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Law of large numbers for the maximal �ow through adomain of R
d in �rst passage perolationRaphaël CerfUniversité Paris Sud, Laboratoire de Mathématiques, bâtiment 42591405 Orsay Cedex, FraneE-mail: rerf�math.u-psud.frandMarie ThéretÉole Normale Supérieure, Département Mathématiques et Appliations, 45 rue d'Ulm75230 Paris Cedex 05, FraneE-mail: marie.theret�ens.frAbstrat: We onsider the standard �rst passage perolation model in the resaled graph Z

d/nfor d ≥ 2, and a domain Ω of boundary Γ in R
d. Let Γ1 and Γ2 be two disjoint open subsetsof Γ, representing the parts of Γ through whih some water an enter and esape from Ω. Weinvestigate the asymptoti behaviour of the �ow φn through a disrete version Ωn of Ω betweenthe orresponding disrete sets Γ1

n and Γ2
n. We prove that under some onditions on the regularityof the domain and on the law of the apaity of the edges, φn onverges almost surely towardsa onstant φΩ, whih is the solution of a ontinuous non-random min-ut problem. Moreover, wegive a neessary and su�ient ondition on the law of the apaity of the edges to ensure that φΩ > 0.AMS 2000 subjet lassi�ations: 60K35.Keywords : First passage perolation, maximal �ow, minimal ut, law of large numbers.1 First de�nitions and main resultWe use many notations introdued in [18℄ and [19℄. Let d ≥ 2. We onsider the graph (Zd

n,E
d
n)having for verties Z

d
n = Z

d/n and for edges E
d
n, the set of pairs of nearest neighbours for thestandard L1 norm. With eah edge e in E

d
n we assoiate a random variable t(e) with values in

R
+. We suppose that the family (t(e), e ∈ E

d
n) is independent and identially distributed, with aommon law Λ: this is the standard model of �rst passage perolation on the graph (Zd

n,E
d
n). Weinterpret t(e) as the apaity of the edge e; it means that t(e) is the maximal amount of �uid thatan go through the edge e per unit of time.We onsider an open bounded onneted subset Ω of R

d suh that the boundary Γ = ∂Ω of Ωis pieewise of lass C1 (in partiular Γ has �nite area: Hd−1(Γ) <∞). It means that Γ is inludedin the union of a �nite number of hypersurfaes of lass C1, i.e., in the union of a �nite number of
C1 submanifolds of R

d of odimension 1. Let Γ1, Γ2 be two disjoint subsets of Γ that are open in Γ
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1 FIRST DEFINITIONS AND MAIN RESULTWe want to de�ne the maximal �ow from Γ1 to Γ2 through Ω for the apaities (t(e), e ∈ E
d
n). Weonsider a disrete version (Ωn,Γn,Γ

1
n,Γ

2
n) of (Ω,Γ,Γ1,Γ2) de�ned by:





Ωn = {x ∈ Z
d
n | d∞(x,Ω) < 1/n} ,

Γn = {x ∈ Ωn | ∃y /∈ Ωn , 〈x, y〉 ∈ E
d
n} ,

Γi
n = {x ∈ Γn | d∞(x,Γi) < 1/n , d∞(x,Γ3−i) ≥ 1/n} for i = 1, 2 ,where d∞ is the L∞-distane, the notation 〈x, y〉 orresponds to the edge of endpoints x and y (see�gure 1).

Γ2
Γ1

Γ1
n

Γ2
n

Γ Γn

Figure 1: Domain Ω.We shall study the maximal �ow from Γ1
n to Γ2

n in Ωn. Let us de�ne properly the maximal�ow φ(F1 → F2 in C) from F1 to F2 in C, for C ⊂ R
d (or by ommodity the orresponding graph

C ∩ Z
d/n). We will say that an edge e = 〈x, y〉 belongs to a subset A of R

d, whih we denote by
e ∈ A, if the interior of the segment joining x to y is inluded in A. We de�ne Ẽ

d
n as the set of all theoriented edges, i.e., an element ẽ in Ẽ

d
n is an ordered pair of verties whih are nearest neighbours.We denote an element ẽ ∈ Ẽ

d
n by 〈〈x, y〉〉, where x, y ∈ Z

d
n are the endpoints of ẽ and the edge isoriented from x towards y. We onsider the set S of all pairs of funtions (g, o), with g : E

d
n → R

+and o : E
d
n → Ẽ

d
n suh that o(〈x, y〉) ∈ {〈〈x, y〉〉, 〈〈y, x〉〉}, satisfying:

• for eah edge e in C we have
0 ≤ g(e) ≤ t(e) ,

• for eah vertex v in C r (F1 ∪ F2) we have
∑

e∈C : o(e)=〈〈v,·〉〉
g(e) =

∑

e∈C : o(e)=〈〈·,v〉〉
g(e) ,where the notation o(e) = 〈〈v, .〉〉 (respetively o(e) = 〈〈., v〉〉) means that there exists y ∈ Z

d
n suhthat e = 〈v, y〉 and o(e) = 〈〈v, y〉〉 (respetively o(e) = 〈〈y, v〉〉). A ouple (g, o) ∈ S is a possiblestream in C from F1 to F2: g(e) is the amount of �uid that goes through the edge e, and o(e) givesthe diretion in whih the �uid goes through e. The two onditions on (g, o) express only the fat2



2 COMPUTATION OF φΩthat the amount of �uid that an go through an edge is bounded by its apaity, and that there isno loss of �uid in the graph. With eah possible stream we assoiate the orresponding �ow
flow(g, o) =

∑

u∈F2 , v /∈C : 〈u,v〉∈Ed
n

g(〈u, v〉)1o(〈u,v〉)=〈〈u,v〉〉 − g(〈u, v〉)1o(〈u,v〉)=〈〈v,u〉〉 .This is the amount of �uid that rosses C from F1 to F2 if the �uid respets the stream (g, o). Themaximal �ow through C from F1 to F2 is the supremum of this quantity over all possible hoies ofstreams
φ(F1 → F2 in C) = sup{flow(g, o) | (g, o) ∈ S} .We denote by

φn = φ(Γ1
n → Γ2

n in Ωn)the maximal �ow from Γ1
n to Γ2

n in Ωn. We will investigate the asymptoti behaviour of φn/n
d−1when n goes to in�nity. More preisely, we will show that (φn/n

d−1)n≥1 onverges towards aonstant φΩ (depending on Ω, Γ1, Γ2, Λ and d) when n goes to in�nity, and that this onstant isstritly positive if and only if Λ(0) < 1 − pc(d), where pc(d) is the ritial parameter for the bondperolation on Z
d. The desription of φΩ will be given in setion 2. Here we state the preisetheorem:Theorem 1. We suppose that Ω is a Lipshitz domain and that Γ is inluded in the union of a�nite number of oriented hypersurfaes S1, ...,Sr of lass C1 whih are transverse to eah other. Wealso suppose that Γ1 and Γ2 are open in Γ, that their relative boundaries ∂ΓΓ1 and ∂ΓΓ2 in Γ havenull Hd−1 measure, and that d(Γ1,Γ2) > 0. We suppose that the law Λ of the apaity of an edgeadmits an exponential moment:

∃θ > 0

∫

R+

eθxdΛ(x) < +∞ .Then there exists a �nite onstant φΩ ≥ 0 suh that
lim

n→∞
φn

nd−1
= φΩ a.s.Moreover, this equivalene holds:

φΩ > 0 ⇐⇒ Λ(0) < 1 − pc(d) .Remark 1. In the two ompanion papers [7℄ and [8℄, we prove in fat that the lower large deviationsof φn/n
d−1 below φΩ are of surfae order, and that the upper large deviations of φn/n

d−1 above φΩare of volume order (see setion 3.2 where these results are presented).2 Computation of φΩ2.1 Geometri notationsWe start with some geometri de�nitions. For a subset X of R
d, we denote by Hs(X) the s-dimensional Hausdor� measure of X (we will use s = d − 1 and s = d− 2). The r-neighbourhood3



2.2 Flow in a ylinder 2 COMPUTATION OF φΩ

Vi(X, r) of X for the distane di, that an be the Eulidean distane if i = 2 or the L∞-distane if
i = ∞, is de�ned by

Vi(X, r) = {y ∈ R
d | di(y,X) < r} .If X is a subset of R

d inluded in an hyperplane of R
d and of odimension 1 (for example a nondegenerate hyperretangle), we denote by hyp(X) the hyperplane spanned by X, and we denote by

cyl(X,h) the ylinder of basis X and of height 2h de�ned by
cyl(X,h) = {x+ tv |x ∈ X , t ∈ [−h, h]} ,where v is one of the two unit vetors orthogonal to hyp(X) (see �gure 2). For x ∈ R

d, r ≥ 0

h

h

v

x X

Figure 2: Cylinder cyl(X,h).and a unit vetor v, we denote by B(x, r) the losed ball entered at x of radius r, by disc(x, r, v)the losed dis entered at x of radius r and normal vetor v, and by hyp(x, v) the hyperplaneontaining x and orthogonal to v. We denote by αd the volume of a unit ball in R
d, and αd−1 the

Hd−1 measure of a unit dis.2.2 Flow in a ylinderHere are some partiular de�nitions of �ows through a box. Let A be a non degenerate hyperret-angle, i.e., a box of dimension d− 1 in R
d. All hyperretangles will be supposed to be losed in R

d.We denote by v one of the two unit vetors orthogonal to hyp(A). For h a positive real number, weonsider the ylinder cyl(A,h). The set cyl(A,h) r hyp(A) has two onneted omponents, whihwe denote by C1(A,h) and C2(A,h). For i = 1, 2, let Ah
i be the set of the points in Ci(A,h) ∩ Z

d
nwhih have a nearest neighbour in Z

d
n r cyl(A,h):

Ah
i = {x ∈ Ci(A,h) ∩ Z

d
n | ∃y ∈ Z

d
n r cyl(A,h) , 〈x, y〉 ∈ E

d
n} .Let T (A,h) (respetively B(A,h)) be the top (respetively the bottom) of cyl(A,h), i.e.,

T (A,h) = {x ∈ cyl(A,h) | ∃y /∈ cyl(A,h) , 〈x, y〉 ∈ E
d
n and 〈x, y〉 intersets A+ hv}and

B(A,h) = {x ∈ cyl(A,h) | ∃y /∈ cyl(A,h) , 〈x, y〉 ∈ E
d
n and 〈x, y〉 intersets A− hv} .4



2 COMPUTATION OF φΩ 2.3 Max-�ow min-ut theoremFor a given realisation (t(e), e ∈ E
d
n) we de�ne the variable τ(A,h) = τ(cyl(A,h), v) by

τ(A,h) = τ(cyl(A,h), v) = φ(Ah
1 → Ah

2 in cyl(A,h)) ,and the variable φ(A,h) = φ(cyl(A,h), v) by
φ(A,h) = φ(cyl(A,h), v) = φ(B(A,h) → T (A,h) in cyl(A,h)) ,where φ(F1 → F2 in C) is the maximal �ow from F1 to F2 in C, for C ⊂ R

d (or by ommodity theorresponding graph C ∩Z
d/n) de�ned previously. The dependene in n is impliit here, in fat wean also write τn(A,h) and φn(A,h) if we want to emphasize this dependene on the mesh of thegraph.2.3 Max-�ow min-ut theoremThe maximal �ow φ(F1 → F2 in C) an be expressed di�erently thanks to the max-�ow min-uttheorem (see [5℄). We need some de�nitions to state this result. A path on the graph Z

d
n from v0to vm is a sequene (v0, e1, v1, ..., em, vm) of verties v0, ..., vm alternating with edges e1, ..., em suhthat vi−1 and vi are neighbours in the graph, joined by the edge ei, for i in {1, ...,m}. A set E ofedges in C is said to ut F1 from F2 in C if there is no path from F1 to F2 in C rE. We all E an

(F1, F2)-ut if E uts F1 from F2 in C and if no proper subset of E does. With eah set E of edgeswe assoiate its apaity whih is the variable
V (E) =

∑

e∈E

t(e) .The max-�ow min-ut theorem states that
φ(F1 → F2 in C) = min{V (E) |E is a (F1, F2)-ut } .In fat, as we will see in setion 2.5, φΩ is a ontinuous equivalent of the disrete min-ut.2.4 De�nition of νThe asymptoti behaviour of the resaled expetation of τn(A,h) for large n is well known, thanksto the almost subadditivity of this variable. We reall the following result:Theorem 2. We suppose that ∫

[0,+∞[
x dΛ(x) < ∞ .Then for eah unit vetor v there exists a onstant ν(d,Λ, v) = ν(v) (the dependene on d and Λ isimpliit) suh that for every non degenerate hyperretangle A orthogonal to v and for every stritlypositive onstant h, we have

lim
n→∞

E[τn(A,h)]

nd−1Hd−1(A)
= ν(v) .5



2.5 Continuous min-ut 2 COMPUTATION OF φΩFor a proof of this proposition, see [25℄. We emphasize the fat that the limit depends on thediretion of v, but not on h nor on the hyperretangle A itself.We reall some geometri properties of the map ν : v ∈ Sd−1 7→ ν(v), under the only onditionon Λ that E(t(e)) <∞. They have been stated in the setion 4.4 of [25℄. There exists a unit vetor
v0 suh that ν(v0) = 0 if and only if for all unit vetor v, ν(v) = 0, and it happens if and onlyif Λ({0}) ≥ 1 − pc(d). This property has been proved by Zhang in [27℄. Moreover, ν satis�es theweak triangle inequality, i.e., if (ABC) is a non degenerate triangle in R

d and vA, vB and vC arethe exterior normal unit vetors to the sides [BC], [AC], [AB] in the plane spanned by A, B, C,then
H1([AB])ν(vC ) ≤ H1([AC])ν(vB) + H1([BC])ν(vA) .This implies that the homogeneous extension ν0 of ν to R

d, de�ned by ν0(0) = 0 and for all w in
R

d,
ν0(w) = |w|2ν(w/|w|2) ,is a onvex funtion; in partiular, sine ν0 is �nite, it is ontinuous on R

d. We denote by νmin(respetively νmax) the in�mum (respetively supremum) of ν on Sd−1.2.5 Continuous min-utWe give here a de�nition of φΩ and of another onstant φ̃Ω in terms of the map ν. For a subset Fof R
d, we de�ne the perimeter of F in Ω by

P(F,Ω) = sup

{∫

F
div f(x)dLd(x), f ∈ C∞

c (Ω, B(0, 1))

}
,where C∞

c (Ω, B(0, 1)) is the set of the funtions of lass C∞ from R
d to B(0, 1), the ball entered at

0 and of radius 1 in R
d, having a ompat support inluded in Ω, and div is the usual divergeneoperator. The perimeter P(F ) of F is de�ned as P(F,Rd). We denote by ∂F the boundary of F ,and by ∂∗F the redued boundary of F . At any point x of ∂∗F , the set F admits a unit exteriornormal vetor vF (x) at x in a measure theoreti sense (for de�nitions see for example [9℄ setion13). For all F ⊂ R

d of �nite perimeter in Ω, we de�ne
IΩ(F ) =

∫

∂∗F∩Ω
ν(vF (x))dHd−1(x) +

∫

Γ2∩∂∗(F∩Ω)
ν(v(F∩Ω)(x))dHd−1(x)

+

∫

Γ1∩∂∗(ΩrF )
ν(vΩ(x))dHd−1(x) .If P(F,Ω) = +∞, we de�ne IΩ(F ) = +∞. Finally, we de�ne

φΩ = inf{IΩ(F ) |F ⊂ R
d} = inf{IΩ(F ) |F ⊂ Ω} .In the ase where ∂F is C1, IΩ(F ) has the simpler following expression:

IΩ(F ) =

∫

∂F∩Ω
ν(vF (x))dHd−1(x) +

∫

Γ2∩∂(F∩Ω)
ν(v(F∩Ω)(x))dHd−1(x)

+

∫

Γ1∩∂(ΩrF )
ν(vΩ(x))dHd−1(x) .6



2 COMPUTATION OF φΩ 2.5 Continuous min-ut
Γ2Γ1

Ω

vF (x)

x

F

vΩ(z)

z

v(F∩Ω)(y)

y

(∂F ∩ Ω) ∪ (Γ2
∩ ∂(F ∩ Ω)) ∪ (Γ1

∩ ∂(Ω r F ))Figure 3: The set (∂F ∩ Ω) ∪ (Γ2 ∩ ∂(F ∩ Ω)) ∪ (Γ1 ∩ ∂(Ω r F )).The loalization of the set along whih the previous integrals are done is illustrated in �gure 3.When a hypersurfae S is pieewise of lass C1, we say that S is transverse to Γ if for all x ∈ S∩Γ,the normal unit vetors to S and Γ at x are not ollinear; if the normal vetor to S (respetivelyto Γ) at x is not well de�ned, this property must be satis�ed by all the vetors whih are limits ofnormal unit vetors to S (respetively Γ) at y ∈ S (respetively y ∈ Γ) when we send y to x - thereis at most a �nite number of suh limits. We say that a subset P of R
d is polyhedral if its boundary

∂P is inluded in the union of a �nite number of hyperplanes. For eah point x of suh a set Pwhih is on the interior of one fae of ∂P , we denote by vP (x) the exterior unit vetor orthogonalto P at x. For A ⊂ R
d, we denote by ◦

A the interior of A. We de�ne φ̃Ω by
φ̃Ω = inf

{
IΩ(P )

∣∣∣∣∣
P ⊂ R

d , Γ1 ⊂
◦
P , Γ2 ⊂

◦
R

d
r P

P is polyhedral , ∂P is transverse to Γ

}
.Notie that if P is a set suh that

Γ1 ⊂
◦
P and Γ2 ⊂

◦
R

d
r P ,then

IΩ(P ) =

∫

∂P∩Ω
ν(vP (x))dHd−1(x) .See �gure 4 to have an example of suh a polyhedral set P .The de�nitions of the onstants φΩ and φ̃Ω are not very intuitive. We propose to de�ne thenotion of a ontinuous utset to have a better understanding of these onstants. We say that S ⊂ R

duts Γ1 from Γ2 in Ω if every ontinuous path from Γ1 to Γ2 in Ω intersets S. In fat, if P is apolyhedral set of R
d suh that

Γ1 ⊂
◦
P and Γ2 ⊂

◦
R

d
r P ,then ∂P ∩ Ω is a ontinuous utset from Γ1 to Γ2 in Ω. Sine ν(v) is the average amount of �uidthat an ross a hypersurfae of area one in the diretion v per unit of time, it an be interpreted7



2.5 Continuous min-ut 2 COMPUTATION OF φΩ

Γ2vP (x)

Γ1 Ω

∂P

∂Ω

P

x

Figure 4: A polyhedral set P as in the de�nition of φ̃Ω.as the apaity of a unitary hypersurfae. Thus IΩ(P ) an be interpreted as the apaity of theontinuous utset ∂P ∩Ω. The onstant φ̃Ω is the solution of a min ut problem, beause it is equalto the in�mum of the apaity of a ontinuous utset that satis�es some spei� properties. Wean de�ne two other onstants, that are solutions of possibly more intuitive min uts problems. If
S is a hypersurfae whih is pieewise of lass C1, we denote by vS(x) one of the two normal unitvetors to S at x for every point x at whih S is regular. The Hd−1 measure of the points at whih
S is not regular is null. We de�ne

φ̂Ω = inf

{∫

S∩Ω
ν(vS(x))dHd−1(x)

∣∣∣∣∣
S hypersurfae pieewise of lass C1

S uts Γ1 from Γ2 in Ω

}and
φΩ = inf

{∫

S∩Ω
ν(vS(x))dHd−1(x)

∣∣∣∣∣
S polyhedral hypersurfae
S uts Γ1 from Γ2 in Ω

}
.We remark that by de�nition,

φ̂Ω ≤ φΩ ≤ φ̃Ω .We laim that φΩ ≤ φ̂Ω. Let S be a hypersurfae whih is pieewise of lass C1, whih uts Γ1 from
Γ2 in Ω, and suh that ∫

S∩Ω
ν(vS(x))dHd−1(x) ≤ φ̂Ω + ηfor some positive η. Let F be the set of the points of Ω r S that an be joined to a point of Γ1 bya ontinuous path. Then

(∂F ∩ Ω) ∪ (Γ1 ∩ ∂(Ω r F )) ∪ (Γ2 ∩ ∂(F ∩ Ω)) ⊂ S ∩ Ω .Thus F is of �nite perimeter in Ω, and IΩ(F ) satis�es
IΩ(F ) ≤

∫

S∩Ω
ν(vS(x))dHd−1(x) ≤ φ̂Ω + η .8



3 STATE OF THE ARTThus we have proved that
φΩ ≤ φ̂Ω ≤ φΩ ≤ φ̃Ω .3 State of the art3.1 Existing laws of large numbersOnly in this setion, we onsider the standard �rst passage perolation model on the graph (Zd,Ed)instead of the resaled graph (Zd

n,E
d
n). We present here some laws of large numbers that have beenproved about maximal �ows.Using a subadditive argument and onentration inequalities, Rossignol and Théret have provedin [25℄ that τ(nA, h(n)) satis�es a law of large numbers:Theorem 3 (Rossignol and Théret). We suppose that

∫

[0,∞[
x dΛ(x) < ∞ .For every unit vetor v, for every non degenerate hyperretangle A orthogonal to v, for every heightfuntion h : N → R

+ satisfying limn→∞ h(n) = +∞, we have
lim

n→∞
τ(nA, h(n))

Hd−1(nA)
= ν(v) in L1 .Moreover, if the origin of the graph belongs to A, or if

∫

[0,∞[
x1+ 1

d−1 dΛ(x) < ∞ ,then
lim

n→∞
τ(nA, h(n))

Hd−1(nA)
= ν(v) a.s.Kesten, Zhang, Rossignol and Théret have studied the maximal �ow between the top and thebottom of straight ylinders. Let us denote by D(k,m) the ylinder

D(k,m) =

d−1∏

i=1

[0, ki] × [0,m] ,where k = (k1, ..., kd−1) ∈ R
d−1. We denote by φ(k,m) the maximal �ow in D(k,m) from its top∏d−1

i=1 [0, ki] × {m} to its bottom ∏d−1
i=1 [0, ki] × {0}. Kesten proved in [19℄ the following result:Theorem 4 (Kesten). Let d = 3. We suppose that Λ(0) < p0 for some �xed p0 ≥ 1/27, and that

∃γ > 0

∫

[0,+∞[
eγx dΛ(x) < ∞ .If m = m(k) goes to in�nity with k1 ≥ k2 in suh a way that

∃δ > 0 lim
k1≥k2→∞

k−1+δ logm(k) = 0 ,9



3.1 Existing laws of large numbers 3 STATE OF THE ARTthen
lim

k1≥k2→∞
φ(k,m)

k1k2
= ν((0, 0, 1)) a.s. and in L1 .Moreover, if Λ(0) > 1−pc(d), where pc(d) is the ritial parameter for the standard bond perolationmodel on Z

d, and if ∫

[0,+∞[
x6 dΛ(x) < ∞ ,there exists a onstant C = C(F ) <∞ suh that for all m = m(k) that goes to in�nity with k1 ≥ k2and satis�es

lim inf
k1≥k2→∞

m(k)

k1k2
> C ,for all k1 ≥ k2 su�iently large, we have

φ(k,m) = 0 a.s.Zhang improved this result in [28℄ where he proved the following theorem:Theorem 5 (Zhang). Let d ≥ 2. We suppose that
∃γ > 0

∫

[0,+∞[
eγx dΛ(x) < ∞ .Then for all m = m(k) that goes to in�nity when all the ki, i = 1, ..., d − 1 go to in�nity in suh away that

∃δ ∈]0, 1] logm(k) ≤ max
i=1,...,d−1

k1−δ
i ,we have

lim
k1,...,kd−1→∞

φ(k,m)
∏d−1

i=1 ki

= ν((0, ..., 0, 1)) a.s. and in L1 .Moreover, this limit is positive if and only if Λ(0) < 1 − pc(d).To show this theorem, Zhang obtains �rst an important ontrol on the number of edges in aminimal utset. Finally, Rossignol and Théret improved Zhang's result in [25℄ in the partiular asewhere the dimensions of the basis of the straight ylinder go to in�nity all at the same speed. Theyobtain the following result:Theorem 6 (Rossignol and Théret). We suppose that
∫

[0,∞[
x dΛ(x) < ∞ .For every straight hyperretangle A =

∏d−1
i=1 [0, ai]×{0} with ai > 0 for all i, for every height funtion

h : N → R
+ satisfying limn→∞ h(n) = +∞ and limn→∞ log h(n)/nd−1 = 0, we have

lim
n→∞

φ(nA, h(n))

Hd−1(nA)
= ν((0, ..., 0, 1)) a.s. and in L1 .10



3 STATE OF THE ART 3.1 Existing laws of large numbersIn dimension two, more results are known. We present here two of them. Rossignol and Thérethave studied in [24℄ the maximal �ow from the top to the bottom of a tilted ylinder in dimensiontwo, and they have proved the following theorem (Corollary 2.10 in [24℄):Theorem 7 (Rossignol and Théret). Let v be a unit vetor, A a non degenerate line-segment orthog-onal to v, h : N → R
+ a height funtion satisfying limn→∞ h(n) = +∞ and limn→∞ log h(n)/n = 0.We suppose that there exists α ∈ [0, π/2] suh that

lim
n→∞

2h(n)

H1(nA)
= tanα .Then, if ∫

[0,∞[
x dΛ(x) < ∞ ,we have

lim
n→∞

φ(nA, h(n))

H1(nA)
= inf

{
ν(v′)
v · v′

∣∣∣ v′ satis�es v · v′ ≥ cosα

} in L1 .Moreover, if the origin of the graph is the middle of A, or if
∫

[0,∞[
x2 dΛ(x) < ∞ ,then we have

lim
n→∞

φ(nA, h(n))

H1(nA)
= inf

{
ν(v′)
v · v′

∣∣∣ v′ satis�es v · v′ ≥ cosα

} a.s.Garet studied in [15℄ the maximal �ow σ(A) between a onvex bounded set A and in�nity in thease d = 2. By an extension of the max �ow - min ut theorem to non �nite graphs, Garet provesin [15℄ that this maximal �ow is equal to the minimal apaity of a set of edges that uts all pathsfrom A to in�nity. Let ∂A be the boundary of A, and ∂∗A the set of the points x ∈ ∂A at whih
A admits a unique exterior normal unit vetor vA(x) in a measure theoreti sense (see [9℄, setion13, for a preise de�nition). If A is a onvex set, the set ∂∗A is also equal to the set of the points
x ∈ ∂A at whih A admits a unique exterior normal vetor in the lassial sense, and this vetor is
vA(x). Garet proved the following theorem:Theorem 8 (Garet). Let d = 2. We suppose that Λ(0) < 1 − pc(2) = 1/2 and that

∃γ > 0

∫

[0,+∞[
eγx dΛ(x) < ∞ .Then for all onvex bounded set A ontaining 0 in its interior, we have

lim
n→∞

σ(nA)

n
=

∫

∂∗A
ν(vA(x))dH1(x) = I(A) > 0 a.s.Moreover, for all ε > 0, there exist onstants C1, C2 > 0 depending on ε and Λ suh that

∀n ≥ 0 P

[
σ(nA)

nI(A)
/∈]1 − ε, 1 + ε[

]
≤ C1 exp(−C2n) .11



3.2 Large deviations for φn 3 STATE OF THE ARTNevertheless, a law of large numbers for the maximal �ow from the top to the bottom of a tiltedylinder for d ≥ 3 was not proved yet. In fat, the lak of symmetry of the graph indued by theslope of the box is a major issue to extend the existing results onerning straight ylinders to tiltedylinders. The theorem of Garet was not extended to dimension d ≥ 3 either. Theorem 1 appliesto the maximal �ow from the top to the bottom of a tilted ylinder. Thus it is a generalisationof the laws of large numbers of Kesten, Zhang, Rossignol and Théret for the variable φ in straightylinders, in the partiular ase where all the dimensions of the ylinder go to in�nity at the samespeed (or, equivalently, the ylinder is �xed and the mesh of the graph go to zero isotropially).Moreover, it gives a hint of what ould be a generalisation of the result of Garet in higher dimension,all the more sine the expression of the onstant φΩ is a reminisent of the value of the limit inGaret's Theorem: the apaity IΩ of a ontinuous utset is exatly the same as the one de�ned byGaret in [15℄ in dimension two, exept that we onsider a maximal �ow through a bounded domain,so our apaity is adapted to deal with spei� boundary onditions.From now on, we work in the resaled graph (Zd
n,E

d
n).3.2 Large deviations for φnWe present here the two existing results onerning φn. We onsider an open bounded onnetedsubset Ω of R

d, whose boundary Γ is pieewise of lass C1, and two disjoint open subsets Γ1 and
Γ2 of Γ. The �rst result states that the lower large deviations below φΩ are of surfae order, and isproved by the authors in [7℄:Theorem 9. If the law Λ of the apaity of an edge admits an exponential moment:

∃θ > 0

∫

R+

eθxdΛ(x) < +∞ ,and if Λ(0) < 1 − pc(d), then for all λ < φΩ,
lim sup

n→∞

1

nd−1
log P[φn ≤ λnd−1] < 0 .The seond result states that the upper large deviations of φn above φ̃Ω are of volume order andis proved by the authors in [8℄:Theorem 10. We suppose that d(Γ1,Γ2) > 0. If the law Λ of the apaity of an edge admits anexponential moment:

∃θ > 0

∫

R+

eθxdΛ(x) < +∞ ,then for all λ > φ̃Ω,
lim sup

n→∞

1

nd
log P[φn ≥ λnd−1] < 0 .By a simple Borel-Cantelli lemma, these results imply that if Λ admits an exponential momentand if d(Γ1,Γ2) > 0, then

φΩ ≤ lim inf
n→∞

φn

n
≤ lim sup

n→∞

φn

n
≤ φ̃Ω .12



3 STATE OF THE ART 3.2 Large deviations for φnNotie here that Theorem 9 allows us to obtain the �rst inequality only under the additionalhypothesis that Λ(0) < 1 − pc(d), however if Λ(0) ≥ 1 − pc(d) we know that ν(v) = 0 for all v, so
φΩ = 0 and the �rst inequality remains valid.Thus, to prove Theorem 1, it remains to prove that φΩ = φ̃Ω, and to study the positivity of
φΩ. The equality φΩ = φ̃Ω is a onsequene of a polyhedral approximation of sets having �niteperimeter that will be done in setion 4. The positivity of φΩ is proved in setion 5, using tools ofdi�erential geometry like tubular neighbourhood of paths. These two results are proved by purelygeometrial studies. Sine the probabilisti part of the proof of Theorem 1 is ontained in Theorems9 and 10, we propose a sketh of the proofs of these two theorems in setions 3.2.1 and 3.2.2 to helpthe understanding of the law of large numbers proved in this paper.Before these two skethes of proofs, we would like to make two remarks. The �rst one is that thelarge deviations that are obtained in Theorem 9 and 10 are of the relevant order. Indeed, if all theedges in Ωn have a apaity whih is abnormally big, then the maximal �ow φn will be abnormallybig too. The probability for these edges to have an abnormally large apaity is of order exp−Cndfor a onstant C, beause the number of edges in Ωn is C ′nd for a onstant C ′. On the opposite, ifall the edges in a �at layer that separates Γ1

n from Γ2
n in Ωn have abnormally small apaity, then

φn will be abnormally small. Sine the ardinality of suh a set of edges is D′nd−1 for a onstant
D′, the probability of this event is of order exp−Dnd−1 for a onstant D.The seond remark we would like to do is that the ondition d(Γ1,Γ2) > 0 is relevant in Theorem10. First, without this ondition, we annot be sure that there exists a polyhedral set P as inthe de�nition of φ̃Ω, and thus the polyhedral approximation (see setion 4) annot be performed.Moreover, if d(Γ1,Γ2) = 0, there exists a set of edges of onstant ardinality (not depending on n)that ontains paths from Γ1

n to Γ2
n through Ωn for all n along the ommon boundary of Γ1 and Γ2,and so it may be su�ient for these edges to have a huge apaity to obtain that φn is abnormallybig too. Thus, we annot hope to obtain upper large deviations of volume order (see [26℄ for aounter-example). However, we do not know if this ondition is essential for Theorem 1 to hold.3.2.1 Lower large deviationsTo prove Theorem 9, we have to study the probability

P

[
φn ≤ (φΩ − ε)nd−1

] (1)for a positive ε. The proof is divided in three steps.First step: We onsider a set of edges En that uts Γ1
n from Γ2

n in Ωn, of minimal apaity (so
φn = V (En)) and having the minimal number of edges among those utsets. We see it as the (edge)boundary of a set En whih is inluded in Ω. Zhang's estimate of the number of edges in a minimalutset (Theorem 1 in [28℄) states that with high probability, the perimeter P(En,Ω) of En in Ω issmaller than a onstant β. Thus, En belongs to the set

Cβ = {F ⊂ Ω |F ⊂ Ω , P(F,Ω) ≤ β} .We endow Cβ with the topology L1 assoiated to the following distane d:
d(F1, F2) = Ld(F1△F2) ,13



3.2 Large deviations for φn 3 STATE OF THE ARTwhere Ld is the d-dimensional Lebesgue measure. For this topology, the set Cβ is ompat. Thus,if we assoiate to eah set F in Cβ a positive onstant εF , and if we denote by V(F, εF ) the neigh-bourhood of F of radius εF for the distane d de�ned above, the olletion of these neighbourhoodsis an open overing of Cβ, and thus by ompatness of Cβ we an extrat a �nite overing:
∃F1, ..., FN Cβ ⊂

N⋃

i=1

V(Fi, εFi
) .If we �nd an upper bound on the following probability:

P

[
φn ≤ (φΩ − ε)nd−1 and d(En, F ) ≤ εF

] (2)for eah F in Cβ and a orresponding εF , then we will obtain an upper bound on the probability (1).Seond step: We onsider a �xed set F in Cβ, and we want to evaluate the probability (2).So we suppose that En is lose to F for the distane d, we denote it by En ≈ F to simplify thenotations. We skip here all the problems of boundary onditions that arise in the proof of Theorem 9:we suppose that IΩ(F ) is equal to the integral of ν along ∂∗F ∩ Ω.We make a zoom along ∂F . Using the Vitali overing Theorem (Theorem 12 in setion 4), weknow that there exists a �nite number of disjoint balls Bj = B(xj, rj) for j = 1, ...,N with xj ∈ ∂Fsuh that ∂F is �almost �at� in eah ball, and the part of ∂F that is missing in the overing hasa very small area. We denote by vj the exterior normal unit vetor of F at xj (we suppose that itexists). Here �almost �at� means that(i) the apaity of ∂F inside Bj is very lose to the apaity of the �at dis hyp(xj , vj)∩Bj , i.e.,very lose to αd−1r
d−1
j ν(vj) ;(ii) F ∩Bj ≈ B−

j , where B−
j is the lower half part of the ball Bj in the diretion given by vj :

B−
j = {y ∈ Bj | (y − xj) · vj < 0} .Thanks to property (i) and the fat that only a very small area of ∂F is missing in the overing, weknow that

IΩ(F ) is lose to N∑

j=1

αd−1r
d−1
j ν(vj) . (3)On the other hand, thanks to property (ii), we obtain that

En ∩Bj ≈ F ∩Bj ≈ B−
jfor the distane d. It means that in volume, En is very similar to B−

j inside Bj , however theremight exist some thin but long strands in Bj that belongs to En ∩ (B−
j )c or to Ec

n ∩B−
j . We wantto ompare V (En ∩Bj) with the maximal �ow τn(Dj , γ) in a ylinder of basis Dj = disc(xj , r

′
j , vj)where r′j is a little bit smaller than rj , and γ is a very small height, so that the ylinder is inludedin Bj and is almost �at. To make this omparison, we have to ut the above-mentioned strands14



3 STATE OF THE ART 3.2 Large deviations for φnby adding edges to En. We do it very arefully, in order to ontrol the number of edges we add,together with their apaity, and we obtain that
V (En ∩Bj) ≤ τn(Dj , γ) + error , (4)where error is a orretive term that is very small. Combining (3) and (4), sine IΩ(F ) ≥ φΩ, weonlude that if φn ≤ (φΩ − ε)nd−1 and En ≈ F , then there exists j ∈ {1, ...,N} suh that

τn(Dj , γ) ≤ (ν(vj) − ε/2)αd−1r
′d−1
j nd−1 .Third step: It remains to study the probability

P[τn(Dj , γ) ≤ (ν(vj) − ε/2)αd−1r
′d1
j nd−1] .In fat it has already been done by Rossignol and Théret in [25℄. It is easy to ompare τn(Dj , γ)with a sum of maximal �ows through ylinders whose bases are hyperretangles. Then, we an usediretly Theorem 3.9 in [25℄ that states that the lower large deviations of these maximal �ows belowtheir limits are of surfae order.3.2.2 Upper large deviationsTo prove Theorem 10, we have to study the probability

P

[
φn ≥ (φ̃Ω + ε)nd−1

] (5)for a positive ε. First of all, we an hek that φ̃Ω is �nite. In fat, we have to onstrut a polyhedralset P that satis�es all the onditions in the de�nition of φ̃Ω. This is done with the help of tehniquesvery similar to some of those we will use in setion 4 to omplete our polyhedral approximation, sowe will not explain these tehniques here. The proof of theorem 10 is divided in three steps.First step: We onsider a polyhedral set P as in the de�nition of φ̃Ω suh that IΩ(P ) is verylose to this onstant. We want to onstrut sets of edges near ∂P ∩ Ω that ut Γ1
n from Γ2

n in
Ωn. Beause we took a disrete approximation of Ω from the outside, we need to enlarge a little Ω,beause some �ow might go from Γ1

n to Γ2
n using paths that lies partly in Ωn rΩ. Thus we onstruta set Ω′ whih ontains a small neighbourhood of Ω (hene also Ωn for all n large enough), whihis transverse to ∂P , and whih is small enough to ensure that IΩ′(P ) is still very lose to φΩ. Toonstrut this set, we over ∂Ω with small ubes, by ompatness we extrat a �nite subover of

∂Ω, and �nally we add the ubes of the subover to Ω to obtain Ω′. We onstrut these ubes sothat their boundaries are transverse to ∂P , and their diameters are uniformly smaller than a smallonstant, so that Ω′ is inluded in a neighbourhood of Ω as small as we need. Sine ∂P is transverseto Γ, if we take this onstant small enough, we an ontrol Hd−1(∂P ∩ (Ω′
r Ω)), and thus thedi�erene between IΩ′(P ) and IΩ(P ).Then we onstrut a family of Cn (where C > 0) disjoint sets of edges that ut Γ1

n from Γ2
n in

Ωn, and that lie near ∂P . We onsider the neighbourhood P ′ of P inside Ω′ at distane smallerthan a tiny onstant h, and we partition P ′
rP into slabs M′(k) of width of order 1/n, so we have15



3.2 Large deviations for φn 3 STATE OF THE ART
Cn suh slabs whih look like translates of ∂P ∩ Ω′ that are slightly deformed and thikened. Weprove that eah path from Γ1

n to Γ2
n in Ωn must ontain at least one edge that lies in the set M′(k)for eah k, i.e., eah setM′(k) ontains a utset. Thus we have found a family of Cn disjoint utsets.Seond step: We almost over ∂P ∩Ω′ by a �nite family of disjoint ylinders Bj, j ∈ J , whosebases are hyperretangles of sidelength l, that are orthogonal to ∂P , of height bigger than h, andsuh that the part of ∂P whih is missing in this overing is very small. Thus, we obtain that

IΩ′(P ) is lose to ∑

j∈J

ν(vj)l
d−1 , (6)where vj gives the diretion towards whih the ylinder Bj is tilted (it is the unit vetor whih isorthogonal to the fae of ∂P that uts Bj).We want to ompare φn with the sum of the maximal �ows φ(Bj , vj). For eah j, let Ej be aset of edges that uts the top from the bottom of Bj. The set ∪j∈JEj does not ut Γ1

n from Γ2
n in

Ωn in general, to reate suh a utset we must add two sets of edges:(i) a set of edges that overs the part of ∂P ∩ Ω′ that is missing in the overing by the ylinders
Bj ,(ii) a set of edges that glues together all the previous sets of edges (the sets Ej and the setdesribed in (i)).In fat, we have already onstruted Cn possible sets of edges as in (i): the edges that lie in

M′(k) r (∪j∈JBj) for k = 1, ..., Cn. We denote these sets by M(k). We an also �nd C ′n (C ′ > 0)disjoint sets of edges that an be the glue desribed in (ii), we denote these sets by W (l) for
l = 1, ..., C ′n. We do not provide a preise desription of these sets. In fat, we an hoose di�erentsets beause we provide the glue more or less in the interior of the ylinders Bj. Thus we obtainthat

∀k ∈ {1, ..., Cn} ∀l ∈ {1, ..., C ′n}
⋃

j∈J

Ej ∪M(k) ∪W (l) uts Γ1
n from Γ2

n in Ωn .We obtain that
φn ≤

∑

j∈J

φ(Bj , vj) + min
k=1,...,Cn

V (M(k)) + min
l=1,...,C′n

V (W (l)) . (7)Combining (6) and (7), we see that if φn ≥ (φ̃Ω + ε)nd−1, one of the following events must happen:(a) ∃j ∈ J φ(Bj , vj) ≥ (ν(vj) + ε/2)ld−1nd−1,(b) ∀k ∈ {1, ..., Cn} V (M(k)) ≥ ηnd−1,() ∀l ∈ {1, ..., C ′n} V (W (l)) ≥ ηnd−1,where η is a very small onstant (depending on ε and φΩ).Third step: it onsists in taking are of the probability that the events (a), (b) or () happen.The probability of (a) has already been studied in [26℄: the upper large deviations of the variable φ16



4 POLYHEDRAL APPROXIMATIONin a ylinder above ν are of volume order. The events (b) and () are of the same type, and theirprobability is of the form
P




αnd−1∑

m=1

tm ≥ ηnd−1




Dn

, (8)where (tm)m∈N is a family of i.i.d. variables of distribution funtion Λ, D is a onstant, η is avery small onstant and αnd−1 is the ardinality of the family of variables we onsider. If α <
ηE[t1]

−1, and if the law Λ admits one exponential moment, the Cramér Theorem in R states thatthe probability (8) deays exponentially fast with nd. Note the role of the optimization over Dndi�erent probabilities to obtain the orret speed of deay. To omplete the proof, it is enough toontrol the ardinality of the sets M(k) and W (l) for eah k, l. This an been done, using thegeometrial properties of ∂P (it is polyhedral and transverse to ∂Ω′).4 Polyhedral approximation : φΩ = φ̃ΩWe onsider an open bounded domain Ω in R
d. We denote its topologial boundary by Γ = ∂Ω.Let also Γ1, Γ2 be two disjoint subsets of Γ.Hypothesis on Ω: We suppose that Ω is a Lipshitz domain, i.e., its boundary Γ an be loallyrepresented as the graph of a Lipshitz funtion de�ned on some open ball of R

d−1. Moreover thereexists a �nite number of oriented hypersurfaes S1, . . . , Sp of lass C1 whih are transverse to eahother and suh that Γ is inluded in their union S1 ∪ · · · ∪ Sp.This hypothesis is automatially satis�ed when Ω is a bounded open set with a C1 boundary orwhen Ω is a polyhedral domain. The Lipshitz ondition an be expressed as follows: eah point x of
Γ = ∂Ω has a neighbourhood U suh that U∩Ω is represented by the inequality xn < f(x1, · · · , xn−1)in some artesian oordinate system where f is a funtion satisfying a Lipshitz ondition. Suhdomains are usually alled Lipshitz domains in the literature. The boundary Γ of a Lipshitzdomain is d−1 reti�able (in the terminology of Federer's book [14℄), so that its Minkowski ontentis equal to Hd−1(Γ). In addition, a Lipshitz domain Ω is admissible (in the terminology of Ziemer'sbook [29℄) and in partiular Hd−1(Γ r ∂∗Ω) = 0. Moreover, eah point of Γ is aessible from Ωthrough a reti�able ar.Hypothesis on Γ1,Γ2: The sets Γ1, Γ2 are open subsets of Γ. The relative boundaries ∂Γ Γ1,
∂Γ Γ2 of Γ1, Γ2 in Γ have null Hd−1 measure. The distane between Γ1 and Γ2 is positive.We reall that the relative topology of Γ is the topology indued on Γ by the topology of R

d. Heneeah of the sets Γ1,Γ2 is the intersetion of Γ with an open set of R
d. For F a subset of Ω having�nite perimeter in Ω, the apaity of F is

IΩ(F ) =

∫

Ω∩∂∗F
ν(vF (y)) dHd−1(y) +

∫

Γ2∩∂∗F
ν(vF (y)) dHd−1(y) +

∫

Γ1∩∂∗(ΩrF )
ν(vΩrF (y)) dHd−1(y) .For all A ⊂ R

d, A is the losure of A, ◦
A its interior and Ac = R

d
rA. We will prove the followingtheorem: 17



4 POLYHEDRAL APPROXIMATIONTheorem 11. Let F be a subset of Ω having �nite perimeter. For any ε > 0, there exists apolyhedral set P whose boundary ∂P is transverse to Γ and suh that
Γ1 ⊂

◦
P , Γ2 ⊂

◦
R

d
r P , Ld(F∆(P ∩ Ω)) < ε ,

∫

∂∗P∩Ω
ν(vP (x))dHd−1(x) = IΩ(P ) ≤ IΩ(F ) + ε .First we notie that theorem 11 implies that φΩ = φ̃Ω, and thus the onvergene of φn (seesetion 3.2). It is obvious sine φΩ ≤ φ̃Ω (see setion 2.5), and theorem 11 implies that φΩ ≥ φ̃Ω.The main di�ulty of the proof of theorem 11 is to handle properly the approximation loseto Γ in order to push bak inside Ω all the interfaes. The essential tools of the proof are theBesiovith di�erentiation theorem, the Vitali overing theorem and an approximation tehniquedue to De Giorgi. Let us summarise the global strategy.Sketh of the proof: We �x γ > 0. We over ∂∗Ω up to a set of Hd−1 measure less than γ bya �nite olletion of disjoint balls B(xi, ri), i ∈ I1 ∪ I2 ∪ I3 ∪ I4, entered on Γ, whose radii aresu�iently small to ensure that the surfae and volume estimates within the balls are ontrolled bythe fator γ. The indies of I1 orrespond to balls entered on Γ1 ∩ ∂∗(Ω r F ), the indies of I2 toballs entered on Γ2 ∩ ∂∗F , the indies of I3 to balls entered on (Γ r Γ2) ∩ ∂∗F , the indies of I4to balls entered on (Γ r Γ1) ∩ ∂∗(Ω r F ) (see �gure 5). The remaining part of Γ is overed by a

Balls
I2

indexed by
F

∂F

Balls indexed by I3

indexedby I1
Ω r F

Balls indexed by I4

Balls indexed by I4
Ω r F

Ω

Γ1

Γ2for d ≥ 3
in ∂Lpossible strands

∂L

Balls indexed
Balls

by I5
Figure 5: The balls indexed by Ii for i = 1, ..., 5.�nite olletion of balls B(yj, sj), j ∈ J0 ∪ J1 ∪ J2. The indies of J1 orrespond to balls overingthe remaining part of Γ1, the indies of J2 orrespond to balls overing the remaining part of Γ2.18



4 POLYHEDRAL APPROXIMATIONWe hoose ε > 0 su�iently small, depending on γ and on the previous families of balls and weapproximate the set F by a smooth set L inside Ω, whose apaity and volume are at distane lessthan ε from those of F . We build then two further family of balls:- B(xi, ri), i ∈ I5, over Ω ∩ ∂L, up to a set of Hd−1 measure ε.- B(yj, sj), j ∈ J3, over the remaining set Ω ∩ ∂Lr
⋃

i∈I5
B(xi, ri).Inside eah ball B(xi, ri), i ∈ I1 ∪ I2 ∪ I3 ∪ I4 ∪ I5, up to a small fration, the interfaes are loatedon hypersurfaes and the radii of the balls are so small that these hypersurfaes are almost �at.Hene we an enlose the interfaes into small �at polyhedral ylinders Di, i ∈ I1 ∪ I2 ∪ I3 ∪ I4 ∪ I5,and by aggregating adequately the ylinders to the set F or to its omplement Ω r F , we movethese interfaes on the boundaries of these ylinders. The remaining interfaes are enlosed in theballs B(yj, sj), j ∈ J0 ∪ J1 ∪ J2 ∪ J3 and we approximate these balls from the outside by polyhedra.We have to de�ne deliately the whole proess, in order not to lose too muh apaity, and toontrol the possible interation between interfaes lose to Γ and interfaes in Ω. The presene ofboundary onditions reates a substantial additional di�ulty ompared to the polyhedral approx-imation performed in [9℄. Indeed, the most di�ult interfaes to handle are those orresponding to

Di, i ∈ I3 ∪ I4. We �rst hoose the balls B(xi, ri), i ∈ I1 ∪ I2 ∪ I3 ∪ I4, orresponding to γ. Weover the remaining portion of Γ with the balls B(yj, sj), j ∈ J0 ∪ J1 ∪ J2. At this point we analready in priniple de�ne the ylinders Di, i ∈ I1 ∪ I2. Then we hoose ε small enough, dependingon γ and the balls B(xi, ri), i ∈ I1 ∪ I2 ∪ I3 ∪ I4, to ensure that the perturbation of volume ε ausedwhen smoothing the set F inside Ω will not alter signi�antly the situation inside the balls B(xi, ri),
i ∈ I3 ∪ I4. Then we move inside Ω and we build the ylinders Di, i ∈ I5. Then we ome bak tothe boundary and we build the ylinders Di, i ∈ I3 ∪ I4. We over the remaining interfaes in Ωby the balls B(yj, sj), j ∈ J3. Finally we aggregate suessively eah �at polyhedral ylinder Di tothe set L or to its omplement.Preparation of the proof. Let us onsider a subset F of Ω having �nite perimeter. Let γ belongto ]0, 1/16[. We start by handling the boundary Γ, for whih we make loally �at approximationsontrolled by the fator γ. By hypothesis, there exists a �nite number of oriented hypersurfaes
S1, . . . , Sp of lass C1 suh that Γ is inluded in their union S1 ∪ · · · ∪ Sp. In partiular, we have

Γ r ∂∗Ω ⊂ S =
⋃

1≤k<l≤p

Sk ∩ Sl .Sine the hypersurfaes S1, . . . , Sr are transverse to eah other, this implies that Hd−1(S) = 0.
• Continuity of the normal vetors. The hypersurfaes S1, . . . , Sp being C1 and the set Γompat, the maps x ∈ Γ 7→ vSk

(x), 1 ≤ k ≤ p (where vSk
(x) is the unit normal vetor to Sk at x)are uniformly ontinuous:

∀δ > 0 ∃η > 0 ∀k ∈ { 1, . . . , p } ∀x, y ∈ Sk ∩ Γ |x− y|2 ≤ η ⇒
∣∣vSk

(x) − vSk
(y)

∣∣
2
< δ .Let η∗ be assoiated to δ = 1 by this property. We will use also a more re�ned property.

• Loalisation of the interfaes. We �rst prove a geometri lemma:Lemma 1. Let Γ be an hypersurfae (that is a C1 submanifold of R
d of odimension 1) and let Kbe a ompat subset of Γ. There exists a positive M = M(Γ,K) suh that:

∀ε > 0 ∃ r > 0 ∀x, y ∈ K |x− y|2 ≤ r ⇒ d2(y, tan(Γ, x)) ≤M ε |x− y|2 .(tan(Γ, x) is the tangent hyperplane of Γ at x). 19



4 POLYHEDRAL APPROXIMATIONProof. By a standard ompatness argument, it is enough to prove the following loal property:
∀x ∈ Γ ∃M(x) > 0 ∀ε > 0 ∃ r(x, ε) > 0 ∀y, z ∈ Γ ∩B(x, r(x, ε))

d2(y, tan(Γ, z)) ≤M(x) ε |y − z|2 .Indeed, if this property holds, we over K by the open balls Bo(x, r(x, ε)/2), x ∈ K, we extrat a�nite subover Bo(xi, r(xi, ε)/2), 1 ≤ i ≤ k, and we set
M = max{M(xi) : 1 ≤ i ≤ k } , r = min{ r(xi, ε)/2 : 1 ≤ i ≤ k } .Let now y, z belong to K with |y − z|2 ≤ r. Let i be suh that y belongs to B(xi, r(xi, ε)/2). Sine

r ≤ r(xi, ε)/2, then both y, z belong to the ball B(xi, r(xi, ε)) and it follows that
d2(y, tan(Γ, z)) ≤ M(xi) ε |y − z|2 ≤M ε |y − z|2 .We turn now to the proof of the above loal property. Sine Γ is an hypersurfae, for any xin Γ there exists a neighbourhood V of x in R

d, a di�eomorphism f : V 7→ R
d of lass C1 and a

(d − 1) dimensional vetor spae Z of R
d suh that Z ∩ f(V ) = f(Γ ∩ V ) (see for instane [14℄,

3.1.19). Let A be a ompat neighbourhood of x inluded in V . Sine f is a di�eomorphism, themaps y ∈ A 7→ df(y) ∈ End(Rd), u ∈ f(A) 7→ df−1(u) ∈ End(Rd) are ontinuous. Therefore theyare bounded:
∃M > 0 ∀y ∈ A ||df(y)|| ≤M , ∀u ∈ f(A) ||df−1(u)|| ≤M(here ||df(x)|| = sup{ |df(x)(y)|2 : |y|2 ≤ 1 } is the standard operator norm in End(Rd)). Sine f(A)is ompat, the di�erential map df−1 is uniformly ontinuous on f(A):

∀ε > 0 ∃δ > 0 ∀u, v ∈ f(A) |u− v|2 ≤ δ ⇒ ||df−1(u) − df−1(v)|| ≤ ε .Let ε be positive and let δ be assoiated to ε as above. Let ρ be positive and small enough sothat ρ < δ/2 and B(f(x), ρ) ⊂ f(A) (sine f is a C1 di�eomorphism, f(A) is a neighbourhood of
f(x)). Let r be suh that 0 < r < ρ/M and B(x, r) ⊂ A. We laim that M assoiated to x and rassoiated to ε, x answer the problem. Let y, z belong to Γ ∩ B(x, r). Sine [y, z] ⊂ B(x, r) ⊂ A,and ||df(ζ)|| ≤M on A, then

|f(y) − f(x)|2 ≤M |y − x|2 ≤Mr < ρ , |f(z) − f(x)|2 < ρ ,

|f(y) − f(z)|2 < δ , |f(y) − f(z)|2 < M |y − z|2 .We apply next a lassial lemma of di�erential alulus (see [20℄, I, 4, Corollary 2) to the map f−1and the interval [f(z), f(y)] (whih is inluded in B(f(x), ρ) ⊂ f(A)) and the point f(z):
|y − z − df−1(f(z))(f(y) − f(z))|2 ≤

|f(y) − f(z)|2 sup { ||df−1(ζ) − df−1(f(z))|| : ζ ∈ [f(z), f(y)] } .The right�hand member is less than M |y − z|2 ε. Sine z + df−1(f(z))(f(y) − f(z)) belongs to
tan(Γ, z), we are done. �We ome bak to our ase. Let k ∈ { 1, . . . , p }. The set Sk ∩ Γ is a ompat subset of thehypersurfae Sk. Applying lemma 1, we get:

∃Mk ∀δ0 > 0 ∃ ηk > 0 ∀x, y ∈ Sk ∩ Γ |x− y|2 ≤ ηk ⇒ d2

(
y, tan(Sk, x)

)
≤Mkδ0|x− y|2 .20



4 POLYHEDRAL APPROXIMATIONLet M0 = max1≤k≤pMk and let δ0 in ]0, 1/2[ be suh that M0δ0 < γ. For eah k in { 1, . . . , p }, let
ηk be assoiated to δ0 as in the above property and let

η0 = min
(

min
1≤k≤p

ηk, η
∗,

1

8d
dist(Γ1,Γ2)

)
.

• Covering of Γ by transverse ubes. We build a family of ubes Q(x, r), indexed by x ∈ Γand r ∈]0, rΓ[ suh that Q(x, r) is a ube entered at x of side length r whih is transverse to Γ.For x ∈ R
d and k ∈ { 1, . . . , p }, let pk(x) be a point of Sk ∩ Γ suh that

|x− pk(x)|2 = inf
{
|x− y|2 : y ∈ Sk ∩ Γ

}
.Suh a point exists sine Sk ∩ Γ is ompat. We de�ne then for k ∈ { 1, . . . , p }

∀x ∈ R
d vk(x) = vSk

(pk(x)) .We de�ne also
dr = inf

v1,...,vp∈Sd−1
max
b∈Bd

min
1 ≤ k ≤ r
e ∈ b

(
|e− vi|2, | − e− vi|2

)where Bd is the olletion of the orthonormal basis of R
d and Sd−1 is the unit sphere of R

d. Let ηbe assoiated to dr/4 as in the above ontinuity property. We set
rΓ =

η

2d
.Let x ∈ Γ. By the de�nition of dr, there exists an orthonormal basis bx of R

d suh that
∀e ∈ bx ∀k ∈ { 1, . . . , p } min

(
|e− vk(x)|2, | − e− vk(x)|2

)
>

dr

2
.Let Q(x, r) be the ube entered at x of sidelength r whose sides are parallel to the vetors of bx.We laim that Q(x, r) is transverse to Γ for r < rΓ. Indeed, let y ∈ Q(x, r) ∩ Γ. Suppose that

y ∈ Sk for some k ∈ { 1, . . . , p }, so that vk(y) = vSk
(y) and |x − pk(x)|2 < drΓ. In partiular, wehave |y − pk(x)|2 < 2drΓ < η and |vSk

(y) − vk(x)|2 < dr/4. For e ∈ bx,
dr

2
≤ |e− vk(x)|2 ≤ |e− vSk

(y)|2 + |vSk
(y) − vk(x)|2whene

|e− vSk
(y)|2 ≥ dr

2
− dr

4
=

dr

4
.This is also true for −e, therefore the faes of the ube Q(x, r) are transverse to Sk.

• Vitali overing Theorem for Hd−1. A olletion of sets U is alled a Vitali lass for a Borel set
E of R

d if for eah x ∈ E and δ > 0, there exists a set U ∈ U ontaining x suh that 0 < diamU < δ,where diamU is the diameter of the set U . We now reall the Vitali overing Theorem for Hd−1(see for instane [13℄, Theorem 1.10), sine it will be useful during the proof:21



4 POLYHEDRAL APPROXIMATIONTheorem 12. Let E be a Hd−1 measurable subset of R
d and U be a Vitali lass of losed sets for

E. Then we may selet a (ountable) disjoint sequene (Ui)i∈I from U suh thateither ∑

i∈I

(diamUi)
d−1 = +∞ or Hd−1(E r ∪i∈IUi) = 0 .If Hd−1(E) <∞, then given ε > 0, we may also require that

Hd−1(E) ≤ αd−1

2d−1

∑

i∈I

(diamUi)
d−1 .Start of the main argument. We �rst handle the interfaes along Γ. Let R(Γ) be the set of thepoints x of Γ r S suh that

lim
r→0

(αdr
d)−1Ld(B(x, r) r Ω) = 1/2 ,

lim
r→0

(αd−1r
d−1)−1Hd−1(B(x, r) ∩ Γ) = 1 .Let R(Ω r F ) be the set of the points x belonging to ∂∗(Ω r F ) ∩R(Γ) suh that

lim
r→0

(αd−1r
d−1)−1Hd−1(B(x, r) ∩ ∂∗(Ω r F )) = 1 ,

lim
r→0

(αdr
d)−1Ld(B(x, r) ∩ (Ω r F )) = 1/2 ,

lim
r→0

(αd−1r
d−1)−1

∫

B(x,r)∩∂∗(ΩrF )
ν(vΩrF (y)) dHd−1(y) = ν(vΩ(x)) .Let R(F ) be the set of the points x belonging to ∂∗F ∩R(Γ) suh that

lim
r→0

(αd−1r
d−1)−1Hd−1(B(x, r) ∩ ∂∗F ) = 1 ,

lim
r→0

(αdr
d)−1Ld(B(x, r) ∩ F ) = 1/2 ,

lim
r→0

(αd−1r
d−1)−1

∫

B(x,r)∩∂∗F
ν(vF (y)) dHd−1(y) = ν(vΩ(x)) .Thanks to the hypothesis on Γ and the struture of the sets of �nite perimeter (see either Lemma 1,setion 5.8 of [12℄, Lemma 5.9.5 in [29℄ or Theorem 3.61 of [1℄), we have

Hd−1
(
Γ r (R(F ) ∪R(Ω r F ))

)
= 0 .For x in R(Γ), there exists a positive r0(x, γ) suh that, for any r < r0(x, γ),

|Ld(B(x, r) r Ω) − αdr
d/2| ≤ γ αdr

d ,

|Hd−1(B(x, r) ∩ Γ) − αd−1r
d−1| ≤ γ αd−1r

d−1 .For x in R(Ω r F ), there exists a positive r(x, γ) < r0(x, γ) suh that, for any r < r(x, γ),
|Hd−1(B(x, r) ∩ ∂∗(Ω r F )) − αd−1r

d−1| ≤ γ αd−1r
d−1 ,

|Ld(B(x, r) ∩ (Ω r F )) − αdr
d/2| ≤ γ αdr

d ,
∣∣∣(αd−1r

d−1)−1

∫

B(x,r)∩∂∗(ΩrF )
ν(vΩrF (y)) dHd−1(y) − ν(vΩ(x))

∣∣∣ ≤ γ .22



4 POLYHEDRAL APPROXIMATIONFor x in R(F ), there exists a positive r(x, γ) < r0(x, γ) suh that, for any r < r(x, γ),
|Hd−1(B(x, r) ∩ ∂∗F ) − αd−1r

d−1| ≤ γ αd−1r
d−1 ,

|Ld(B(x, r) ∩ F ) − αdr
d/2| ≤ γ αdr

d ,
∣∣∣(αd−1r

d−1)−1

∫

B(x,r)∩∂∗F
ν(vF (y)) dHd−1(y) − ν(vΩ(x))

∣∣∣ ≤ γ .Let us de�ne the sets
Γ1∗ = Γ1 ∩R(Ω r F ) , Γ2∗ = Γ2 ∩R(F ) ,

Γ3∗ = (Γ r Γ2) ∩R(F ) , Γ4∗ = (Γ r Γ1) ∩R(Ω r F ) .The family of balls
B(x, r) , x ∈ Γ1∗ ∪ Γ2∗ , r < min

(
r(x, γ), γ, η0,

1

2
dist(x, S)

)
,

B(x, r) , x ∈ Γ3∗ , r < min
(
r(x, γ), γ, η0,

1

2
dist(x, S),

1

2
dist(x,Γ2)

)
,

B(x, r) , x ∈ Γ4∗ , r < min
(
r(x, γ), γ, η0,

1

2
dist(x, S),

1

2
dist(x,Γ1)

)is a Vitali relation for Γ1∗ ∪ Γ2∗ ∪ Γ3∗ ∪ Γ4∗. Reall that S is the set of the points belonging totwo or more of the hypersurfaes S1, . . . , Sp and sine S is disjoint from Γ1∗,Γ2∗,Γ3∗,Γ4∗, thendist(x, S) > 0 for x ∈ Γ1∗ ∪ Γ2∗ ∪ Γ3∗ ∪ Γ4∗. By the standard Vitali overing Theorem (see theorem12), we may selet a �nite or ountable olletion of disjoint balls B(xi, ri), i ∈ I, suh that: for
i ∈ I, xi ∈ Γ1∗ ∪ Γ2∗ ∪ Γ3∗ ∪ Γ4∗, ri < min(r(xi, γ), γ, η0,

1
2dist(xi, S)) andeither Hd−1

(
Γ r

⋃

i∈I

B(xi, ri)
)

= 0 or ∑

i∈I

rd−1
i = ∞ .Beause for eah i in I, ri is smaller than r(xi, γ),

αd−1(1 − γ)
∑

i∈I

rd−1
i ≤ Hd−1(Γ) < ∞and therefore the �rst ase ours, so that we may selet four �nite subsets I1, I2, I3, I4 of I suhthat

∀k ∈ { 1, . . . , 4 } ∀i ∈ Ik xi ∈ Γk∗ ,

Hd−1
(
Γ r

⋃

1≤k≤4

⋃

i∈Ik

B(xi, ri)
)
< γ .Let i belong to I1 ∪ I2 ∪ I3 ∪ I4. We have

Hd−1(Γ ∩B(xi, ri) rB(xi, ri(1 − 2
√
γ))) = Hd−1(Γ ∩B(xi, ri)) −Hd−1(Γ ∩B(xi, ri(1 − 2

√
γ)))

≤ (1 + γ)αd−1r
d−1
i − (1 − γ)αd−1r

d−1
i (1 − 2

√
γ)d−1

= αd−1r
d−1
i (1 + γ − (1 − γ)(1 − 2

√
γ)d−1)

≤ αd−1r
d−1
i 2d

√
γ .23



4 POLYHEDRAL APPROXIMATIONHene
∑

i∈I1∪I2∪I3∪I4

Hd−1(Γ ∩B(xi, ri) rB(xi, ri(1 − 2
√
γ)))

≤ 2d
√
γ

∑

i∈I1∪I2∪I3∪I4

αd−1r
d−1
i ≤ 4d

√
γHd−1(Γ)and

Hd−1
(
Γ r

⋃

i∈I1∪I2∪I3∪I4

B(xi, ri(1 − 2
√
γ))

)
< γ + 4d

√
γHd−1(Γ) .We have a �nite number of disjoint losed balls B(xi, ri(1−2

√
γ)), i ∈ I1∪I2∪I3∪I4. By inreasingslightly all the radii ri, we an keep the balls disjoint, ensure that eah radius ri satis�es the samestrit inequalities for i in I1 ∪ I2 ∪ I3 ∪ I4, and get the inequality

Hd−1
(
Γ r

⋃

i∈I1∪I2∪I3∪I4

B
o
(xi, ri(1 − 2

√
γ))

)
< 2γ + 4d

√
γHd−1(Γ) .The above set is a ompat subset of Γ. For k = 1, 2, we de�ne

Rk = Γk r

⋃

i∈I1∪I2∪I3∪I4

B
o
(xi, ri(1 − 2

√
γ)) .The sets R1 and R2 are ompat and their Hd−1 measure is less than 2γ + 4d

√
γHd−1(Γ) (reallthat ∂ΓΓ1 and ∂ΓΓ2 have a null Hd−1 measure). For k = 1, 2, by the de�nition of the Hausdor�measure Hd−1, there exists a olletion of balls B(yj, sj), j ∈ Jk suh that:

∀j ∈ Jk 0 < sj < min
(
η0,

rΓ
2

)
, B(yj, sj) ∩Rk 6= ∅ ,

∑

j∈Jk

αd−1s
d−1
j < 3γ + 4d

√
γHd−1(Γ) ,

Rk ⊂
⋃

j∈Jk

B
o
(yj , sj) .By ompatness of R1 and R2, the sets J1 and J2 an be hosen to be �nite. It remains to over

R0 = Γ r

⋃

i∈I1∪I2∪I3∪I4

B
o
(xi, ri(1 − 2

√
γ)) r

⋃

j∈J1∪J2

B
o
(yj , sj) .The set R0 is a losed subset of Γ whih is at a positive distane from Γ1 and Γ2. There exists aolletion of balls B(yj, sj), j ∈ J0 suh that:

∀j ∈ J0 0 < sj < min
(
η0,

rΓ
2
,

1

8d
dist(R0,Γ

1 ∪ Γ2)
)
, B(yj, sj) ∩R0 6= ∅ ,

∑

j∈J0

αd−1s
d−1
j < 3γ + 4d

√
γHd−1(Γ) ,

R0 ⊂
⋃

j∈J0

B
o
(yj, sj) .24



4 POLYHEDRAL APPROXIMATIONNow the olletion of balls
B
o
(xi, ri(1 − 2

√
γ)), i ∈ I1 ∪ I2 ∪ I3 ∪ I4, B(yj, sj), j ∈ J0 ∪ J1 ∪ J2overs ompletely Γ. We will next replae these balls by polyhedra. For j ∈ J0 ∪ J1 ∪ J2, let xjbelong to B(yj, sj) ∩ Γ and let Qj be the ube Q(xj , 4sj). For i in I1 ∪ I2 ∪ I3 ∪ I4, the point xibelongs to exatly one hypersurfae among S1, . . . , Sp, whih we denote by Ss(i). In partiular Γadmits a normal vetor vΩ(xi) at xi in the lassial sense. For eah i in I1 ∪ I2 ∪ I3 ∪ I4, let Pi be aonvex open polygon inside the hyperplane hyp(xi, vΩ(xi)) suh that

disc(xi, ri(1 − 2
√
γ), vΩ(xi)) ⊂ Pi ⊂ disc(xi, ri(1 −√

γ), vΩ(xi)) ,

|Hd−2(∂Pi) − αd−2r
d−2
i (1 −√

γ)d−2| ≤ δ0αd−2r
d−2
i (1 −√

γ)d−2 ,

|Hd−1(Pi) − αd−1r
d−1
i (1 −√

γ)d−1| ≤ δ0αd−1r
d−1
i (1 −√

γ)d−1 .Thanks to the hoies of the radius ri and the onstants M0, η0, we have then
Γ ∩B(xi, ri(1 − 2

√
γ)) ⊂ Ss(i) ∩B(xi, ri(1 − 2

√
γ)) ⊂ cyl

o
(Pi, 2γri) ,

Γ ∩B(xi, ri) ⊂ Ss(i) ∩B(xi, ri) ⊂ cyl(disc(xi, ri, vΩ(xi)),M0δ0ri) ,

∀x ∈ B(xi, ri) ∩ Γ |vΩ(x) − vΩ(xi)|2 < 1 .The hoie of δ0 guarantees that M0δ0(1 + δ0)ri < 2γri. Let t be suh that
M0δ0(1 + δ0)ri ≤ t <

√
γri .We have

−tvΩ(xi) + Pi ⊂ Ω ∩B(xi, ri) , Γ ∩ (−tvΩ(xi) + Pi) = ∅ .In partiular, the set Γ an interset the ylinder cyl(Pi, t) only along its lateral sides, whih areparallel to vΩ(xi). Let x belong to Γ ∩ ∂ cyl(Pi, t). Then
|vcyl(Pi,t)(x) − vΩ(x)|2 ≥ |vcyl(Pi,t)(x) − vΩ(xi)|2 − |vΩ(xi) − vΩ(x)|2 ≥

√
2 − 1 .Therefore the ylinder cyl(Pi, t) is transverse to Γ. We will replae the ball Bo(xi, ri(1−2

√
γ)) by theylinder cyl(Pi, ti), for a arefully hosen value of ti in the interval [M0δ0(1+ δ0)ri,

√
γri[. However,we must delay the hoies of the values ti, i ∈ I3 ∪ I4 until we have modi�ed the set F inside Ω. Wedeal next with the interfaes inside Ω and we make an approximation of F ontrolled by a fator

ε. We hoose ε su�iently small ompared to γ so that, when we perturb the set F by a volume ε,the resulting e�et lose to Γ is still of order γ. Let ε be suh that 0 < ε < γ and
ε < γαd min

i∈I1∪I2∪I3∪I4
rd
i .We use next a lassial approximation result: there exists a relatively losed subset L of Ω having�nite perimeter suh that Ω ∩ ∂L is an hypersurfae of lass C∞ and

Ld(F∆L) < ε ,
∣∣∣
∫

Ω∩∂∗F
ν(vF (y)) dHd−1(y) −

∫

Ω∩∂L
ν(vL(y)) dHd−1(y)

∣∣∣ < ε .25



4 POLYHEDRAL APPROXIMATIONIn the ase where ν is onstant, this result is stated in Lemma 4.4 of [23℄. In the non onstant ase,the argument should be slightly modi�ed, as explained in the proof of proposition 14.8 of [9℄, wherethe approximation is performed in R
d instead of Ω. When working inside Ω, the extra di�ulty isto deal with regions lose to the boundary (see the proof of Proposition 4.3 of [23℄). For r > 0, wede�ne

∂Lr =
{
x ∈ ∂L : d(x,Γ) ≥ r

}
.By ontinuity of the measure Hd−1|∂L, there exists r∗ > 0 suh that

Hd−1(Ω ∩ ∂Lr ∂L2r∗) ≤ ε .We apply lemma 1 to the set ∂Lr∗ and the hypersurfae Ω ∩ ∂L:
∃M > 0 ∀δ > 0 ∃ η > 0 ∀x, y ∈ ∂Lr∗ |x− y|2 ≤ η ⇒ d2

(
y, tan(∂L, x)

)
≤Mδ|x− y|2 .For a point x belonging to ∂Lr∗ , the tangent hyperplane of Ω ∩ ∂L at x is preisely hyp(x, vL(x)).Let M be as above. We an assume that M > 1. Let δ in ]0, δ0[ be suh that 2δM < ε. Let η beassoiated to δ as in the above property. For x ∈ ∂L2r∗ ,

lim
r→0

(αd−1r
d−1)−1Hd−1(B(x, r) ∩ ∂L) = 1 ,

lim
r→0

(αd−1r
d−1)−1

∫

B(x,r)∩∂L
ν(vL(y)) dHd−1(y) = ν(vL(x)) .For any x in ∂L2r∗ , there exists a positive r(x, ε) suh that, for any r < r(x, ε),

|Hd−1(B(x, r) ∩ ∂L) − αd−1r
d−1| ≤ εαd−1r

d−1 ,
∣∣∣(αd−1r

d−1)−1

∫

B(x,r)∩∂L
ν(vL(y)) dHd−1(y) − ν(vL(x))

∣∣∣ ≤ ε .The family of balls B(x, r), x ∈ ∂L2r∗ , r < min(r∗, η0, r(x, ε), ε, η), is a Vitali relation for ∂L2r∗ .By the standard Vitali overing Theorem, we may selet a �nite or ountable olletion of disjointballs B(xi, ri), i ∈ I ′, suh that: for any i in I ′, xi ∈ ∂L2r∗ ,
ri < min(r∗, η0, r(xi, ε), ε, η)and either Hd−1

(
∂L2r∗ r

⋃

i∈I′

B(xi, ri)
)

= 0 or ∑

i∈I′

rd−1
i = ∞ .Beause for eah i in I ′, ri is smaller than r(xi, ε),

αd−1(1 − ε)
∑

i∈I′

rd−1
i ≤ Hd−1(Ω ∩ ∂L) < ∞and therefore the �rst ase ours, so that we may selet a �nite subset I5 of I ′ suh that

Hd−1
(
∂L2r∗ r

⋃

i∈I5

B(xi, ri)
)
< ε .26



4 POLYHEDRAL APPROXIMATIONWe have a �nite number of disjoint losed balls B(xi, ri), i ∈ I5. By inreasing slightly all the radii
ri, we an keep the balls disjoint, eah ri stritly smaller than min(r∗, η0, r(xi, ε), ε, η) for i in I5,and get the stronger inequality

Hd−1
(
∂L2r∗ r

⋃

i∈I5

B
o
(xi, ri)

)
< ε .For eah i in I5, let Pi be a onvex open polygon inside the hyperplane hyp(xi, vL(xi)) suh that

disc(xi, ri, vL(xi)) ⊂ Pi ⊂ disc(xi, ri(1 + δ), vL(xi)) ,

|Hd−2(∂Pi) − αd−2r
d−2
i | ≤ δαd−2r

d−2
i ,

|Hd−1(Pi) − αd−1r
d−1
i | ≤ δαd−1r

d−1
i .We set ψ = Mδ(1 + δ) (hene ψ < ε < 1). Let i belong to I5. Let Di be the ylinder

Di = cyl(Pi,Mδ(1 + δ)ri)of basis Pi and height 2ψri. The point xi belongs to ∂L2r∗ , the radius ri is smaller than η and r∗,so that
∀x ∈ ∂L ∩B(xi, ri) d2

(
x,hyp(xi, vL(xi))

)
≤Mδ|x− xi|2 ,whene

∂L ∩B(xi, ri) ⊂ cyl
(
disc(xi, ri, vL(xi)),Mδri

)
⊂ D

o
i .We will approximate F by L inside Ω and we will push the interfaes Γ1 ∩ ∂∗(Ω rF ) and Γ2 ∩ ∂∗Finto Ω. We next handle the regions lose to Γ inside the family of balls B(xi, ri), i ∈ I1∪I2∪I3∪I4.We will modify adequately the set F to ensure that no signi�ant interfae is reated within theseballs. Our tehnique onsists in building a small �at ylinder entered on Γ whih we add (forindies in I1 ∪ I3) or remove (for indies in I2 ∪ I4) to the set F . We have to design arefully thisoperation in order not to reate any signi�ant additional interfae. This is the plae where we tietogether the overing of the boundary and the inner approximation. Reall that we already hosea family of polygons Pi, i ∈ I1 ∪ I2 ∪ I3 ∪ I4. For i ∈ I1 ∪ I2, we simply de�ne Di to be the ylinder

Di = cyl(Pi,M0δ0(1 + δ0)ri) ,see �gure 6. The onstrution of the ylinders assoiated to the indies i ∈ I3 ∪ I4 is more om-pliated. Our tehnique onsists in hoosing arefully the height ti of the ylinders cyl(Pi, ti) for
i ∈ I3 ∪ I4. We examine separately the indies in I3 and I4.
• Balls indexed by I3. Let i belong to I3. Beause of the ondition imposed on ε, we have

|Ld(B(xi, ri) ∩ L) − αdr
d
i /2| ≤ γ αdr

d
i + ε ≤ 2γ αdr

d
i .Sine in addition

|Ld(B(xi, ri) r Ω) − αdr
d
i /2| ≤ γ αdr

d
i ,it follows that

Ld(B(xi, ri) ∩ (Ω r L
o
)) ≤ 3γ αdr

d
i .27



4 POLYHEDRAL APPROXIMATION

Γ ∩ Biis inludedthis layer
Pi

B(xi, ri(1 − 2
√

γ))

B(xi, ri(1 −√
γ))

Bi = B(xi, ri)

M0δ0(1 + δ0)ri

M0δ0ri

Di = cyl(Pi, M0, δ0(1 + δ0ri))

xi

vΩ(xi)

Figure 6: The ylinder Di for i ∈ I1 ∪ I2.
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4 POLYHEDRAL APPROXIMATIONThanks to the hoie of the polygon Pi, we have then
∫

2γri<t<
√

γri

Hd−1((−tvΩ(xi) + Pi) r L
o
) dt ≤ Ld(B(xi, ri) ∩ (Ω r L

o
)) ≤ 3γαdr

d
i .The ondition on γ yields in partiular √γ − 2γ ≥ √

γ/2. Hene there exists ti ∈]2γri,
√
γri[ suhthat

Hd−1((−tivΩ(xi) + Pi) r L
o
) ≤ 6

√
γαdr

d−1
i .Let Di be the ylinder Di = cyl(Pi, ti).

• Balls indexed by I4. Let i belong to I4. Beause of the ondition imposed on ε, we have
|Ld(B(xi, ri) ∩ (Ω r L)) − αdr

d
i /2| ≤ γ αdr

d
i + ε ≤ 2γ αdr

d
i .Sine in addition

|Ld(B(xi, ri) r Ω) − αdr
d
i /2| ≤ γ αdr

d
i ,it follows that

Ld(B(xi, ri) ∩ L) ≤ 3γ αdr
d
i .Thanks to the hoie of the polygon Pi, we have then

∫

2γri<t<
√

γri

Hd−1((−tvΩ(xi) + Pi) ∩ L) dt ≤ Ld(B(xi, ri) ∩ L) ≤ 3γαdr
d
i .The ondition on γ yields in partiular √γ − 2γ ≥ √

γ/2. Hene there exists ti ∈]2γri,
√
γri[ suhthat

Hd−1((−tivΩ(xi) + Pi) ∩ L) ≤ 6
√
γαdr

d−1
i .Let Di be the ylinder Di = cyl(Pi, ti) (see �gure 7). We have now built the whole family ofylinders Di, i ∈ I1 ∪ I2 ∪ I3 ∪ I4 ∪ I5. Moreover, the sets

D
o
i , i ∈ I1 ∪ I2 ∪ I3 ∪ I4 , B

o
(yj , sj) , j ∈ J0 ∪ J1 ∪ J2 ,over ompletely Γ. It remains now to over the region

R3 = Ω ∩ ∂L r

⋃

i∈I1∪I2∪I3∪I4∪I5

D
o
i r

⋃

j∈J0∪J1∪J2

B
o
(yj , sj) .Sine R3 does not interset Γ, the distane

ρ =
1

8d
dist(Γ, R3)is positive and also R3 is ompat. From the preeding inequalities, we dedue that

Hd−1(R3) ≤ Hd−1(Ω ∩ ∂Lr ∂L2r∗) + Hd−1
(
∂L2r∗ r

⋃

i∈I5

D
o
i

)

≤ ε+ Hd−1
(
∂L2r∗ r

⋃

i∈I5

B
o
(xi, ri)

)
≤ 2ε .29



4 POLYHEDRAL APPROXIMATION

xi
Ω

Ωc

Γ

Bi

Pi

ti

vΩ(xi)

thin strandinluded in L

Hd−1((Pi − tivΩ(xi)) ∩ L)is small
Di = cyl(Pi, ti)

Figure 7: The ylinder Di for i ∈ I4.
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4 POLYHEDRAL APPROXIMATIONBy the de�nition of the Hausdor� measure Hd−1, there exists a olletion of balls B(yj, sj), j ∈ J3,suh that:
∀j ∈ J3 0 < sj < ρ, B(yj, sj) ∩R3 6= ∅ ,

R3 ⊂
⋃

j∈J3

B
o
(yj, sj) ,

∑

j∈J3

αd−1s
d−1
j ≤ 3ε .By ompatness, we might assume in addition that J3 is �nite. For j ∈ J3, let xj belong to

B(yj, sj) ∩R3 and let Qj be the ube Q(xj, 4sj). We set
P =

(
(Ω ∩ L) ∪

⋃

i∈I1∪I3∪I5

Di ∪
⋃

j∈J1

Qj

)
r

⋃

i∈I2∪I4

Di r

⋃

j∈J0∪J2∪J3

Qj .The sets Qoj, j ∈ J0 ∪ J1 ∪ J2 ∪ J3, Doi, i ∈ I1 ∪ I2 ∪ I3 ∪ I4 ∪ I5 over ∂L ∪ Γ, therefore
∂P ⊂

⋃

i∈I1∪I2∪I3∪I4∪I5

∂Di ∪
⋃

j∈J0∪J1∪J2∪J3

∂Qj ,thus P is polyhedral and ∂P is transverse to Γ. Sine the sets
D
o
i , i ∈ I1 ∪ I3 , Q

o
j , j ∈ J1over ompletely Γ

1, while the sets
Di , i ∈ I2 ∪ I4 ∪ I5 , Qj , j ∈ J0 ∪ J2 ∪ J3do not interset Γ

1, then Γ
1 is inluded in the interior of P . Similarly, the sets

D
o
i , i ∈ I2 ∪ I4 , Q

o
j , j ∈ J2over ompletely Γ

2, while the sets
Di , i ∈ I1 ∪ I3 ∪ I5 , Qj , j ∈ J0 ∪ J1 ∪ J3do not interset Γ

2, thus Γ
2 is inluded in the interior of the omplement of P . We next hek thatthe set P ∩ Ω approximates the initial set F with respet to the volume. We have

(P ∩ Ω)∆F ⊂ (L∆F ) ∪
⋃

i∈I1∪I2∪I3∪I4∪I5

Di ∪
⋃

j∈J0∪J1∪J2∪J3

Qjwhene
Ld((P ∩ Ω)∆F ) ≤ ε+∑

i∈I1∪I2∪I3∪I4

2αd−1r
d−1
i (1 + δ0)

√
γri +

∑

i∈I5

2αd−1r
d−1
i (1 + δ)ψri +

∑

j∈J0∪J1∪J2∪J3

αd(2sj)
d .31



4 POLYHEDRAL APPROXIMATIONYet eah ri is smaller than γ,
∑

i∈I1∪I2∪I3∪I4

αd−1r
d−1
i ≤ 2Hd−1(Γ) ,

∑

i∈I5

αd−1r
d−1
i ≤ 2Hd−1(Ω ∩ ∂L) ≤ 2

νmin (νmaxHd−1(∂∗F ∩ Ω) + ε) ,

∑

j∈J0∪J1∪J2∪J3

αd−1s
d−1
j ≤ 3

(
3γ + 4d

√
γHd−1(Γ)

)
+ 3ε ,so that

Ld((P ∩ Ω)∆F ) ≤ ε+ 6
√
γHd−1(Γ) +

6ε

νmin (νmaxHd−1(∂∗F ∩ Ω) + ε)

+ 3 · 2d αd

αd−1
(3γ + 4d

√
γHd−1(Γ) + ε) .We estimate next the apaity of P . To do this, we examine the intersetion of ∂P ∩ Ω with eahpolyhedral ylinder. For i ∈ I1 ∪ I2, we use the obvious inlusion

P ∩ Ω ∩ ∂Di ⊂ Ω ∩ ∂Di .For i ∈ I3∪I4∪I5, the sets ∂P ∩Ω∩∂Di require more attention. We onsider separately the indiesof I3, I4 and I5.
• Cylinders indexed by I3. Let i in I3. We have

Ω ∩ ∂P ∩ ∂Di ⊂ Ω ∩ (∂Di r L
o
) ∪

⋃

j∈J0∪J1∪J2∪J3

∂Qj .Yet, thanks to the onstrution of the ylinder Di,
Hd−1(Ω ∩ ∂Di r L

o
) ≤ Hd−1((−tivΩ(xi) + Pi) r L

o
) + Hd−2(∂Pi)2

√
γri

≤ 6
√
γαdr

d−1
i + 2αd−2r

d−2
i 2

√
γri ≤ 6

√
γ(αd + αd−2)r

d−1
i .

• Cylinders indexed by I4. Let i in I4. We have
Ω ∩ ∂P ∩ ∂Di ⊂ Ω ∩ (∂Di ∩ L) ∪

⋃

j∈J0∪J1∪J2∪J3

∂Qj .Yet, thanks to the onstrution of the ylinder Di,
Hd−1(Ω ∩ ∂Di ∩ L) ≤ Hd−1((−tivΩ(xi) + Pi) ∩ L) + Hd−2(∂Pi)2

√
γri

≤ 6
√
γαdr

d−1
i + 2αd−2r

d−2
i 2

√
γri ≤ 6

√
γ(αd + αd−2)r

d−1
i .

• Cylinders indexed by I5. Let i in I5. We set
Gi = disc

(
xi − ψrivL(xi),

√
1 − ψ2ri, vL(xi)

)
.We laim that the set Gi is inluded in the interior of L. Indeed, Gi ⊂ B(xi, ri) ∩ ∂Di, yet

∂L ∩B(xi, ri) ⊂ D
o
i, therefore Gi does not interset ∂L. Sine vL(xi) is the exterior normal vetorto L at xi, then Gi is inluded in Lo. The de�nition of the set P implies that

∂P ∩Gi ⊂
⋃

j∈J0∪J1∪J2∪J3

∂Qj ,32



4 POLYHEDRAL APPROXIMATIONwhene
Ω ∩ ∂P ∩ ∂Di ⊂ (∂Di rGi) ∪

⋃

j∈J0∪J1∪J2∪J3

∂Qj .

Yet
Hd−1

(
∂Di r (Pi + ψrivL(xi)) rGi

)
≤ 2αd−2r

d−2
i 2ψri + αd−1r

d−1
i

(
1 + δ − (1 − ψ2)(d−1)/2

)

≤ αd−1r
d−1
i

(
4
αd−2

αd−1
ψ + 1 + δ − (1 − ψ2)(d−1)/2

)
.

Finally, we onlude that
Ω ∩ ∂P ⊂

⋃

i∈I1∪I2

(Ω ∩ ∂Di) ∪
⋃

i∈I3

(Ω ∩Di r L
o
) ∪

⋃

i∈I4

(Ω ∩ ∂Di ∩ L)

∪
⋃

i∈I5

(∂Di rGi) ∪
⋃

j∈J0∪J1∪J2∪J3

∂Qj .

Therefore
IΩ(P ) ≤

∑

i∈I1∪I2

∫

Ω∩∂Di

ν(vP (x)) dHd−1(x) + νmax

∑

i∈I3

Hd−1(Ω ∩ ∂Di r L
o
)

+ νmax

∑

i∈I4

Hd−1(Ω ∩ ∂Di ∩ L)

+
∑

i∈I5

(
ν(vL(xi))Hd−1(Pi) + νmaxHd−1

(
∂Di r (Pi + ψrivL(xi)) rGi

))

+ νmax

∑

j∈J0∪J1∪J2∪J3

Hd−1(∂Qj) .33



4 POLYHEDRAL APPROXIMATIONWe use now the various estimates obtained in the ourse of the approximation. We get
IΩ(P ) ≤

∑

i∈I1∪I2

(
αd−1r

d−1
i (1 + δ0)ν(vΩ(xi)) + νmaxαd−2r

d−1
i 2M0δ0(1 + δ0)

2
)

+
∑

i∈I3∪I4

νmax

(
6
√
γ(αd + αd−2)r

d−1
i

)

+
∑

i∈I5

(
αd−1r

d−1
i (1 + δ)ν(vL(xi))

+ νmaxαd−1r
d−1
i

(
4
αd−2

αd−1
ψ + 1 + δ − (1 − ψ2)(d−1)/2

))

+
∑

j∈J0∪J1∪J2∪J3

νmaxαd−12
d−1sd−1

j

≤ 1 + δ0
1 − γ

∑

i∈I1

∫

B(xi,ri)∩∂∗(ΩrF )
ν(vΩ(y)) dHd−1(y)

+
1 + δ0
1 − γ

∑

i∈I2

∫

B(xi,ri)∩∂∗F
ν(vΩ(y)) dHd−1(y)

+
1 + δ

1 − ε

∑

i∈I5

∫

B(xi,ri)∩∂L
ν(vL(y)) dHd−1(y)

+
∑

i∈I1∪I2∪I3∪I4∪I5

νmaxαd−1r
d−1
i

( αd−2

ald−1
5γ + 6

√
γ
αd + αd−2

αd−1
+ 4

αd−2

αd−1
ψ

+ 1 + δ − (1 − ψ2)(d−1)/2
)

+ νmax2
d−13

(
3γ + 4d

√
γHd−1(Γ) + ε

)

≤ 1 + δ0
1 − γ

(∫

Γ1∩∂∗(ΩrF )
ν(vΩ(y)) dHd−1(y) +

∫

Γ2∩∂∗F
ν(vΩ(y)) dHd−1(y)

+

∫

Ω∩∂L
ν(vL(y)) dHd−1(y)

)

+ 2(Hd−1(Γ) + Hd−1(Ω ∩ ∂L))νmax

(αd−2

αd−1
5γ + 6

√
γ
αd + αd−2

αd−1
+ 4

αd−2

αd−1
ψ

+ 1 + δ − (1 − ψ2)(d−1)/2
)

+ νmax

(
2d−13

(
3γ + 4d

√
γHd−1(Γ)

)
+ 3ε

)

≤ 1 + δ0
1 − γ

(
IΩ(F ) + ε)

+ 2
(
Hd−1(Γ) +

νmaxIΩ(F ) + ε

νmin )
νmax

(αd−2

αd−1
5γ + 6

√
γ
αd + αd−2

αd−1
+ δε+ 4

αd−2

αd−1
ε
)

+ νmax

(
2d−13

(
3γ + 4d

√
γHd−1(Γ)

)
+ 3ε

)where we have used the inequality ψ < ε in the last step. We have also use the inlusions
∀i ∈ I1 B(xi, ri) ∩ ∂∗(Ω r F ) ⊂ Γ1 ∩ ∂∗(Ω r F ) ,

∀i ∈ I2 B(xi, ri) ∩ ∂∗F ⊂ Γ2 ∩ ∂∗F .Sine δ0, δ, γ, ε an be hosen arbitrarily small, we have obtained the desired approximation. �34



5 POSITIVITY OF φ̃Ω5 Positivity of φ̃ΩWe suppose that ∫

[0,+∞[
x dΛ(x) < ∞ , (9)We will prove that φ̃Ω > 0 if and only if Λ(0) < 1− pc(d). In fat we know that if the ondition (9)is satis�ed,

Λ(0) < 1 − pc(d) ⇐⇒ ∃v , ν(v) > 0 ⇐⇒ ∀v , ν(v) > 0 .Thus, the impliation
Λ(0) ≥ 1 − pc(d) =⇒ φ̃Ω = 0is trivial. We suppose that Λ(0) < 1 − pc(d). Sine ν satis�es the weak triangle inequality, thefuntion v 7→ ν(v) is ontinuous, and so as soon as Λ(0) < 1 − pc(d) and (9) is satis�ed, we have

νmin = min
S1

ν > 0 .If P is a polyhedral set, then Hd−1((∂P ∩ Ω) r (∂∗P ∩ Ω)) = 0. We then obtain that
φ̃Ω ≥ νmin × inf{Hd−1(S ∩ Ω) | S hypersurfae that uts Γ1 from Γ2 in Ω , d(S,Γ1 ∪ Γ2) > 0} .We reall that the hypersurfae S uts Γ1 from Γ2 in Ω if S intersets any ontinuous path from apoint in Γ1 to a point in Γ2 that is inluded in Ω. We onsider suh a hypersurfae S ⊂ R

d, and wewant to bound from below the quantity Hd−1(S ∩ Ω) independently on S.The idea of the proof is the following. We onsider a path from Γ1 to Γ2 in Ω. We onstrut atubular neighbourhood of this path of diameter depending only on the domain and not on the pathitself that lies in Ω exept at its endpoints. Then we prove that it is not very deformed omparedto a straight tube. Sine S has to ut this tube, we obtain the desired lower bound Hd−1(S ∩ Ω).For i = 1, 2, we an �nd xi in Γi and ri > 0 suh that Γ ∩ B(xi, ri) ⊂ Γi and Γ ∩ B(xi, ri) isa C1 hypersurfae. We denote by vΩ(xi) the exterior normal unit vetor to Ω at xi, and by TΩ(xi)the hyperplane tangent to Γ at xi. Sine Γ is of lass C1 in a neighbourhood of xi and Ω is aLipshitz domain, applying lemma 1, we know that for all θ > 0, there exists ε > 0 depending on
(Ω,Γ,Γ1,Γ2, x1, x2) suh that for i = 1, 2 we have





Ω ∩B(xi, 2ε) is onneted ,
Γ ∩B(xi, 2ε) ⊂ V2(TΩ(xi), 2ε sin θ) ∩B(xi, 2ε) ,
Γ ∩B(xi, 2ε) ⊂ Γi .We �x θ small enough to have 2ε sin θ < ε/2. We de�ne
Ai = TΩ(xi) ∩B(xi, ε) and Di = cyl(Ai, ε) ,and then

Ω̂ = Ω ∪ D̊1 ∪ D̊2 ,where D̊i is the interior of Di for i = 1, 2. We de�ne
Xi = {z ∈ D̊i |xiz · vΩ(xi) > ε/2} ⊂ Ω̂ .35



5 POSITIVITY OF φ̃ΩThen Xi ⊂ Ω̂ r Ω. Eah path r from a point y1 ∈ X1 to a point y2 ∈ X2 ontains a path r′ from apoint y′1 ∈ Γ1 to a point y′2 ∈ Γ2 suh that r′ ⊂ Ω, thus S intersets r. We onsider the set
Vi = {z ∈ Xi | d2(z, ∂Xi) > ε/8} .Let ŷ1 ∈ V1, ŷ2 ∈ V2 suh that d2(ŷi, ∂Xi) > ε/4 for i = 1, 2. Sine Ω̂ is obviously onneted by ar,there exists a path r̂ from ŷ1 to ŷ2 in Ω̂. The path r̂ is ompat and Ω̂ is open, so δ = d2(r̂, ∂Ω̂) > 0.We thus an �nd a path r inluded in V2(r̂,min(δ/2, ε/8)) whih is a C∞ submanifold of R

d ofdimension 1 and whih has one endpoint, denoted by y1, in V1, and the other one, denoted by y2,in V2.As we explained previously, d2(r, ∂Ω̂) > 0, so there exists a positive η1 suh that V2(r, η1) ⊂ Ω̂.We an suppose that η1 < ε/16, to obtain that B(yi, η1) ⊂ Xi for i = 1, 2. For all z in r we denoteby Nr(z) the hyperplane orthogonal to r at z, and by Nη
r (z) the subset of Nr(z) omposed of thepoints of Nr(z) that are at distane smaller than or equal to η of z. The tubular neighbourhoodof r of radius η, denoted by tub(r, η), is the set of all the points z in R

d suh that there exists ageodesi of length smaller than or equal to η from z that meets r orthogonally, i.e.,
tub(r, η) =

⋃

z∈r

Nη
r (z) ,(see for example [17℄). We have a piture of this tubular neighbourhood on �gure 8. Sine r is aompat C∞ submanifold of R

d whih is omplete, there exists a η2 > 0 small enough suh that forall η ≤ η2, the tubular neighbourhood of r of diameter η is well de�ned by a C∞-di�eomorphism(see for example [3℄, Theorem 2.7.12, or [17℄), i.e., there exists a C∞-di�eomorphism ψ from
Nrη = {(z, v) , z ∈ r , v ∈ Nη

r (z)}to tub(r, η). We hoose a positive η smaller than min(η1, η2). We stress the fat that this η dependson (Ω,Γ,Γ1,Γ2) but not on S.Let (I, h) be a parametrisation of lass C∞ of r, i.e., I = [a, b] is a losed interval of R,
h : I → r is a C∞-di�eomorphism whih is an immersion. Let z be in r, and uz = h−1(z) ∈ I.The vetor h′(uz) is tangent to r at z, and there exists some vetors (e2(z), ..., ed(z)) suh that
(h′(uz), e2(z), ..., ed(z)) is a diret basis of R

d. There exists a neighbourhood Uz of uz in I suhthat for all u ∈ Uz, (h′(u), e2(z), ..., ed(z)) is still a basis of R
d, sine h′ is ontinuous. Indeedthe ondition for a family of vetors (α1, ..., αd) to be a basis of R

d is an open ondition, be-ause it orresponds to det((α1, ..., αd)) > 0 where det is the determinant of the matrix. Weapply the Gram-Shmidt proess to the basis (h′(u), e2(z), ..., ed(z)) to obtain a diret orthonor-mal basis (h′(u)/‖h′(u)‖, v2(u, z), ..., vd(u, z)) of R
d for all u ∈ Uz, suh that the dependeneof (h′(u)/‖h′(u)‖, v2(u, z), ..., vd(u, z)) on u ∈ Uz is of lass C∞. We remark that the family

(v2(u, z), ..., vd(u, z)) is a diret orthonormal basis of Nr(h(u)) for all u ∈ Uz. We have assoi-ated with eah z ∈ r a neighbourhood Uz of uz = h−1(z) in I, we an obviously suppose that
Uz is an interval whih is open in I. Sine (Uz, z ∈ r) is a overing of the ompat I, we anextrat a �nite overing (Uj , j = 1, ..., n) from it. We an hoose this family to be minimal, i.e.,suh that (Uj , j ∈ {1, ..., n} r j0) is not a overing of I for any j0 ∈ {1, ..., n}. We then reorder the
(Uj , j = 1, ..., n) (keeping the same notation) by the inreasing order of their left end point in I ⊂ R.Sine the family (Uj) is minimal, eah point of I belongs either to a unique set Uj, j ∈ {1, ..., n}, orto exatly two sets Uj and Uj+1 for j ∈ {1, ..., n−1}. We denote by aj the middle of the non-empty36



5 POSITIVITY OF φ̃Ω
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5 POSITIVITY OF φ̃Ωopen interval Uj ∩ Uj+1 for j ∈ {1, ..., n − 1}, and by (h′(u)/‖h′(u)‖, v2(u, j), ..., vd(u, j)) the diretorthonormal basis de�ned previously on Uj for j ∈ {1, ..., n}. We want to onstrut a family ofdiret orthonormal basis (h′(u)/‖h′(u)‖, f2(u), ..., fd(u)) of R
d suh that the funtion:

ψ : u ∈ I 7→ (h′(u)/‖h′(u)‖, f2(u), ..., fd(u))is of lass C∞. We have to de�ne a onatenation of the (h′(u)/‖h′(u)‖, v2(u, j), ..., vd(u, j)) overthe di�erent sets Uj . For u ∈ [a, a1], we de�ne
ψ(u) = (h′(u)/‖h′(u)‖, v2(u, 1), ..., vd(u, 1)) .Thus the funtion ψ de�ned on [a, a1] is of lass C∞. On U1∩U2 we have de�ned two di�erent diretorthonormal basis (h′(u)/‖h′(u)‖, v2(u, j), ..., vd(u, j)) for j = 1 and j = 2 that have the same �rstvetor. Let φ1 : U1∩U2 → SOd−1(R) be the funtion of lass C∞ that assoiates to eah u ∈ U1∩U2the matrix of hange of basis from (v2(u, 2), ..., vd(u, 2)) to (v2(u, 1), ..., vd(u, 1)).If b1 is the right end point of U1∩U2, then φ1 is in partiular de�ned on [a1, b1[. Let g1 be a C∞-di�eomorphism from [a1, b1[ to [a1,∞[ whih is stritly inreasing (so g1(a1) = a1) and suh that allthe derivatives of g1 at a1 are null. Then φ1 ◦ g−1

1 is de�ned on [a1,+∞[ and all its derivatives at a1are equal to those of φ1. We then transform all the orthonormal basis (v2(u, j), ..., vd(u, j)) of R
d−1for j ≥ 2 and u ≥ a1 by the hange of basis φ1 ◦ g−1

1 , and we denote the new diret orthonormalbasis of R
d−1 obtained this way by (ṽ2(u, j), ..., ṽd(u, j)). We then de�ne ψ on ]a1, a2] by

ψ(u) = (h′(u)/‖h′(u)‖, ṽ2(u, 2), ..., ṽd(u, 2)) ,and we remark that ψ(u) still de�nes a diret orthonormal basis of R
d. The funtion ψ is of lass

C∞ on [a, a2], inluding at a1. We iterate this proess with the family of basis
(h′(u)/‖h′(u)‖, ṽ2(u, j), ..., ṽd(u, j)) , j = 2, ..., nat a2, et..., �nitely many times sine we work with a �nite overing of I. We obtain in the end afuntion

ψ ◦ h−1 : r → SOd−1(R)whih is of lass C∞, and for all z ∈ r, the set of the points of R
d that have for �rst oordinate 0 inthe basis ψ ◦ h−1(z) is exatly the hyperplane Nr(z).For eah t = (t2, ..., td−1) ∈ {z ∈ R

d−1 | d(z, 0) ≤ η}, the set
rt = {y ∈ R

d | ∃z ∈ r , y has oordinates (0, t2, ..., td−1) in the basis ψ ◦ h−1(z)}is a ontinuous path (even of lass C∞) from a point in X1 to a point in X2, therefore
rt ∩ S ∩ Ω 6= ∅ .Moreover, sine d(S,Γ1 ∪ Γ2) > 0, we obtain that
rt ∩ S ∩ Ω 6= ∅ . (10)For eah y ∈ tub(r, η), there exists a unique zy ∈ r suh that y ∈ Nr(zy), so we an assoiate to yits oordinates (0, t2(y), ..., td(y)) in the basis ψ ◦h−1(zy). We de�ne the projetion p of tub(r, η) on

Nη
r (y1) that assoiates to eah y in tub(r, η) the point of oordinate (0, t2(y), ..., td(y)) in the basis38
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