − s/2) ≤

∑

i∈I

Hd−1(Ai)νmins/4 . (1)Then
P[G∗(x, r, v, γ)] ≤ ρrn

∑

i∈I

P[τ(cyl(Ai, γmax), v) ≤ Hd−1(Ai)ν(v)(1 − s/4)nd−1]

+ ρrnP




Crd−1δρ−1nd−1∑

i=1

t(ei) ≥ αd−1r
d−1ν(v)nd−1s/4




+ ρrnP




c′ρrd−1nd−1∑

i=1

t(ei) ≥ αd−1r
d−1ν(v)nd−1s/4


 .

≤ ρrn
∑

i∈I

P[τ(cyl(Ai, γmax), v) ≤ Hd−1(Ai)ν(v)(1 − s/4)nd−1]

+ 2ρrnP




C′(δρ−1+ρ)rd−1nd−1∑

i=1

t(ei) ≥ αd−1r
d−1ν(v)nd−1s/2


 ,where C ′ is a onstant depending on ζ and d.7 Calibration of the onstantsFrom now on we suppose that the law Λ of the apaity of the edges admits an exponential moment.Then as soon as the onstants satisfy the ondition

C ′(ρ + δρ−1)rd−1
E(t(e)) < (αd−1r

d−1νmin)
s

2
, (2)21



REFERENCES REFERENCESthe Cramér Theorem in R allows us to a�rm that there exist positive onstants D and D′ (dependingon Λ, δ, ρ, ζ, s and d) suh that
P




C′(δρ−1+ρ)rd−1nd−1∑

i=1

t(ei) ≥ (αd−1r
d−1ν(v)nd−1s/2


 ≤ D′e−Dnd−1

.If we also suppose that Λ(0) < 1− pc(d), we know from Theorem 3 (Theorem 3.9 in [10℄) that thereexist a positive onstant K(d,Λ, s) and a onstant K ′(d,Λ, Ai, s) suh that
P[τ(cyl(Ai, γmax), v) ≤ Hd−1(Ai)ν(v)(1 − s/4)nd−1] ≤ K ′e−Knd−1Hd−1(Ai) .We have thus proved that if we an hoose, for a �xed F , the onstants δ, ρ and κ suh that forevery ball B in the olletion of balls (Bi)i∈I∪J∪K the onditions (1) and (2) are satis�ed, then thereexists positive onstants D̃ and D̂ (depending on d, Λ, Ω, Γ1, Γ2 and λ) suh that

P[φn ≤ λnd−1] ≤ D̂e−
eDnd−1

,and this yields Theorem 1.We just have to alibrate the onstants. In ondition (2) appears the fator (ρ+ δρ−1): to makeit small, we hoose ρ =
√

δ. Then the ondition (2) is equivalent to
√

δ <
αd−1νmins

2C ′E(t(e))
,for a onstant C ′ that depends on ζ and d, and thus it is satis�ed if we hoose δ small enough(learly sine Λ(0) < 1 − pc(d) we know that E(t(e)) > 0 and νmin > 0). To see that the ondition(1) an also be satis�ed, we just hoose κ ≤ αd−1(r

d−1−r′d−1)/2 (so κ depends on δ) and we remarkthat
1 − (cos arcsin

√
δ)d−1 = (d − 1)δ/2 + o(δ) ,so for δ small enough, ondition (1) is satis�ed as soon as

δ ≤ 2νmin

12(d − 1)(1 − s/2)
,whih an obviously be satis�ed (remember that s < 1 and νmin > 0). This ends the proof ofTheorem 1.Referenes[1℄ P. Assouad and T. Quentin de Gromard. Sur la dérivation des mesures dans R
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