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Abstract. We study the exit path from a general domain after the
last visit to a set of a Markov chain with rare transitions. We prove

several large deviation principles for the law of the succession of the

cycles visited by the process (the cycle path), the succession of the
saddle points gone through to jump from cycle to cycle on the cycle

path (the saddle path) and the succession of all the points gone through

(the exit path). We estimate the time the process spends in each cycle
of the cycle path and how it decomposes into the time spent in each

point of the exit path. We describe a systematic method to find the
most likely saddle paths. We apply these results to the reversible case of

the Metropolis dynamics. We give in appendix the corresponding large

deviation estimates in the non homogeneous case, which are corollaries

of already published works by Catoni [8] and Trouvé [39,41].

Résumé. Nous étudions le chemin de sortie d’une châıne de Markov

à transitions rares après son dernier passage par un sous domaine
d’un domaine quelconque. Nous établissons des estimées de grandes

déviations pour la suite des cycles visités par le processus, la suite des
points selle qu’il emprunte et la suite de tous les états constituant le

support du chemin de sortie. Nous estimons aussi le temps passé en

chaque cycle et sa répartition entre ses différents états. Nous décrivons
une méthode systématique pour déterminer les suites de points selle

les plus probables, et traitons plus en détail le cas particulier des dy-

namiques de Metropolis réversibles. Nous donnons en appendice des
estimées de grandes déviations correspondant au cas plus général des

châınes non homogènes, qui s’obtiennent comme corollaires de travaux

antérieurs de Catoni [8] et Trouvé [39,41].
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1. Introduction

Markov chains with rare transitions appear in a variety of contexts rang-
ing from statistical mechanics to optimization and reliability theory. This
discrete model of a dynamical system with small random perturbations has
been studied for itself for the first time by Freidlin and Wentzell in con-
nection with diffusion models [22]. Its main feature is that the transition
rates are supposed to obey some large deviation principle with parameter β
(called the inverse temperature). In other words the transition rate between
states x and y is assumed to be of order exp−βV (x, y) for some rate func-
tion V . Exponential rates come from the discrete approximation of more
complex events, such as the jumps of a diffusion process with small pertur-
bations from one attractor to another, or the rate of failure of a machine.
They may also be used to simulate on a computer the distribution at ther-
mal equilibrium of a system of particles or magnetic spins, called the Gibbs
ensemble by physicists. They may even be used as a rough model for the
microscopic dynamics of such a system of statistical mechanics (whether at
equilibrium or not).

The convergence of Markov chains with rare transitions towards equi-
librium becomes arbitrarily slow when temperature goes to zero. To solve
this problem, which is crucial for simulations and optimization applications,
time inhomogeneous Markov chains have been introduced under the name
of simulated annealing algorithms. Many questions have been studied about
the low temperature behaviour of both homogeneous and non homogeneous
chains. Let us mention three of them: the question of the limiting behaviour
of their invariant distributions (which is somehow a prerequisite to any fur-
ther study), the rate of convergence of these chains towards equilibrium at
low temperatures and the distribution of the exit times and points from sub-
domains of the state space. Two main approaches have proved successful
to answer these questions: the semi-group approach, based on spectral gap
estimates, and large deviation theory, where the distributions of exit times
and points are estimated first. The semi-group approach started with Holley
and Stroock [24] (see also Diaconis and Stroock [20]) and was first applied
globally, to get results on the rate of convergence of simulated annealing al-
gorithms toward equilibrium for slow evolutions of the temperature (see also
Miclo [30]). Then it was realized that it was possible to localize it to get re-
sults on exit times and exit points. The first step in this direction was made
by Götze [23]. It led to precise estimates for the joint distribution of the exit
point and exit time from arbitrary subdomains and (almost) arbitrary C1

temperature evolutions in Miclo [31,32], in case of continuous time dynam-
ics. For a different point of view, based on backward equations and requiring
some restrictive assumptions on the rate of decay of the temperature, see
also Chiang and Chow [19].

The large deviation approach started with Freidlin and Wentzell’s book
on “Random Perturbations of Dynamical Systems”, where the homogeneous
case is studied by graph techniques. Freidlin and Wentzell’s theory gives
closed formulas for the distribution of the exit point from arbitrary subdo-
mains and the expectation of the corresponding exit time. These authors
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have also introduced a fundamental concept in the study of trajectories:
the decomposition of the state space into cycles. A cycle is a subdomain
in which the chain stays an exponential length of time and goes to and fro
an exponential number of times between any pair of states before leaving.
The construction of the cycles in the most general situation was not given
by Freidlin and Wentzell, and was described in full detail for the first time
seemingly by Hwang and Sheu (acknowledged in Chiang and Chow [18], and
published in [27], but the preprint circulated a long time before). The study
of the exit time and point from subdomains in the non homogeneous case was
made in Catoni [5,6,8] for arbitrary non increasing temperature evolutions
and reversible simulated annealing algorithms. The rough estimates (where
the exponents are optimal but the constants before the exponentials are
not) were generalized to non necessarily reversible chains and arbitrary non
increasing temperature evolutions by Trouvé [39,41] (English translations
[40,42]). In these papers, the line of reasoning is inspired by Freidlin and
Wentzell’s theory and the graph technique is replaced by induction proofs.
Applications are made to the study of optimal or nearly optimal tempera-
ture evolutions (those giving approximately the largest probability to be in
a state below a given energy level after some fixed large number of itera-
tions). These tools were also applied to the theory of genetic algorithms by
Cerf [12,13]. The first main question addressed in this context is the asymp-
totic behaviour of the invariant distribution [14]. Further insights into the
dynamics of genetic algorithms can be obtained by analyzing the influence
of the population size and the operators (mutation, crossover, selection) on
the geometry of the cycles [15,16].

The large deviation approach was the first one to give results on the
behaviour of trajectories and also the first one to be generalized to arbitrary
non increasing temperature evolutions, this extension being made in the
case of discrete time Markov chains. Moreover the “rough large deviation
estimates” given in Catoni [8] and Trouvé [41] have the advantage to be
uniform with respect to the energy function (or with respect to the rate
function in the non reversible case). This allowed to prove that some type
of exponential triangular temperature evolutions are robust, in the sense
that they give an almost optimal convergence rate uniformly over compact
sets of energy (or rate) functions.

Recently an important step was made in Miclo [31,32] along the semi-
group approach. These two papers are the first from the “semi-group school”
to deal with arbitrary C1 temperature evolutions in the non-reversible case.
They study the continuous time case, under the assumption that the gen-
erator is exactly equal to q(x, y) exp−βtV (x, y) (whereas in Trouvé [41] the
transition matrix has only to be of the same order as this quantity), and
prove results for the renormalized exit times and points from subdomains
with “sharp” constants. Sharp constants were also obtained in Catoni [6]
for reversible Markov chains, and the generalization to the non reversible
case should be feasible, but would be more complicated than Miclo’s proof,
which does not rely on an induction argument.

Freidlin and Wentzell’s theory also had an echo in the domain of statistical
physics, where homogeneous Markov chains with rare transitions were stud-
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ied in connection with the metastability phenomenon (Olivieri and Scoppola
[35,36]). In the study of metastability, one is interested in the occurrence
of a partial equilibrium in a subdomain of the state space, as well as in the
lifetime of these partial equilibria. The global relaxation time of the system
is the time needed for partial equilibria to melt into a global one. The cycle
decomposition of Freidlin and Wentzell gives a clear cut description of the
metastability phenomenon and was reworked in this context by Olivieri and
Scoppola [35,36]. One of the merits of these papers is that they have under-
lined the importance of the description of the escape path from metastable
states for the understanding of the metastability phenomenon. They give a
description of the most probable escape paths and a physical interpretation
of the cycle decomposition in terms of renormalization procedures (see also
Scoppola [38]).

The aim of this paper is to give a large deviation description of the escape
path in the homogeneous case, using only simple proofs inherited directly
from Freidlin and Wentzell’s graph method. We will prove various large
deviation estimates related to the exit path of a homogeneous Markov chain
with rare transitions from an arbitrary subdomain of the state space. Doing
this, we will have in view mainly applications to the metastability problem,
which will be given in Alonso and Cerf [1] and in Ben Arous and Cerf [2].

Let us also mention that, as proved in Catoni [10] and Cot and Catoni
[11], piecewise constant temperature evolutions, if properly tuned, can give
almost optimal convergence rates for the generalized simulated annealing
algorithm. Moreover, another speed-up technique for the Metropolis algo-
rithm, called the Iterated Energy Transformation algorithm and studied in
Catoni [9], uses homogeneous Markov chains with rare transitions. There-
fore the homogeneous case is also relevant for stochastic optimization.

We could have started with refined estimates from which we would have
deduced coarser and coarser ones using the contraction principle of large de-
viation theory. We have instead chosen to proceed step by step from simple
estimates to more refined ones. Although this is not the most economical
approach from the mathematical point of view, we think it gives an eas-
ier understanding of the behaviour of the process. We start with a rough
description of the exit path, where we study only the succession of the maxi-
mal cycles the process goes through. Then we look for the entrance and exit
points of the visited cycles, thus describing the exit saddle path. We give
precise estimates for the time the process spends in each cycle of the cycle
path. We describe eventually more precisely the succession of arrows the
trajectory is likely to go through and we give estimates for the time spent
in each point. We put forward an efficient method to find the exit saddle
paths the system is likely to take. We also simplify some results in the re-
versible case of a Metropolis dynamics. This method is applied to study the
metastability of the three dimensional Ising model on a torus at very low
temperatures in [2], the model dependent variational problems being solved
in [1]. This study of a huge and intricate energy landscape would not have
been possible without the use of a systematic way to find the exit path and
illustrates the efficiency of the method.

We had claimed in our first submitted manuscript that we would basically
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prove nothing new if compared with the non homogeneous and therefore
more general results contained in Catoni [8] and in Trouvé [41]. As one
of the referees suggested to make this statement more precise, we give in
appendix the non homogeneous formulation of the main results of the paper
and indicate how to deduce them from Trouvé [41] (English translation
Trouvé [42]).

2. The main problem

Let E be a finite space. We consider a family of time homogeneous Markov
chains (X,Pβ) on E indexed by a positive parameter β (the inverse tem-
perature). More precisely, we consider the coordinate process X = (Xn)n∈N
on the space EN defined by Xn : (ω0, . . . ) 7→ ωn together with a family
of probabilities (Pβ) indexed by β; under each of them the coordinate pro-
cess is a Markov chain. We suppose that these Markov chains are in the
Freidlin–Wentzell regime, namely that their transition mechanisms satisfy

a(β) exp−β V (x, y) ≤ Pβ(Xn+1 = y/Xn = x) ≤ a(β)−1 exp−β V (x, y)

for all x, y in E, where β 7→ a(β) is a positive function such that

lim
β→∞

β−1 ln a(β) = 0

and V : E × E → R+ ∪ {∞} is an irreducible cost function i.e.

∀x, y ∈ E × E ∃i0, i1, . . . , ir i0 = x, ir = y,

V (i0, i1) + · · ·+ V (ir−1, ir) < ∞.

For C an arbitrary subset of E we define the time τ(C,m) of exit from C
after time m

τ(C,m) = min{n ≥ m : Xn 6∈ C }

(we make the convention that τ(C) = τ(C, 0)).
We define also the time θ(C,m) of the last visit to the set C before time m

θ(C,m) = max{n ≤ m : Xn ∈ C }

(if the chain has not visited C before m, we take θ(C,m) = 0).
Remark that τ is a stopping time when m is deterministic whereas θ isn’t.

Let G and D be two subsets of E such that G ⊂ D and let x be a starting
point in G. Our aim is to describe the behaviour of the chain (Xn) after
its last visit to the set G before it escapes from the set D. More precisely
we will study the asymptotic behaviour as β goes to infinity of the law of
(Xk, θ(G, τ(D)) ≤ k ≤ τ(D)). We will determine the points of D \ G the
Markov chain (Xn) is likely to visit on its exit path as well as the typical
times it spends in the subsets of D \ G it crosses. The key idea to achieve
this study, introduced by Catoni [6], is to decompose D \G into its maximal
cycles and to focus on the jumps of (Xn) between these cycles, which may
be seen as abstract states.
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3. Freidlin and Wentzell lemmas on Markov chains

These lemmas give useful formulas for the invariant measure and for the
laws of the exit time and exit point for an arbitrary subset of E. These
formulas are rational fractions of the coefficients of the transition matrix
whose numerators and denominators are most conveniently written as sums
over particular types of graphs.

Definition 3.1. (the graphs G(W ))
Let W be an arbitrary non–empty subset of E.
An oriented graph on E is called a W–graph if and only if
• there is no arrow starting from a point of W
• each point of W c is the initial point of exactly one arrow
• for each point x in W c, there exists a path in the graph leading from x

to W .
The set of all W–graphs is denoted by G(W ).

Remark. The third condition above is equivalent to
• there is no cycle in the graph.

Definition 3.2. (the graphs Gx,y(W ))
Let W be an arbitrary non–empty subset of E, let x belong to E and y
to W .
If x belongs to W c, the set Gx,y(W ) is the set of all oriented graphs on E
such that
• there is no arrow starting from a point of W
• each point of W c is the initial point of exactly one arrow
• for each point z in W c, there exists a path in the graph leading from z

to W
• there exists a path in the graph leading from x to y.

More concisely, they are the graphs of G(W ) which contain a path leading
from x to y.
If x belongs to W , the set Gx,y(W ) is empty if x 6= y and is equal to G(W )
if x = y.

Remark. The graphs in Gx,y(W ) have no cycles. For any x in E and y in W ,
the set Gx,y(W ) is included in G(W ).

Definition 3.3. (the graphs G(x 6→W ))
Let W be an arbitrary non–empty subset of E and let x be a point of E.
If x belongs to W the set G(x 6→W ) is empty.
If x belongs to W c the set G(x 6→W ) is the set of all oriented graphs on E
such that
• there is no arrow starting from a point of W
• each point of W c except one, say y, is the initial point of exactly one

arrow
• there is no cycle in the graph
• there is no path in the graph leading from x to W .

The third condition (no cycle) is equivalent to
• for each z in W c \ {y}, there is a path in the graph leading from z

to W ∪ {y}.
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Lemma 3.4. Let W be an arbitrary non–empty subset of E and let x be a
point of E.
The set G(x 6→W ) is the union of all the sets Gx,y(W ∪ {y}), y ∈W c.

Remark. In the case x ∈W c, y ∈W , the definitions of Gx,y(W ) and G(x 6→
W ) are those given by Wentzell and Freidlin [22]. We have extended these
definitions to cover all possible values of x. With our choice for the definition
of the time of exit τ(W c) (the first time greater than or equal to zero when
the chain is outside W c), the formulas for the law of Xτ(W c) and for the
expectation of τ(W c) will remain valid in all cases.

Let g be a graph on E, we define its probability pβ(g) by

pβ(g) =
∏

(x→y)∈g

Pβ(Xn+1 = y/Xn = x).

Lemma 3.5. (expected number of visits before exit)
For any non–empty subset W of E, y in W c and x in E,

∞∑
n=0

Pβ(Xn = y, τ(W c) > n/X0 = x) =

∑
g∈Gx,y(W∪{y})

pβ(g)

∑
g∈G(W )

pβ(g)
.

This lemma, due to Catoni [10], may be used to prove the following three
lemmas of Wentzell and Freidlin. For the sake of completeness, we reproduce
the proof here.

Proof. Let us dismiss in this proof the subscript β, the lemma being true
for any irreducible Markov chain with transition matrix p. The matrix

m(x, y) =
∞∑
n=0

P (Xn = y, τ(W c) > n/X0 = x)

is the unique solution of∑
z∈W c

(
I(x, z)− p(x, z)

)
m(z, y) = I(x, y), x, y ∈W c,

because (I − p)|W c×W c is invertible (p being irreducible). As

p(x, x) = 1−
∑

z∈E\{x}

p(x, z),

the preceding equation can be rewritten as∑
z∈E\{x}

p(x, z)m(x, y) = I(x, y) +
∑

z∈
(
W∪{x}

)c p(x, z)m(z, y). (1)
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Let
m̃(x, y) =

∑
g∈Gx,y(W∪{y})

p(y)
( ∑
g∈G(W )

p(g)
)−1

.

We have∑
z∈{x}c

p(x, z)m̃(x, y) =
( ∑

(z,g)∈C1

p(x, z)p(g)
)( ∑

g∈G(W )

p(g)
)−1

,

and ∑
z∈(W∪{x})c

p(x, z)m̃(z, y) =
( ∑

(z,g)∈C2

p(x, z)p(g)
)( ∑

g∈G(W )

p(g)
)−1

,

where

C1 = {(z, g) ∈ E \ {x} ×G(W ∪ {y}) : g ∈ Gx,y(W ∪ {y})} ,
C2 = {(z, g) ∈ E \ (W ∪ {x})×G(W ∪ {y}) : g ∈ Gz,y(W ∪ {y})} .

For a graph g with exactly one arrow starting from x, we denote by g(x)
the unique element z such that the arrow x→ z is present in g. In the case
when x 6= y, consider the one to one change of variable ϕ : C1 → C2 defined
by

ϕ(z, g) =
{

(z, g) if g ∈ Gz,y(W ∪ {y})(
g(x), g ∪ {(x→ z)} \ {(x→ g(x))}

)
if g 6∈ Gz,y(W ∪ {y})

To check that it is one to one, it is enough to notice that its inverse is given
by

ϕ−1(z, g) =
{

(z, g) if g ∈ Gx,y(W ∪ {y})(
g(x), g ∪ {(x→ z)} \ {(x→ g(x))}

)
if g 6∈ Gx,y(W ∪ {y})

Let (z, g) belong to C1 and let (z′, g′) = ϕ(z, g). We check that p(x, z)p(g) =
p(x, z′)p(g′).
It follows that ∑

(z,g)∈C1

p(x, z)p(g) =
∑

(z′,g′)∈C2

p
(
x, z′

)
p
(
g′
)

and thus m̃ satisfies equation (1) when x 6= y.
In the case when x = y, we have C2 ⊂ C1, and we can consider the change

of variable ϕ : C1 \ C2 → G(W ) defined by ϕ(z, g) = g ∪ {(y → z)}. It is
one to one since its inverse is given by ϕ−1(g) =

(
g(y), g \ {(y → g(y))}

)
.

Therefore ∑
(z,g)∈C1\C2

p(y, z)p(g) =
∑

g∈G(W )

p(g)

and( ∑
(z,g)∈C1

p(y, z)p(g)
)( ∑

g∈G(W )

p(g)
)−1

=

1 +
( ∑

(z,g)∈C2

p(y, z)p(g)
)( ∑

g∈G(W )

p(g)
)−1

.

This shows that m̃ satisfies equation (1) also when x = y. �
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Lemma 3.6. (stationary measure)
The stationary measure µβ of the Markov chain ((Xn)n∈N, Pβ) is

∀x ∈ E µβ(x) =

∑
g∈G(x)

pβ(g)

∑
y∈E

∑
g∈G(y)

pβ(g)
.

Lemma 3.7. (exit point)
For any non–empty subset W of E, any y in W and x in E,

Pβ(Xτ(W c) = y/X0 = x) =

∑
g∈Gx,y(W )

pβ(g)

∑
g∈G(W )

pβ(g)
.

Lemma 3.8. (exit time)
For any subset W of E and x in E,

Eβ(τ(W c)/X0 = x) =

∑
y∈W c

∑
g∈Gx,y(W∪{y})

pβ(g)

∑
g∈G(W )

pβ(g)
=

∑
g∈G(x 6→W )

pβ(g)

∑
g∈G(W )

pβ(g)
.

4. The cycle decomposition

We now recall briefly some basic facts and definitions of quantities con-
cerning the decomposition of E into cycles. For a detailed exposition of this
question, we refer the reader to Catoni [8,10] and Trouvé [39,40,41,42].

Definition 4.1. (cost of a graph)
We define the cost of a graph g over E by

V (g) =
∑

(x→y)∈g

V (x, y).

Clearly, we have limβ→∞ ln pβ(g)/β = −V (g).

We next define a delicate but extremely useful tool.

Definition 4.2. (renormalized communication cost)
Lemma 3.7 implies the existence of the limits for any subset D of E

∀x ∈ D ∀y 6∈ D lim
β→∞

− 1
β

lnPβ(Xτ(D) = y/X0 = x) = CD(x, y)

= min{V (g) : g ∈ Gx,y(Dc) } − min{V (g) : g ∈ G(Dc) },

∀x 6∈ D ∀y 6∈ D lim
β→∞

− 1
β

lnPβ(Xτ(D,1) = y/X0 = x) = CD(x, y) =

min{V (x, z)+V (g) : z ∈ D∪{y}, g ∈ Gz,y(Dc) }−min{V (g) : g ∈ G(Dc) }.
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For x in E and y in D, x 6= y, we set CD(x, y) = CD\{y}(x, y). For x = y,
we set CD(x, x) = 0. Thus CD is defined over E×E. The quantity CD(x, y)
is called the renormalized communication cost in D.
For a set A, we define also CD(x,A) = min{CD(x, y) : y ∈ A }.
Remark. The first formula for the renormalized communication cost (corre-
sponding to the case x ∈ D, y 6∈ D) is the formula given by Wentzell and
Freidlin.

Remark. If D is empty we have τ(∅, 1) = 1 and C∅(x, y) = V (x, y) for any
x, y in E.

Lemma 4.3. For x 6∈ D and y 6∈ D,
CD(x, y) = min{V (x, z) + CD(z, y) : z ∈ D ∪ {y} }.

For x ∈ D, y ∈ D and z 6∈ D,
CD(x, z) ≤ CD(x, y) + CD(y, z).

Proof. The first equation is a direct consequence of the expression of the
costs CD(x, y) and CD(z, y) in terms of graphs. A probabilistic proof is also
possible: let x, y belong to Dc; we have
Pβ(Xτ(D,1) = y/X0 = x) =∑

z∈D∪{y}

Pβ(Xτ(D) = y/X0 = z)Pβ(X1 = z/X0 = x)

and the first equation follows letting β tend to infinity.
Now let x ∈ D, y ∈ D and z ∈ Dc. We can decompose Pβ(Xτ(D) = z/X0 =
x) as
Pβ(Xτ(D\{y}) = y,Xτ(D) = z/X0 = x) + Pβ(Xτ(D\{y}) = z/X0 = x)

≥ Pβ(Xτ(D\{y}) = y, Xτ(D) = z/X0 = x)

= Pβ(Xτ(D\{y}) = y/X0 = x)Pβ(Xτ(D) = z/X0 = y).
Letting β tend to infinity we obtain

CD(x, z) ≤ CD\{y}(x, y) + CD(y, z).
Moreover by convention CD\{y}(x, y) = CD(x, y). �

For another construction of the renormalized communication cost, see
Trouvé [40,41,42].

Proposition 4.4. (properties of the renormalized communication cost)
For any subset D of E and for any point x in E, the cost CD(x,Dc) is null.
For any x, y, the set function A 7→ CA(x, y) is non increasing i.e.

A ⊂ B =⇒ CA(x, y) ≥ CB(x, y).

Proof. These properties are easy consequences of the probabilistic defini-
tion of the renormalized cost. Let us prove the last assertion. First we
have CA(x, y) = CA\{y}(x, y), CB(x, y) = CB\{y}(x, y) and we may thus
assume that y is in Bc. We have the inclusion Bc ⊂ Ac so that for i = 0
or i = 1,
{Xτ(A,i) = y } ⊂ {Xτ(B,i) = y } =⇒ Pβ(Xτ(A,i) = y ) ≤ Pβ( Xτ(B,i) = y )
and finally CA(x, y) ≥ CB(x, y). �
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Definition 4.5. (virtual energy)
Lemma 3.6 implies that for any x in E,

lim
β→∞

− 1
β

lnµβ(x) = W (x)

= min{V (g) : g ∈ G({x}) } − min{V (g) : g ∈ G({y}), y ∈ E }.

The quantity W (x) is called the virtual energy of x.
For an arbitrary set D, we define its virtual energy W (D) by

W (D) = min{W (x) : x ∈ D }.

The bottom F (D) of D is the set of points of D with virtual energy W (D)
i.e.

F (D) = {x ∈ D : W (x) = W (D) }.

Definition 4.6. (localized virtual energy)
For any subset D of E, any point x of E and any y in D, lemma 3.5 implies
the existence of the limit

lim
β→∞

− 1
β

ln
∞∑
n=0

Pβ(Xn = y, τ(D, 1) > n/X0 = x) = WD(x, y).

The quantity WD(x, y) is the logarithmic rate of the potential of the Markov
chain starting from x and killed outside D. (Note that we do not use
WD(x, y) with the same meaning as Freidlin and Wentzell [22].)
The expression of WD(x, y) in terms of graphs is for any x in D and y in D,

WD(x, y) = min{V (g) : g ∈ Gx,y(Dc ∪ {y}) } − min{V (g) : g ∈ G(Dc) }

and for any x in Dc and y in D,

WD(x, y) = min{V (x, z) + V (g) : z ∈ D, g ∈ Gz,y(Dc ∪ {y}) }
−min{V (g) : g ∈ G(Dc) }

= min{V (x, z) +WD(z, y) : z ∈ D }.

Lemma 4.7. (link between the localized virtual energy and the renormalized
cost)
Let D be an arbitrary subset of E, x in E and y in D. Then

WD(x, y) + CD\{y}(y,Dc) = CD\{y}(x, y).

Proof. Let us assume first that x is in D. We have

WD(x, y) = min{V (g) : g ∈ Gx,y(Dc ∪ {y}) } − min{V (g) : g ∈ G(Dc) }

and

CD\{y}(y,Dc) = min{V (g) : g ∈ G(Dc) } −min{V (g) : g ∈ G(Dc∪{y}) }.
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Thus

WD(x, y) + CD\{y}(y,Dc) = min{V (g) : g ∈ Gx,y(Dc ∪ {y}) }
− min{V (g) : g ∈ G(Dc ∪ {y}) }

= CD\{y}(x, y).

When x is in Dc we can write

WD(x, y) + CD\{y}(y,Dc) = min{V (x, z) +WD(z, y) : z ∈ D }
+ CD\{y}(y,Dc)

= min{V (x, z) + CD\{y}(z, y) : z ∈ D }
= CD\{y}(x, y). �

Remark. A probabilistic proof is also possible, starting from the identity( ∞∑
n=0

Pβ(Xn = y, τ(D, 1) > n/X0 = x)
)
Pβ(Xτ(D\{y},1) 6∈ D/X0 = y) =

Pβ(Xτ(D\{y}) = y/X0 = x).

In other terms, the probability to escape from D after having visited y is
equal to the probability to visit y before leaving D!

Definition 4.8. (height of a set)
The height H(D) of the set D is defined by

H(D) = max
x∈D

lim
β→∞

1
β

lnEβ(τ(D)/X0 = x).

By lemma 3.8 this limit exists and is equal to

H(D) = −min{V (g) : x ∈ D, g ∈ G(x 6→ Dc) }+ min{V (g) : g ∈ G(Dc) }.

Definition 4.9. (boundary)
For a subset D of E we define its boundary B(D)

B(D) = { y : y 6∈ D, ∃x ∈ D V (x, y) <∞}

and its principal boundary B̃(D)

B̃(D) = { y ∈ B(D) : ∃x ∈ D lim
β→∞

− 1
β

lnPβ(Xτ(D) = y/X0 = x) = 0 }.

Remark. The principal boundary of a set D may equivalently be defined by

B̃(D) = { y ∈ B(D) : ∃x ∈ D CD(x, y) = 0 }.
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Definition 4.10. (cycle)
A cycle π is a subset of E which is either reduced to a point or satisfy

∀x, y ∈ π, x 6= y, lim
β→∞

− 1
β

lnPβ(Xτ(π\{y}) 6= y/X0 = x) > 0.

The set of cycles is a tree for the set inclusion, two cycles being either
disjoint or comparable for the inclusion relation. As said in the introduction,
the chain goes to and fro an exponential number of times between any pair
of states in a cycle before leaving it. This is a simple consequence of the
probabilistic definition of the cycles we chose to use here, and explains why
the exit time and point from a cycle is weakly dependent at low temperature
from the initial conditions. This is what states the next proposition.

Proposition 4.11. (mixing properties of cycles)
Let π be a cycle. For any points x, y in π, the cost Cπ(x, y) is null.
For any subset D of E containing π and for any x, y in π, we have for any z
in E

WD(z, x)−WD(z, y) = W (x)−W (y)
CD(x, z) = CD(y, z), CD(z, x) = CD(z, y)

and for any z in D, we have WD(x, z) = WD(y, z).

As a consequence, we can define without ambiguity the renormalized costs
CD(π, z), CD(z, π) for any cycle π included in D and any point z in E, as
well as CD(π1, π2) for any cycles π1, π2 included in D.

Definition 4.12. (maximal partition)
Let D be a subset of E. The partition of D into its maximal subcycles
is denoted by M(D). For x in D we denote by π(x,D) the unique cycle
of M(D) containing x (for x in Dc we make the convention that π(x,D) =
{x}).

Remark. In case D is a cycle, we have M(D) = {D}.
The relevance of the cycles ofM(D) for the study of the behaviour of the

Markov chain in D will already appear in the next lemma. It can also be
understood from the remark that the distribution of the exit time and point
from D knowing that the chain started from state x will only depend at low
temperature on the component of the maximal partition of D to which x
belongs.

Notation. Let g be a graph and A a subset of E, we denote by g|A the
restriction of g to A, obtained by deleting from g all the arrows starting
outside from A.

Lemma 4.13. Let D be an arbitrary subset of E. We have

min{V (g) : g ∈ G(Dc) } =
∑

π∈M(D)

min{V (g) : g ∈ G(πc) }.
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Moreover for any graph ĝ in G(Dc) realizing the minimum min{V (g) : g ∈
G(Dc) } and any cycle π of M(D), we have V (ĝ|π) = min{V (g) : g ∈
G(πc) } and ĝ|π has only one arrow with endpoint outside of π.

Proof. Let us prove first that any ĝ realizing the minimum min{V (g) : g ∈
G(πc) } has only one arrow with endpoint outside of π. For this purpose,
let us assume that (x → y) ∈ ĝ, (x′ → y′) ∈ ĝ with x, x′ ∈ π, y, y′ ∈ πc

and x 6= x′. The graph ĝ \ {(x′ → y′)} would belong to Gx,y(πc ∪ {x′}) and
would satisfy

V (ĝ \ {(x′ → y′)}) = min{V (g) : g ∈ G(πc ∪ {x′}) },

therefore we would have that y belong to B̃(π \ {x′}) ∩ πc which is in con-
tradiction with the fact that π is a cycle.

Now let ĝ be any graph of G(Dc). For any π in M(D) let ĝ|π denote its
restriction to π (obtained by removing arrows with starting point outside π).
Clearly the graph ĝ|π belongs to G(πc). Therefore

(2) V (ĝ) =
∑

π∈M(D)

V (ĝ|π) ≥
∑

π∈M(D)

min{V (g) : g ∈ G(πc) }

and there is equality if and only if for each π in M(D) we have V (ĝ|π) =
min{V (g) : g ∈ G(πc) }. Thus to end the proof of the lemma, all we
have to do is to build a graph ĝ in G(Dc) such that for any π in M(D),
V (ĝ|π) = min{V (g) : g ∈ G(πc) }. For this purpose, let us consider the
graph G over the setM(D)∪Dc (the points of Dc being identified with one
point cycles) defined by

(π1 → π2) ∈ G ⇐⇒ B̃(π1) ∩ π2 6= ∅ ⇐⇒ Cπ1(π1, π2) = 0.

Let G|M(D) be its restriction to the cycles ofM(D) (that is we only keep the
arrows of G whose starting point is a cycle ofM(D)). This restriction has no
stable irreducible component inM(D). Indeed such a component could not
be reduced to one cycle, because no cycle (and in fact no set) has an empty
principal boundary, and on the other hand, if it were made of more than
one cycle, the union of these cycles would be a cycle of D, and this would
contradict the maximality of the elements of M(D). Consequently, we can
extract from G|M(D) a spanning collection of oriented trees H belonging to
G(M(D)c), that is a graph on M(D) ∪Dc such that
• each cycle of M(D) is the starting point of exactly one arrow.
• there is no arrow starting from Dc.
• there is no loop in H.

Now for each π in M(D), considering π′ such that (π → π′) is in H, we
can choose y in B̃(π) ∩ π′ (because H ⊂ G) and find a graph ĝπ in Gx,y(πc),
where x is some point of π, such that V (ĝπ) = min{V (g) : g ∈ G(πc) }
(because y is in B̃(π)). Then we know that y is the only endpoint of the
arrows of ĝπ lying outside of π. Let ĝ be the union of all the graphs ĝπ, π ∈
M(D). The graph ĝ has no loop, because any loop in ĝ would correspond to
a loop in H. Therefore ĝ belongs to G(Dc) and answers the question. �

The formula of lemma 4.13 is very useful to perform several computations
of renormalized costs and heights of sets. As an application, we compute
the cost appearing in lemma 4.7 above.
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Proposition 4.14. For any subset D of E and s in D we have

CD\{s}(s,Dc) = H(π(s,D)) + W (π(s,D)) −W (s)

(where π(s,D) is the greatest cycle included in D and containing s.)

Proof. As we already noticed in the proof of lemma 4.7, we have

CD\{s}(s,Dc) = min{V (g) : g ∈ G(Dc) } − min{V (g) : g ∈ G(Dc∪{s}) }.

Using lemma 4.13 we obtain that the cost CD\{s}(s,Dc) is equal to

∑
π∈M(D)

min{V (g) : g ∈ G(πc) } −
∑

π∈M(D\{s})

min{V (g) : g ∈ G(πc) }

= min{V (g) : g ∈ G(π(s,D)c)} −
∑

π∈M(π(s,D)\{s})

min{V (g) : g ∈ G(πc) }

= min{V (g) : g ∈ G(π(s,D)c)} − min{V (g) : g ∈ G(π(s,D)c ∪ {s})}.

Let e belong to F (π(s,D)). We have also that the quantity (from the first
equation of proposition 4.11)

min{V (g) : g ∈ G(π(s,D)c ∪ {s})} − min{V (g) : g ∈ G(π(s,D)c ∪ {e})}

is equal to W (s) − W (e) (i.e. the computation of a difference of virtual
energies can be done within a cycle containing the points) so that finally

CD\{s}(s,Dc) = min{V (g) : g ∈ G(π(s,D)c) }
− min{V (g) : g ∈ G(π(s,D)c ∪ {e}) } + W (π(s,D)) − W (s)

= H(π(s,D)) + W (π(s,D)) − W (s). �

Corollary 4.15. For any subset D of E and for any s in D, we have

CD\{s}(s,Dc) = Cπ(s,D)\{s}(s, π(s,D)c).

Proof. We apply proposition 4.14 to the set D = π(s,D). Since the cycle
π(s, π(s,D)) coincides with π(s,D) (see the remark after definition 4.12),
we see that the cost Cπ(s,D)\{s}(s, π(s,D)c) is also equal to H(π(s,D)) +
W (π(s,D))−W (s). �

5. The exit cycle path

We will study how the Markov chain (Xn)n∈N jumps between the cycles
ofM(D \G), the partition of D \G into its maximal subcycles, after its last
visit to G.
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Definition 5.1. (cycle path)
We define recursively a sequence of random times and cycles:

τ−1 = θ(G, τ(D)), π−1 = {Xτ−1},
τ0 = τ−1 + 1, π0 = π(Xτ0 , D \G),
τ1 = τ(π0, τ0), π1 = π(Xτ1 , D \G),

...
...

τk = τ(πk−1, τk−1), πk = π(Xτk , D \G),
...

...
τr = τ(D), πr = {Xτr}.

Notice that the length r is itself random, since r is defined by the equal-
ity τr = τ(D).
The sequence (π−1, π0, . . . , πr−1, πr) is called the cycle path of (Xn) relative
to D,G and denoted by π(X,D,G). It is a random variable with values in
the cycle path space

Ψ(D,G) =
{
{y} : y ∈ G

}
×

∞⋃
r=0

{
(π0, . . . , πr−1) ∈M(D\G)r : πk 6= πk−1, 1 ≤ k < r

}
×
{
{z} : z ∈ Dc

}
of finite sequences of cycles starting in G, traveling through M(D \G) and
ending in Dc. We define a cost function Vx(D,G) on the space Ψ(D,G) by

Vx(D,G)({y}, π0, . . . , πr−1, {z}) =

WD(x, y) + V (y, π0) +
r−1∑
k=1

Cπk−1(πk−1, πk) + Cπr−1(πr−1, z)

where we recall that by definition,

V (y, π0) = min
u∈π0

V (y, u), Cπk−1(πk−1, πk) = min
v∈πk

Cπk−1(πk−1, v).

Since the sets D and G will be fixed in the sequel, we will drop them
in the notation whenever no confusion is possible: for instance we will
write Vx,Ψ, π(X) instead of Vx(D,G),Ψ(D,G), π(X,D,G).

Theorem 5.2. (estimation of the probability of a cycle path)
There exists a positive constant K1 (depending only on the cardinality of D\
G) such that for any exit cycle path ({y}, π0, . . . , πr−1, {z}) in Ψ(D,G) and
any β we have

(K−1
1 a(β)K1)r+1 exp−βVx({y}, π0, . . . , πr−1, {z})

≤ Pβ
(
π(D,G) = ({y}, π0, . . . , πr−1, {z})/X0 = x

)
≤

(K1a(β)−K1)r+1 exp−βVx({y}, π0, . . . , πr−1, {z}).



Markov chains with rare transitions 17

Proof. Conditioning by the last visit of the chain to the set G and applying
the Markov property we get

Pβ
(
π(D,G) = ({y}, π0, . . . , πr−1, {z})/X0 = x

)
= (3)

∞∑
n=0

Pβ(Xn = y, τ(D) > n/X0 = x)
r∏

k=0

Pβ(Xτk ∈ πk/Xτl ∈ πl,−1 ≤ l < k).

By lemma 3.5, there exist positive constants C1, C
′
1 such that

C ′1a(β)C1 exp−βWD(x, y) ≤
∞∑
n=0

Pβ(Xn = y, τ(D) > n/X0 = x)

≤ C
′−1
1 a(β)−C1 exp−βWD(x, y).

Moreover the first term of the product in formula (3) satisfies

a(β) exp−βV (y, π0) ≤ Pβ(Xτ0 ∈ π0/Xτ−1 = y)

≤ a(β)−1|π0| exp−βV (y, π0)

and for k ≥ 1 we have

Pβ(Xτk ∈ πk/Xτl ∈ πl,−1 ≤ l < k) = (4)∑
u∈πk−1

Pβ(Xτk ∈ πk/Xτk−1 = u)Pβ(Xτk−1 = u/Xτl ∈ πl,−1 ≤ l < k).

Yet there exists a positive constant C2 such that for any u in πk−1,

C−1
2 a(β)C2 exp−βCπk−1(πk−1, πk)

≤ Pβ(Xτk ∈ πk/Xτk−1 = u) ≤
C2a(β)−C2 exp−βCπk−1(πk−1, πk)

whence, substituting this inequality in the previous equation and summing
over u ∈ πk−1, we get

C−1
2 a(β)C2 exp−βCπk−1(πk−1, πk)

≤ Pβ(Xτk ∈ πk/Xτl ∈ πl,−1 ≤ l < k) ≤
C2a(β)−C2 exp−βCπk−1(πk−1, πk) .

and formula (3) yields the result. �

The cost of a cycle path includes the sum of the costs of each of its arrows
(πk−1 → πk). Thus any path of bounded cost has a bounded number of
arrows of positive cost. However it may have an arbitrary large number of
arrows of null cost if there exist loops of null cost.

Definition 5.3. The cycle path ({y}, π0, . . . , πr−1, {z}) is optimal knowing
that X0 = x if its cost Vx({y}, π0, . . . , πr−1, {z}) is equal to the infimum

inf{Vx(ψ−1, . . . , ψs−1, {z}) : s ∈ N, (ψ−1, . . . , ψs−1, {z}) ∈ Ψ(D,G) }.

Let Gx be the graph containing the arrows of all optimal paths knowing
that X0 = x.
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Proposition 5.4. The cycle path (π−1, . . . , πr) is optimal knowing that
X0 = x if and only if it is contained in the optimal graph Gx (that is, all its
arrows do appear in the optimal graph).

Remark. That any optimal path belongs to Gx is obvious. The interesting
point is that each path contained in the optimal graph Gx yields also an
optimal path knowing X0 = x.

Proof. Let us define the cost of a beginning path (π−1, π0, . . . , πk) where
the πk’s belong to M(D \G) by

Vx(π−1, π0, . . . , πk) = WD(x, π−1) + V (π−1, π0) +
k∑
l=1

Cπl−1(πl−1, πl).

Then for any optimal path (π−1, . . . , πr) and any k < r, (π−1, . . . , πk) is op-
timal among the paths ending in πk. Conversely, assume that (π−1, . . . , πr)
belongs to Gx i.e. that all the arrows of the path do appear in the graph Gx.
We prove by induction that (π−1, . . . , πk) is optimal among the paths end-
ing in πk. Suppose the result is true at rank k − 1. By the very definition
of the optimal graph Gx, there exists an optimal path γ such that the ar-
row (πk−1, πk) is in γ. Let γk−1 be the path γ truncated at πk−1 and γk
be the path γ truncated at πk. By the induction hypothesis Vx(γk−1) =
Vx(π−1, . . . , πk−1) so that Vx(γk) = Vx(π−1, . . . , πk). Since γk is optimal,
(π−1, . . . , πk) is also optimal. �

Remark. The same kind of proof appears in the study of the well known
dynamic programming algorithm.

We study now the link between the cycle path cost and the renormalized
communication cost.

Theorem 5.5. Let D be a domain, let x belong to D and let y be a point
of E. Let πx and πy be the cycles of M(D) containing x and y respectively
(if y is not in D, we put πy = {y}). The cost CD(x, y) is equal to the
infimum

inf
{ r∑

k=1

Cπk−1(πk−1, πk) :

r ∈ N, π0 = πx, (π1, . . . , πr−1) ∈M(D)r−1, πr = πy

}
.

Remark. Proposition 4.11 shows that CD(x, y) = CD(πx, πy) is independent
of the pair (x, y) chosen in πx × πy.

Remark. If we had not used maximal cycles in theorem 5.5 as well as in the
construction of the exit cycle path, the renormalized communication cost
would have been strictly inferior to the infimum of the cycle paths costs
and all the exit cycle paths of finite length would have had an exponentially
vanishing probability to be taken during the last excursion. This shows that
the maximal cycles of M(D) represent the right granularity at which the
last excursion should be described.
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Proof. In case πx = πy, the cost is zero, as well as the infimum. We assume
now that πx and πy are distinct. By definition of the renormalized cost, we
have CD(x, y) = CD\{y}(x, y) and since x belongs to D \ {y}, then the cost
CD\{y}(x, y) is equal to

min{V (g) : g ∈ Gx,y(Dc ∪ {y}) } − min{V (g) : g ∈ G(Dc ∪ {y}) }.

Let g be a graph realizing the first minimum i.e. g belongs to Gx,y(Dc∪{y})
and

V (g) = min{V (g) : g ∈ Gx,y(Dc ∪ {y}) }.

There exists a path of arrows in g leading from x to y. Let π0 → · · · → πr
be the sequence of the successive cycles ofM(D) visited by this path. Since
the path of points starts at x and ends at y we have π0 = πx and πr = πy.
In addition we remove the loops in this cycle path, in order to obtain a path
of distinct cycles. Now

CD(x, y) = V (g) − min{V (g) : g ∈ G(Dc ∪ {y}) }.

Decomposing g on the cycles of M(D) and applying lemma 4.13 we get

CD(x, y) =
∑

π∈M(D)

V (g|π) −
∑

π∈M(D\{y})

min{V (g) : g ∈ G(πc) }

=
∑

π∈M(D),π 6=πy

(
V (g|π)−min{V (g) : g ∈ G(πc) }

)
+ V (g|πy )

−
∑

π∈M(D\{y}),π⊂πy

min{V (g) : g ∈ G(πc) }.

However the set of cycles {π : π ∈ M(D \ {y}), π ⊂ πy } is exactly the
maximal partitionM(πy \ {y}) whence by applying once more lemma 4.13,
the cost CD(x, y) is equal to∑
π∈M(D),π 6=πy

(
V (g|π)−min{V (g) : g ∈ G(πc) }

)
+ V (g|πy )

− min{V (g) : g ∈ G(πcy ∪ {y}) } .

Since g belongs to Gx,y(Dc∪{y}), for any π inM(D)\πy, its restriction g|π
belongs to G(πc). Moreover, g|πy belongs to G(πcy∪{y}). As a consequence,

CD(x, y) ≥
r−1∑
k=0

(
V (g|πk)−min{V (g) : g ∈ G(πck) }

)
.

(where π0, . . . , πr is the sequence of cycles previously described).
By construction of the πk’s, there are xk in πk and yk in πk+1 such that g|πk
is in Gxk,yk(πck), thus V (g|πk)−min{V (g) : g ∈ G(πck) } ≥ Cπk(xk, yk). We
obtain finally the desired inequality

CD(x, y) ≥
r−1∑
k=0

Cπk(πk, πk+1).
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Conversely, let π0 → · · · → πr be a cycle path inM(D) starting at π0 = πx,
ending at πr = πy and realizing the infimum of the theorem. Let us introduce
the stopping times

ν−1 = 0, νk = τ(πk, νk−1) for 0 ≤ k < r, νr = τ(πr \ {y}, νr−1).

We have, putting πr+1 = {y},

Pβ(Xτ(D\{y}) = y/X0 = x)

≥
r∏

k=0

Pβ(Xνk ∈ πk+1/Xνs ∈ πs+1, s < k,X0 = x)

≥
r−1∏
k=0

inf
u∈πk

Pβ(Xτ(πk) ∈ πk+1/X0 = u)× inf
u∈πr

Pβ(Xτ(πr\{y}) = y/X0 = u).

Using the definition of the communication cost and letting β tend to infinity
we get that

CD(x, y) ≤
r−1∑
k=0

Cπk(πk, πk+1). �

We first obtain a slight improvement of the second equation of lemma 4.3.

Corollary 5.6. For x in D and y in Dc, the cost CD(x, y) is equal to

CD(x, y) = min{CD(x, z) + Cπ(z,D)(z, y) : z ∈ D }.

We apply now theorem 5.5 to the set D \G.

Corollary 5.7. For any y in G and z in Dc, the cost CD\G(y, z) is equal
to the infimum

inf
{
V (y, π0) +

r−1∑
k=1

Cπk(πk, πk+1) : ({y}, π0, . . . , πr−1, {z}) ∈ Ψ(D,G)
}
.

Proof. This is a consequence of the fact that

CD\G(y, z) = min
{
V (y, u) + CD\G(u, z) : u ∈ D \G ∪ {z}

}
(lemma 4.3) and of theorem 5.5. �

Corollary 5.8. The function Lx from M(D \G)∪
{
{z} : z ∈ Dc

}
to R+

defined by
Lx(π) = min

y∈G

(
WD(x, y) + CD\G(y, π)

)
is non decreasing along the optimal cycle paths knowing that X0 = x.

6. The pruned cycle path

The estimates in theorem 5.2 are not very satisfactory because their preci-
sion depends on the length of the path and also because paths of bounded
cost do not necessarily have a bounded length.
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In this section we will eliminate the loops in the graph of transitions of
null cost between cycles. We define a relation → on the cycles ofM(D \G)
by

π1 → π2 ⇐⇒ B̃(π1) ∩ π2 6= ∅ ⇐⇒ Cπ1(π1, π2) = 0.

The associated equivalence relation ≡ is

π ≡ π′ ⇐⇒ ∃π1, . . . , πr, π
′
1, . . . , π

′
s ∈M(D \G)

π → π1 → · · · → πr → π′ → π′1 → · · · → π′s → π.

We denote by M(D \ G) the partition of M(D \ G) determined by this
equivalence relation. Formally, the elements ofM(D \G) are sets of cycles,
but we rather consider them as subsets of E by identifying π in M(D \G)
with the set {x : ∃π ∈ π, x ∈ π }. For a point x in D \ G, we denote
by π(x,D \G) the unique element of M(D \G) containing x.
For any π inM(D \G) and for any y in E the cost Cπ(x, y) is independent
of the point x in π (by theorem 5.5). We can thus define the cost Cπ(π, y).
Once more, if A is a subset of E, we set Cπ(π,A) = min{Cπ(π, y) : y ∈ A }.
Definition 6.1. (pruned cycle path)
We define recursively a sequence of random times and cycles:

τ−1 = θ(G, τ(D)), π−1 = {Xτ−1},
τ0 = τ−1 + 1, π0 = π(Xτ0 , D \G),
τ1 = τ(π0, τ0), π1 = π(Xτ1 , D \G),

...
...

τk = τ(πk−1, τk−1), πk = π(Xτk , D \G),
...

...
τ r = τ(D), πr = {Xτr}.

The sequence (π−1, π0, . . . , πr−1, πr) is called the pruned cycle path of
(Xn) relative to D,G and is denoted by π(X,D,G). It is a random variable
with values in the pruned cycle path space

Ψ(D,G) =
{
{y} : y ∈ G

}
×

∞⋃
r=0

{
(π0, . . . , πr−1) ∈M(D\G)r : πk 6= πk−1, 1 ≤ k < r

}
×
{
{z} : z ∈ Dc

}
of finite sequences of sets of equivalent cycles starting in G, traveling through
M(D \ G) and ending in Dc. We define a cost function V x(D,G) on the
space Ψ(D,G) by

V x(D,G)({y}, π0, . . . , πr−1, {z}) =

WD(x, y) + V (y, π0) +
r−1∑
k=1

Cπk−1(πk−1, πk) + Cπr−1(πr−1, z).

Notice that the pruned cycle path of (Xn) is a partition of the cycle path
of (Xn): it is obtained by regrouping equivalent cycles in M(D \G). The-
orem 5.5 shows that the Vx–cost of a cycle path and the V x–cost of the
corresponding pruned cycle path are equal i.e. we have Vx(π(X,D,G)) =
V x(π(X,D,G)).
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Theorem 6.2. (estimation of the probability of a pruned cycle path)
There exists a positive constant K2 (depending only on the cardinality of D\
G) such that for any pruned cycle path ({y}, π0, . . . , πr−1, {z}) in Ψ(D,G)
and any β we have

(K−1
2 a(β)K2)r+1 exp−βV x({y}, π0, . . . , πr−1, {z})

≤ Pβ
(
π(D,G) = ({y}, π0, . . . , πr−1, {z})/X0 = x

)
≤

(K2a(β)−K2)r+1 exp−βV x({y}, π0, . . . , πr−1, {z}).

Proof. This is the same kind of proof as for theorem 5.2. The only difference
is that we now use the estimation (for some constant C4), for all u in πk−1,

C−1
4 a(β)C4 exp−βCπk−1(πk−1, πk)

≤ Pβ(Xτk ∈ πk/Xτk−1 = u) ≤
C4a(β)−C4 exp−βCπk−1(πk−1, πk). �

The key fact that makes V x a good cost function to work with is the
following

Lemma 6.3. Let (π0, . . . , πr) be a sequence such that πk ∈ M(D \ G),
πk 6= πk−1, 1 ≤ k ≤ r. There exists a positive constant δ independent
of (π0, . . . , πr) such that, if r is greater than the cardinality of M(D \ G),
then

r∑
k=1

Cπk−1(πk−1, πk) ≥ δ > 0.

Remark. The graph of the jumps of null cost over M(D \ G) has no loop.
We could have replaced the cardinality ofM(D \G) by the diameter of this
graph, that is the number of vertices of its longest paths.

Proof. Since r is greater than or equal to |M(D \G)|, two elements πi and
πj , 0 ≤ i < j ≤ r of the sequence π0, . . . , πr have to be equal. Since
πi 6= πi+1, then j > i+ 1 and πi, πi+1, . . . , πj = πi is a loop. Therefore one
of its jumps at least has a positive cost and the sum of the lemma is not
smaller than

δ = min{Cπ(π, y) : π ∈M(D \G), y ∈ B(π), Cπ(π, y) > 0 }. �

Corollary 6.4. The cost V x gives a control on the length of the pruned
cycle path i.e.

∀λ ∃R(λ) ∀r ≥ R(λ) ∀(π0, . . . , πr) ∈ Ψ(D \G) V x(π0, . . . , πr) ≥ λ.

Corollary 6.5. The cost function V x is a good rate function on Ψ i.e. its
level sets are compact (finite in our situation).

Proof. Corollary 6.4 shows that the sets { (π0, . . . , πr) : V x(π0, . . . , πr) ≤
λ } contain only sequences of bounded length and are thus finite. �

The length of the cycle path π(X) (i.e. the number of jumps it involves)
will be denoted by |π(X)| in the sequel. For instance |(π0, . . . , πr)| = r.
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Proposition 6.6. There exist a positive constant K3 and a function h :
N→ R+ such that lim+∞ h = +∞ and

Pβ(|π(X)| ≥ R/X0 = x) ≤ (K3a(β)−K3)R exp−βh(R).

Proof.

Pβ(|π(X)| ≥ R/X0 = x)

=
∑

y,π0,... ,πR

Pβ(π−1(X) = {y}, π0(X) = π0, . . . , πR(X) = πR/X0 = x)

≤
∑

y,π0,... ,πR

(K2a(β)−K2)R+1×

exp−β
(
WD(x, y) + V (y, π0) +

R∑
k=1

Cπk−1(πk−1, πk)
)

≤ |G|
(
|M(D \G)|K2 a(β)−K2

)R+1 exp−β(
[
R/|M(D \G)|

]
δ + C3)

where δ is as in lemma 6.3 and

C3 = inf {WD(x, y) + V (y, π0) : y ∈ G, π0 ∈M(D \G) }. �

Theorem 6.7. (large deviations upper bound)
For any positive λ, there exists a positive constant K4 such that for any β

Pβ(Vx(π(X)) ≥ λ/X0 = x) ≤ K4 a(β)−K4 exp−βλ.

Proof. We decompose the event {Vx(π(X)) ≥ λ } according to the length
of the associated pruned cycle path. Let R be such that h(R) > λ. We have

Pβ(Vx(π(X)) ≥ λ/X0 = x) = Pβ(V x(π(X)) ≥ λ/X0 = x)

= Pβ(V x(π(X)) ≥ λ, |π(X)| ≥ R/X0 = x) +

Pβ(V x(π(X)) ≥ λ, |π(X)| < R/X0 = x).

The first term in the sum is controlled by proposition 6.6. The second term
is equal to ∑

Pβ(π(X) = (π0, . . . , πr)/X0 = x)

where the sum runs over all pruned cycle paths (π0, . . . , πr) satisfying the
conditions r < R, V x(π0, . . . , πr) ≥ λ. For such a path we have by theo-
rem 6.2

Pβ(π(X) = (π0, . . . , πr)/X0 = x) ≤ Kr+1
2 a(β)−K2(r+1) exp−βλ

and there is only a finite number of such terms (the length of the paths
being bounded). The desired upper bound follows easily. �

7. The exit saddle path

In this section, we will study the entrance and exit points of the cycles of
the exit cycle path.
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Definition 7.1. (saddle path)
We define recursively a sequence of random times and points:

τ0 = θ(G, τ(D)) + 1, s0 = Xτ0−1, s1 = Xτ0 ,
τ1 = τ(π(s1, D \G), τ0), s2 = Xτ1−1, s3 = Xτ1 ,

...
...

...
τk = τ(π(s2k−1, D \G), τk−1), s2k = Xτk−1, s2k+1 = Xτk ,

...
...

...
τr = τ(D), s2r = Xτr−1, s2r+1 = Xτr .

Remark. The times τi are the same as those used in the definition of the
cycle path. We recall also that the length r is random, since r is defined by
the equality τr = τ(D).

The sequence (s0, . . . , s2r+1) is called the saddle path of (Xn) relative
to D,G and denoted by S(X,D,G). The saddle path space relative to D,G
starting at x is the set

S(D,G) =
{

(s0, . . . , s2r+1) : s0 ∈ G, s2r+1 ∈ Dc,

∀k ∈ {1, . . . , r}, s2k−1 ∈ D \G, s2k ∈ π(s2k−1, D \G), V (s2k, s2k+1) <∞,
s2k+1 ∈ B(π(s2k−1, D \G))

}
.

We define a cost function Vx(D,G) on the space S(D,G) by

Vx(D,G)(s0, . . . , s2r+1) = WD(x, s0) + V (s0, s1) +
r∑

k=1

(
W (s2k) + V (s2k, s2k+1)−H(π(s2k, D \G))−W (π(s2k, D \G))

)
.

Since the sets D and G will be fixed in the sequel, we will drop them in
the notation whenever no confusion is possible: for instance we will write Vx,
S, S(X) instead of Vx(D,G), S(D,G), S(X,D,G).
The next lemma estimates the probability of one fixed jump of a saddle
path.

Lemma 7.2. (last point and exit point of a cycle)
There exists a positive constant K5 such that for any cycle π, x, y ∈ π
and z ∈ B(π),

K−1
5 a(β)K5 exp−β

(
W (y) + V (y, z)−H(π)−W (π)

)
≤ Pβ(Xτ(π) = z,Xτ(π)−1 = y/X0 = x) ≤

K5a(β)−K5 exp−β
(
W (y) + V (y, z)−H(π)−W (π)

)
.

Proof of lemma. By summing over the possible values of the last instant
in π, we obtain

Pβ(Xτ(π) = z,Xτ(π)−1 = y/X0 = x)

=
∞∑
k=0

Pβ(τ(π) > k, Xk = y,Xk+1 = z/X0 = x)

=
( ∞∑
k=0

Pβ(τ(π) > k, Xk = y/X0 = x)
)
Pβ(X1 = z/X0 = y).
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Lemma 3.5 yields the existence of a positive constant C5 such that

C−1
5 a(β)C5 exp−βWπ(x, y) ≤

∞∑
k=0

Pβ(τ(π) > k, Xk = y/X0 = x)

≤ C5a(β)−C5 exp−βWπ(x, y)

By lemma 4.7, we know that Wπ(x, y) = Cπ\{y}(x, y)−Cπ\{y}(y, πc). Since
π is a cycle, the cost Cπ\{y}(x, y) is null. Moreover proposition 4.14 gives

−Wπ(x, y) = Cπ\{y}(y, πc) = H (π) +W (π)−W (y).

The required estimation follows easily. �

Corollary 7.3. For any cycle π, any point x in π and any point y in B(π),
we have

Cπ(x, y) = min{W (z) + V (z, y) : z ∈ π} −H(π)−W (π).

Theorem 7.4. (estimation of the probability of a saddle path)
There exists a positive constant K6 (depending only on the cardinality of D\
G) such that for any saddle path (s0, . . . , s2r+1) in S(D \G) and any β we
have

(K−1
6 a(β)K6)r+1 exp−βVx(s0, . . . , s2r+1)

≤ Pβ(S(X) = (s0, . . . , s2r+1)/X0 = x) ≤
(K6a(β)−K6)r+1 exp−βVx(s0, . . . , s2r+1).

Proof. If S(X) = (s0, . . . , s2r+1), the last visit of the chain (Xn) in G
occurred at s0. Conditioning according to the time of this last visit and
then applying the Markov property, we obtain

Pβ(S(X) = (s0, . . . , s2r+1)/X0 = x) =
∞∑
k=0

Pβ(S(X) = (s0, . . . , s2r+1), Xk = s0, Xl 6∈ G, k < l ≤ τ(D)/X0 = x) =

∞∑
k=0

Pβ(S(X) = (s0, . . . , s2r+1), Xk = s0, Xl 6∈ G, k < l ≤ τ(D)/Xk = s0)

×Pβ(Xk = s0, k < τ(D)/X0 = x)

=
( ∞∑
k=0

Pβ(Xk = s0, k < τ(D)/X0 = x)
)
× (5)

Pβ(S(X) = (s0, . . . , s2r+1), X0 = s0, ∀l 0 < l ≤ τ(D), Xl 6∈ G/X0 = s0)

Lemma 3.5 yields the existence of a positive constant C6 such that

C−1
6 a(β)C6 exp−βWD(x, s0) ≤

∞∑
k=0

Pβ(Xk = s0, k < τ(D)/X0 = x) (6)

≤ C6a(β)−C6 exp−βWD(x, s0)
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We now deal with the second term in formula (5). By repeated conditioning
and applications of the strong Markov property we get

Pβ(S(X) = (s0, . . . , s2r+1), ∀l 0 < l ≤ τ(D), Xl 6∈ G/X0 = s0) =
Pβ(Xτr = s2r+1, Xτr−1 = s2r/Xτr−1 = s2r−1) × . . . ×

Pβ(Xτ1 = s3, Xτ1−1 = s2/Xτ0 = s1)Pβ(Xτ0 = s1, τ0 = 1/X0 = s0)

=
r∏

k=1

Pβ(Xτ = s2k+1, Xτ−1 = s2k, τ = τ(π(s2k−1, D \G))/X0 = s2k−1)

×Pβ(X1 = s1/X0 = s0) .

Several applications of lemma 7.2 to the above expression, together with
formulas (5) and (6), yield the desired estimation. �

We would like to show that the law of the saddle path of (Xn) concentrates
on the set of sequences in S having a null Vx–cost as β goes to infinity.

Definition 7.5. (optimal saddle)
Let π be a cycle. A pair (y, z) is an optimal saddle escaping from π if

y ∈ π, z ∈ B̃(π), W (y) + V (y, z) = W (π) +H(π).

Let (s0, . . . , s2r+1) belong to S and suppose there exists a sequence
(t0, . . . , t2h+1) in D \G such that

t0 ∈ π(s1, D \G), t1 ∈ B̃(π(s1, D \G)), t2h+1 ∈ π(s1, D \G),

and (t2k, t2k+1) is an optimal saddle escaping from π(t2k−1, D \G) for all k
in {1, . . . , h}. Then (t0, . . . , t2h+1) may be seen as a portion of a saddle path
of S. Since (t2k, t2k+1) is an optimal saddle escaping from π(t2k−1, D \ G)
we have

h∑
k=0

(
W (t2k) + V (t2k, t2k+1)−H(π(t2k, D \G))−W (π(t2k, D \G))

)
= 0.

Now (s0, s1, t0, . . . , t2h+1, s2, . . . , s2r+1) is in the saddle path set S and has
the same Vx–cost as the initial saddle path (s0, . . . , s2r+1). As a conse-
quence, Vx is not in general a good rate function (its level sets are not
compact) and with Vx we won’t be able to control the length of the saddle
path. What we have to do is to get rid of sequences like (t0, . . . , t2h+1) by
considering only the relevant jumps between cycles of M(D \G).

8. The pruned saddle path

The pruned saddle path is to the saddle path what the pruned cycle path
is to the cycle path.
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Definition 8.1. (pruned saddle path)
We define recursively a sequence of random times and points:

τ0 = θ(G, τ(D)) + 1, s0 = Xτ0−1, s1 = Xτ0 ,
τ1 = τ(π(s1, D \G), τ0), s2 = Xτ1−1, s3 = Xτ1 ,

...
...

...
τk = τ(π(s2k−1, D \G), τk−1), s2k = Xτk−1, s2k+1 = Xτk ,

...
...

...
τ r = τ(D), s2r = Xτr−1, s2r+1 = Xτr .

The sequence (s0, . . . , s2r+1) is called the pruned saddle path of (Xn)
relative to D,G and is denoted by S(X,D,G). The pruned saddle path
space relative to D,G starting at x is the set

S(D,G) =
{

(s0, . . . , s2r+1) : s0 ∈ G, s2r+1 ∈ Dc,

∀k ∈ {1, . . . , r}, s2k−1 ∈ D \G, s2k ∈ π(s2k−1, D \G), V (s2k, s2k+1) <∞,
s2k+1 ∈ B(π(s2k−1, D \G))

}
.

We define a cost function V x(D,G) on the space S(D,G) by

V x(D,G)(s0, . . . , s2r+1) = WD(x, s0) + V (s0, s1)

+
r∑

k=1

(
W (s2k) + V (s2k, s2k+1)−H(π(s2k, D \G))−W (π(s2k, D \G))

)
.

Notice that the pruned saddle path of (Xn) is a subsequence of the saddle
path of (Xn): it is obtained by deleting the jumps between equivalent cycles
of M(D \G). These removed jumps have a null cost so that the Vx–cost of
a saddle path and the V x–cost of the corresponding pruned saddle path are
equal i.e. we have Vx(S(X)) = V x(S(X)).

Theorem 8.2. (estimation of the probability of a pruned saddle path)
There exists a positive constant K7 (depending only on the cardinality of D\
G) such that for any pruned saddle path (s0, . . . , s2r+1) in S(D \ G) and
any β we have

(K−1
7 a(β)K7)r+1 exp−βV x(s0, . . . , s2r+1)

≤ Pβ(S(X) = (s0, . . . , s2r+1)/X0 = x) ≤
(K7a(β)−K7)r+1 exp−βV x(s0, . . . , s2r+1).

The proof is of the same kind as for theorem 7.4. The only difference lies
in the equivalent form of lemma 7.2, that we state now.

Lemma 8.3. (inner and outer exit points from a set of equivalent cycles)
There exists a positive constant K8 such that for any cycle π, x, y ∈ π
and z ∈ B(π),

K−1
8 a(β)K8 exp−β

(
W (y) + V (y, z)−H(π)−W (π)

)
≤ Pβ(Xτ(π) = z,Xτ(π)−1 = y/X0 = x) ≤

K8a(β)−K8 exp−β
(
W (y) + V (y, z)−H(π)−W (π)

)
.
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Proof. The proof follows the line of the proof of lemma 7.2. Here the quan-
tity characterizing the rate of decrease of the event under consideration (i.e.
the exit from the set π through the arrow (y, z)) is Wπ(x, y)+V (y, z). Appli-
cation of lemma 4.7 yields Wπ(x, y) = Cπ\{y}(x, y)−Cπ\{y}(y, πc). Since x
and y are in π, we have by the definition of π combined with theorem 5.5
that the cost Cπ\{y}(x, y) is null. Next, proposition 4.14 yields

Cπ\{y}(y, πc) = H(π(y, π)) +W (π(y, π))−W (y)

(where we recall that π(y, π) is the greatest cycle included in π which con-
tains y). Anyway the quantity H(π)+W (π) is the same for all the maximal
subcycles of π and coincides with H(π) +W (π). Thus Wπ(x, y) +V (y, z) =
W (y) + V (y, z)−H(π)−W (π). �

Let Θ be the map from S(D,G) to Ψ(D,G) defined by

Θ(s0, . . . , s2r+1) = ({s0}, π(s1, D \G), . . . , π(s2r−1, D \G), {s2r+1}).

Let (s0, . . . , s2r+1) in S(D,G) and (π−1, . . . , πr) in Ψ(D,G) be such that

Θ(s0, . . . , s2r+1) = (π−1, . . . , πr).

We have the inclusion{
S(X) = (s0, . . . , s2r+1)

}
⊂
{
π(X) = (π−1, . . . , πr)

}
.

Theorems 6.2 and 8.2 then imply that V x(s0, . . . , s2r+1) ≥ V x(π−1, . . . , πr).
As a consequence, the conclusions of corollaries 6.4 and 6.5 are still valid
for the rate function V x on the space S. We restate them in the next two
corollaries.

Corollary 8.4. The cost V x gives a control on the length of the pruned
saddle path i.e.

∀λ ∃R(λ) ∀r ≥ R(λ) ∀(s0, . . . , s2r+1) ∈ S(D \G)

V x(s0, . . . , s2r+1) ≥ λ.

Corollary 8.5. The cost function V x is a good rate function on S i.e. its
level sets are compact (finite in our situation).

The length of the saddle path S(X) (i.e. the number of jumps it involves)
will be denoted by |S(X)| in the sequel. For instance |(s0, . . . , s2r+1)| = r.

Corollary 8.6. There exist a positive constant K9 and a function h : N→
R+ such that lim+∞ h = +∞ and

Pβ(|S(X)| ≥ R/X0 = x) ≤ (K9a(β)−K9)R exp−βh(R).

Proof. This is a straightforward consequence of the equality |S(X)| = |π(X)|
and of proposition 6.6. �
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Theorem 8.7. (large deviations upper bound)
For any positive λ, there exists a positive constant K10 such that for all β

Pβ(Vx(S(X)) ≥ λ/X0 = x) ≤ K10a(β)−K10 exp−βλ.

Proof. We decompose the event {Vx(S(X)) ≥ λ } according to the length
of the associated pruned saddle path. Let R be such that h(R) > λ. We
have

Pβ(Vx(S(X)) ≥ λ/X0 = x) = Pβ(V x(S(X)) ≥ λ/X0 = x)

= Pβ(V x(S(X)) ≥ λ, |S(X)| ≥ R/X0 = x) +

Pβ(V x(S(X)) ≥ λ, |S(X)| < R/X0 = x).

The first term in the sum is controlled by corollary 8.6. The second term is
equal to ∑

Pβ(S(X) = (s0, . . . , s2r+1)/X0 = x)

where the sum runs over all pruned saddle paths (s0, . . . , s2r+1) satisfying
the conditions r < R, V x(s0, . . . , s2r+1) ≥ λ. For such a path we have by
theorem 8.2

Pβ(S(X) = (s0, . . . , s2r+1)/X0 = x) ≤ (K7a(β)−K7)r+1 exp−βλ

and there is only a finite number of such terms (the length of the paths
being bounded). The desired upper bound follows easily. �

We have just proved that the law of the pruned saddle path satisfies a
large deviation principle with the good rate function V x. As a consequence,
as β goes to infinity, this law concentrates on the paths of null Vx–cost.

Proposition 8.8. (concentration of the law of the saddle path)

lim
β→∞

Pβ(Vx(S(X)) = 0/X0 = x) = 1.

We finally give a criterion to decide whether a saddle path has a positive
asymptotic probability to occur.

Proposition 8.9. Assume that lim inf
β→∞

a(β) > 0. Then

lim inf
β→∞

Pβ(S(X) = (s0, . . . , s2r+1)/X0 = x) > 0

⇐⇒ Vx(s0, . . . , s2r+1) = 0.

9. The saddle paths of null Vx–cost

This section is devoted to the investigation of the structure of the saddle
paths having a null Vx–cost.
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Theorem 9.1. (characterization of the saddle paths of null Vx–cost)
Let s = (s0, . . . , s2r+1) be a saddle path in S(D,G). Let r∗ = min{k :
s2k+1 6∈ π(s0, D) }. The saddle path s has a null Vx–cost if and only if

• CD\s0(x, s0) = 0,
• V (s0, s1) +∑
1≤k≤r∗

(
W (s2k) + V (s2k, s2k+1)−H(π(s2k, D \G))−W (π(s2k, D \G))

)
= H(π(s0, D)) + W (π(s0, D)) − W (s0),

• ∀k, r∗ < k ≤ r, (s2k, s2k+1) is an optimal saddle escaping from the
cycle π(s2k−1, D \G).

Remark. The second property is equivalent to saying that s2r∗+1 is in the
principal boundary of π(s0, D) and that the sequence (s0, . . . , s2r∗+1) is a
saddle path of null Vs0-cost of Ψ(π(s0, D), G).

Remark. We recall that the third property says that (see definition 7.5)

∀k ∈ {r∗+ 1, . . . , r}, s2k ∈ π(s2k−1, D \G), s2k+1 ∈ B̃(π(s2k−1, D \G)),
W (s2k) + V (s2k, s2k+1) = W (π(s2k−1, D \G)) +H(π(s2k−1, D \G)).

Proof. We have the inequalities

Vx(s0, . . . , s2r+1) ≥ WD(x, s0) + V (s0, s1) +∑
1≤k≤r∗

(
W (s2k) + V (s2k, s2k+1)−H(π(s2k, D \G))−W (π(s2k, D \G))

)
(Corollary 7.3) ≥ WD(x, s0) + V (s0, s1)

+
∑

1≤k≤r∗

Cπ(s2k,D\G)(s2k, s2k+1)

(
Lemma 4.3

Proposition 4.4

)
≥ WD(x, s0) + Cπ(s0,D)\G(s0, s2r∗+1)

(Lemma 4.7) = CD\{s0}(x, s0)− CD\{s0}(s0, D
c)

+ Cπ(s0,D)\G(s0, s2r∗+1)

(Corollary 4.15) = CD\{s0}(x, s0)− Cπ(s0,D)\{s0}(s0, π(s0, D)c)

+ Cπ(s0,D)\G(s0, s2r∗+1)

≥ CD\{s0}(x, s0) ≥ 0.

The first inequality is obtained by truncating the sum in the definition of
the cost Vx. The third inequality relies on the following facts:

V (s0, s1) ≥ Cπ(s0,D)\G(s0, s1) , π(s2k, D\G) ⊂ π(s0, D)\G , 1 ≤ k ≤ r∗ .

Thus, for the saddle path to have a null cost, all these successive inequalities
have to be equalities. That is, we must have CD\{s0}(x, s0) = 0, the quantity

V (s0, s1) +∑
1≤k≤r∗

(
W (s2k) + V (s2k, s2k+1)−H(π(s2k, D \G))−W (π(s2k, D \G))

)
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must be equal to H(π(s0, D)) + W (π(s0, D)) − W (s0) and for all k in
{r∗ + 1, . . . , r}, we must have W (s2k) + V (s2k, s2k+1)−H(π(s2k, D \G))−
W (π(s2k, D \ G)) = 0, this last condition being equivalent to saying that
(s2k, s2k+1) is an optimal saddle escaping from the cycle π(s2k, D \G).
Conversely, if these three conditions are satisfied, we check directly that
the Vx–cost of the saddle path is null. �

Definition 9.2. Let A and B be two disjoint subsets of E. We define
V(A,B), the set of points from which A is visited before B, by

V(A,B) = {x ∈ E : CAc∩Bc(x,B) > 0 }.

We define R(A,B), the set of ridge points between A and B, by

R(A,B) = {x ∈ E : CAc∩Bc(x,B) = CAc∩Bc(x,A) = 0 }.

The probabilistic counterpart of this definition is the following:
a point x is in V(A,B) if and only if

lim
β→∞

− 1
β

lnPβ(τ(Bc) < τ(Ac)/X0 = x) > 0 ,

a point x is in R(A,B) if and only if

lim
β→∞

− 1
β

lnPβ(τ(Bc) < τ(Ac)/X0 = x) = 0 ,

lim
β→∞

− 1
β

lnPβ(τ(Bc) > τ(Ac)/X0 = x) = 0 .

Remark. Notice that for any point of E, we have CAc∩Bc(x,A ∪ B) = 0
so that at least one of the two costs CAc∩Bc(x,A), CAc∩Bc(x,B) is null.
Henceforth,

CAc∩Bc(x,A) > 0 =⇒ CAc∩Bc(x,B) = 0 ,

CAc∩Bc(x,B) > 0 =⇒ CAc∩Bc(x,A) = 0 .

As a consequence, the three sets V(A,B),R(A,B),V(B,A) form a partition
of E.

Proposition 9.3. Let s = (s0, . . . , s2r+1) be a saddle path in S(D,G) of
null Vx–cost. This saddle path visits successively the three sets V(G,Dc),
R(G,Dc), V(Dc, G): if we let r∗ = min{k : s2k+1 6∈ V(G,Dc) } and r∗ =
min{k ≥ r∗ : s2k+1 6∈ R(G,Dc) }, then

∀k, 0 ≤ k ≤ 2r∗, sk ∈ V(G,Dc),

∀k, 2r∗ < k ≤ 2r∗, sk ∈ R(G,Dc),

∀k, 2r∗ < k ≤ 2r + 1, sk ∈ V(Dc, G).

In addition the index r∗ coincides with min{k : s2k+1 6∈ π(s0, D) }. Thus a
saddle path of null Vx–cost may be decomposed into three parts: an ascending
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part (sk, 0 ≤ k ≤ 2r∗), a ridge part (sk, 2r∗ < k ≤ 2r∗) and a descending
part (sk, 2r∗ < k ≤ 2r + 1).

Proof. We first prove that the two indices r1∗ = min{k : s2k+1 6∈ π(s0, D) }
and r2∗ = min{k : s2k+1 6∈ V(G,Dc) } are equal. We have π(s0, D) ⊂
V(G,Dc) so that r1∗ ≤ r2∗. Theorem 9.1 shows that CD\G(s2r1∗+1, D

c) = 0
so that s2r1∗+1 is not in V(G,Dc) and r1∗ ≥ r2∗. Thus r∗ = r1∗ = r2∗.
That the points sk, 0 ≤ k ≤ 2r∗ are in V(G,Dc) is straightforward; in
fact they all belong to π(s0, D) (remember that s2k ∈ π(s2k−1, D \ G)).
Theorem 9.1 shows that all the subsequent points of the saddle path sat-
isfy CD\G(sk, Dc) = 0 so that they are not in V(G,Dc). The definition
of r∗ implies that sk ∈ R(G,Dc) for 2r∗ < k ≤ 2r∗. Finally, theorem 9.1
shows that for k > 2r∗, we have CD\G(s2r∗+1, sk) = 0. Each point z
such that CD\G(s2r∗+1, z) = 0 is such that CD\G(z,G) > 0 and is thus
in V(Dc, G) (otherwise we would have CD\G(s2r∗+1, G) = 0). Therefore the
points (sk, 2r∗ < k ≤ 2r + 1) are in V(Dc, G). �

Definition 9.4. (global saddles)
Let s = (s0, . . . , s2r+1) be a saddle path in S(D,G) of null Vs0–cost. The
global saddles of this saddle path are the saddles ((s2k, s2k+1), r∗ ≤ k ≤ r∗).
The set of the global saddles between G and Dc is the union of the global
saddles of all the saddle paths of S(D,G) of null cost.

Definition 9.5. (global saddle points)
A point y is a global saddle point between G and Dc if there exists a global
saddle between G and Dc entering the cycle π(y,D \G) and a global saddle
between G and Dc escaping from the cycle π(y,D \G).

Remark. Equivalently, the global saddle points are the ridge points between
G and Dc which may be visited with a non exponentially vanishing proba-
bility during the last excursion from G before leaving D.

The task of determining the set of all the saddle paths of null Vx–cost
can be performed in the following way:
i) first find the points s of G such that CD(x, s) = 0;
ii) for each such point s, find the points s′ of the principal boundary of

the cycle π(s,D);
iii) for each such point s′ in B̃(π(s,D)), determine all the sequences

of cycles π0, . . . , πr in M(D \ G) such that s′ ∈ π0, B̃(πk) ∩ πk+1 6=
∅ for k in {0, . . . , r − 1}, B̃(πr) ∩Dc 6= ∅;
iv) for each such cycle path π0, . . . , πr determine all the saddle paths

(s0, . . . , s2r+1) such that s0 ∈ π0, s2r+1 ∈ Dc, (s2k−1, s2k) ∈ πk × πk for k
in {1, . . . , r}, and (s2k, s2k+1) is an optimal saddle escaping from πk for all
k in {0, . . . , r};
v) finally determine all the saddle paths (s′0, . . . , s

′
2r′+1) in Ψ(π(s,D), G)

starting at s′0 ∈ π(s,D) ∩G, ending at s′2r′+1 = s′ and such that the cost

V (s′0, s
′
1) +∑

1≤k≤r′

(
W (s′2k) + V (s′2k, s

′
2k+1)−H(π(s′2k, D \G))−W (π(s′2k, D \G))

)
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is equal to H(π(s′0, D)) +W (π(s′0, D))−W (s′0);
vi) the set of all the saddle paths of null Vx–cost passing through s′ is the

set of the saddle paths (s′0, . . . , s
′
2r′+1, s0, s1, . . . , s2r+1) obtained by gluing

together two saddle paths obtained at step iv) and v).

Remark that step iii) may fail: it may happen that there is no cycle path
of null cost in M(D \G) starting at s′ and escaping from D. In that case,
there is no saddle path of null cost passing through s′ and it is not necessary
to perform step v) (this is the reason why we propose to do step v) at the
end). Such a point s′ leads to a dead–end. What we do at step iii) is to look
at all the cycles we can reach from s′ in the graph over M(D \ G) defined
by the relation

π1 → π2 ⇐⇒ B̃(π1) ∩ π2 6= ∅ ⇐⇒ Cπ1(π1, π2) = 0

i.e. we determine the orbit of the cycle π(s′, D \ G) in this graph (the
minimal stable subgraph containing π(s′, D \G)). The good cycle paths are
the cycle paths included in this graph which end at a cycle whose principal
boundary contains points of Dc.
Depending on the situation, one might also determine first the pruned cycle
paths of null cost and then search for the whole cycle paths.
Saddle paths corresponding to step v) always exist: in fact, we have π(s,D)∩
G 6= ∅ and thus for all s0 in π(s,D) ∩ G, the cost CD(x, s0) is null. We
consider for instance a saddle path of null Vs(π(s,D), {s})–cost starting
at s and escaping from π(s,D) at s′ (such a saddle path exists since s′ is in
the principal boundary of π(s,D)). We choose for s′0 the last point of the
saddle path belonging to G. The portion of the saddle path after s′0 satisfies
the requirements.

10. Time spent in each state of the exit path

We now study the times τ1 − τ0, . . . , τr+1 − τr between the jumps along
the saddle path as well as the times the process spends in the points of the
cycle path, knowing that the Markov chain follows a fixed saddle path. The
key lies in the following Wentzell–Freidlin type formulas.

Lemma 10.1. (conditional expected number of visits before exit)
For an arbitrary set W , two points x, z in W c and y in W , we have

∞∑
n=0

Pβ
(
Xn = z, τ(W c) > n/X0 = x,Xτ(W c) = y

)
=∑

g1∈Gx,z(W∪{z})

pβ(g1)
∑

g2∈Gz,y(W )

pβ(g2)

∑
g1∈G(W )

pβ(g1)
∑

g2∈Gx,y(W )

pβ(g2)
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Proof. We just write

∞∑
n=0

Pβ(Xn = z, τ(W c) > n/X0 = x,Xτ(W c) = y) =

=
∞∑
k=0

Pβ(τ(W c) > k, Xτ(W c) = y, Xk = z/X0 = x)
Pβ(Xτ(W c) = y/X0 = x)

=
∞∑
k=0

Pβ(τ(W c) > k, Xk = z/X0 = x)Pβ(Xτ(W c) = y/X0 = z)
Pβ(Xτ(W c) = y/X0 = x)

and the result follows by applying lemmas 3.5 and 3.7. �

Lemma 10.2. (conditional expected exit time)
For an arbitrary set W , x in W c and y in W , we have

Eβ(τ(W c)/X0 = x,Xτ(W c) = y) =∑
z∈W c

∑
g1∈Gx,z(W∪{z})

pβ(g1)
∑

g2∈Gz,y(W )

pβ(g2)

∑
g1∈G(W )

pβ(g1)
∑

g2∈Gx,y(W )

pβ(g2)

Proof. We either do a proof in the spirit of the proof of lemma 10.1 or we
simply write

Eβ(τ(W c)/X0 = x, Xτ(W c) = y) =∑
z∈W c

∞∑
n=0

Pβ(Xn = z, τ(W c) > n/X0 = x,Xτ(W c) = y)

and apply the formula proved in lemma 10.1. �

Remark. It is interesting to notice that for these conditional formulas the
graph summations are coupled in the numerator and are independent for
the denominator.

Corollary 10.3. (large deviations of the conditional expected number of
visits)
As β goes to infinity,

1
β

ln
∞∑
n=0

Pβ
(
Xn = z, τ(W c) > n/X0 = x,Xτ(W c) = y

)
goes to

min{V (g1) : g1 ∈ G(W ) } + min{V (g2) : g2 ∈ Gx,y(W ) }−
min{V (g1) + V (g2) : g1 ∈ Gx,z(W ∪ {z}), g2 ∈ Gz,y(W ) }.
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Corollary 10.4. (large deviations of the expected conditional exit time)
As β goes to infinity, lnE(τ(W c)/X0 = x,Xτ(W c) = y)/β goes to

min{V (g1) : g1 ∈ G(W ) } + min{V (g2) : g2 ∈ Gx,y(W ) }−
min{V (g1) + V (g2) : g1 ∈ Gx,z(W ∪ {z}), g2 ∈ Gz,y(W ), z ∈W c }.

In general these quantities do really depend on the conditioning event.
However we will only be concerned with the case of a cycle.

Proposition 10.5. For a cycle π, two points x, z in π and y in B(π) we
have

lim
β→∞

1
β

ln
∞∑
n=0

Pβ
(
Xn = z, τ(π) > n/X0 = x,Xτ(π) = y

)
=

W (π) +H(π)−W (z),

lim
β→∞

1
β

lnE(τ(π)/X0 = x,Xτ(π) = y) = H(π)

that is, the expected number of visits to a point and the exit time are of the
same order (on the logarithmic scale) as if there were no condition imposed
on the exit point.

Proof. Let π be a cycle, let x belong to π and let y belong to B(π). Since π is
a cycle, for any z in π, the minimum min{V (g2) : g2 ∈ Gz,y(πc) } is equal to
min{V (g2) : g2 ∈ Gx,y(πc) } (a minimizing graph will have only one arrow
exiting from π and this arrow will land in y). The quantity appearing in
corollary 10.3 is thus reduced to

min{V (g1) : g1 ∈ G(πc) } − min{V (g1) : g1 ∈ Gx,z(πc ∪ {z}) }

which is exactly Cπ\{z}(z, πc) = W (π) +H(π)−W (z) (see proposition 4.14
and the beginning of its proof). This proves the first formula stated in
the proposition. Taking the infimum over z in π (which corresponds to the
quantity appearing in corollary 10.4), we obtain H(π), proving the second
formula. �

Proposition 10.6. (estimation of the conditioned number of visits to a
state before exit)
Let 1(A) denote the characteristic function of the event A. For any cycle π,
any x, u in π, any y in B(π), for any positive ε the limit

lim
β→∞

− 1
β

lnPβ

( τ(π)∑
k=0

1(Xk = u) > exp−β(Wπ(u, u)−ε)/X0 = x,Xτ(π) = y

)
is infinite, and for any small enough positive ε the limit

lim inf
β→∞

− 1
β

lnPβ

(τ(π)∑
k=0

1(Xk = u) < exp−β(Wπ(u, u)+ε)/X0 = x,Xτ(π) = y

)
is larger than ε.



36 O. Catoni – R. Cerf

Proof. Let us consider the random variable

φ =
τ(π)∑
k=0

1(Xk = u)

and the sequence of stopping times

θ0 = inf {n ≥ 0 : Xn = u } ,
θk = inf {n > θk−1 : Xn = u } , for k ≥ 1.

For any N ≥M > 0 we have

Pβ(φ > N, Xτ(π) = y/X0 = x) = Pβ(θN < τ(π), Xτ(π) = y/X0 = x)

= Pβ(θ0 < τ(π)/X0 = x)Pβ(θN < τ(π)/X0 = u)Pβ(Xτ(π) = y/X0 = u)

≤ Pβ(θ0 < τ(π)/X0 = x)Pβ(Xτ(π) = y/X0 = u)

× Pβ(θM < τ(π)/X0 = u)bN/Mc

≤ Pβ(Xτ(π) = y/X0 = x)
(
Eβ(φ/X0 = u)

M

)bN/Mc
Let us take M = deEβ(φ/X0 = u)e. We obtain

Pβ(φ > N, Xτ(π) = y/X0 = x) ≤

Pβ(Xτ(π) = y/X0 = x) exp−
⌊

N

eEβ(φ/X0 = u) + 1

⌋
so that

Pβ(φ > N/Xτ(π) = y,X0 = x) ≤ exp−
⌊

N

eEβ(φ/X0 = u) + 1

⌋
from which it is easy to deduce the first equation of proposition 10.6.
We now prove the second inequality. We have

Pβ(φ < N, Xτ(π) = y/X0 = x) =
N−1∑
k=0

Pβ(φ = k, Xτ(π) = y/X0 = x)

= Pβ(Xτ(π\{u}) = y/X0 = x) +
N−1∑
k=1

Pβ(θk < τ(π), Xτ(π) = y, θk+1 > τ(π)/X0 = x)

= Pβ(Xτ(π\{u}) = y/X0 = x) +
N−1∑
k=1

Pβ(θk < τ(π)/X0 = x)Pβ(Xτ(π\{u}) = y/X0 = u).

Moreover

Pβ(Xτ(π) = y/X0 = u) = Pβ(Xτ(π\{u}) = y/X0 = u)Eβ(φ/X0 = u)



Markov chains with rare transitions 37

so that

Pβ(φ < N, Xτ(π) = y/X0 = x) ≤

Pβ(Xτ(π\{u}) = y/X0 = x) +
N − 1

Eβ(φ/X0 = u)
Pβ(Xτ(π) = y/X0 = u)

and the second inequality stated in proposition 10.6 will follow from the two
following equations:

(7) lim
β→∞

Pβ(Xτ(π) = y/X0 = u)
Pβ(Xτ(π) = y/X0 = x)

= 1 ,

(8) lim inf
β→∞

− 1
β

ln
Pβ(Xτ(π\{u}) = y/X0 = x)
Pβ(Xτ(π) = y/X0 = x)

> 0 .

Formula (7) follows from the three equations:

Pβ(Xτ(π) = y/X0 = u) ≥ Pβ(Xτ(π\{x}) = x/X0 = u)Pβ(Xτ(π) = y/X0 = x)

Pβ(Xτ(π) = y/X0 = x) ≥ Pβ(Xτ(π\{u}) = u/X0 = x)Pβ(Xτ(π) = y/X0 = u)

lim
β→∞

Pβ(Xτ(π\{u}) = u/X0 = x) = lim
β→∞

Pβ(Xτ(π\{x}) = x/X0 = u) = 1 .

Let us finally prove formula (8). We have

Pβ(Xτ(π\{u}) = y/X0 = x)
Pβ(Xτ(π) = y/X0 = x)

=

(9) 1− Pβ(Xτ(π\{u}) = u/X0 = x)
Pβ(Xτ(π) = y/X0 = u)
Pβ(Xτ(π) = y/X0 = x)

≤ 1−
(
1− Pβ(Xτ(π\{u}) 6= u/X0 = x)

)(
1− Pβ(Xτ(π\{x}) 6= x/X0 = u)

)
.

Moreover, we know that

lim inf
β→∞

− 1
β

lnPβ(Xτ(π\{u}) 6= u/X0 = x) > 0 ,

lim inf
β→∞

− 1
β

lnPβ(Xτ(π\{x}) 6= x/X0 = u) > 0 .

We can thus make an asymptotic expansion in formula (9), from which
formula (8) follows. �

Corollary 10.7. For any cycle π, any x, u in π, any y in B(π), any
positive ε, the probability

Pβ

(
exp−βε ≤

τ(π)∑
k=0

1(Xk = u) expβWπ(u, u) ≤ expβε /X0 = x,Xτ(π) = y

)
is going to 1 as β goes to infinity.

Remark. It is clear from our proof that we could get stronger inequalities
than those of proposition 10.6 if we strengthen the hypothesis on a(β) (for
instance lim a(β) = a > 0). We leave the details to the reader.
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Corollary 10.8. (estimation of the conditioned exit time)
For each ε > 0, each cycle π, x in π, y in B(π), the probability

Pβ

(
expβ(H(π)− ε) ≤ τ(π) ≤ expβ(H(π) + ε)/X0 = x, Xτ(π) = y

)
is going to 1 as β goes to infinity.

Proposition 10.9. For any saddle path (s0, . . . , s2r+1) we have

lim
β→∞

Pβ

(
∀k ∈ {1, . . . , r} expβ(H(π(s2k, D \G)− ε) ≤ τk+1 − τk

≤ expβ(H(π(s2k, D \G) + ε)
)

= 1

conditionally on the event{
π(X) =

(
{s0}, π(s1, D \G), . . . , π(s2r−1, D \G), {s2r+1}

)}
.

Remark. The conditioning can also be done with respect to the event{
S(X) = (s0, . . . , s2r+1)

}
.

Proof. This result follows from repeated conditioning and applications of
the preceding corollary 10.8. �

Proposition 10.10. For any cycle path ({y}, π0, . . . , πr−1, {z}) we have

lim
β→∞

Pβ

(
∀u ∈

r−1⋃
k=0

πk , exp−β(WD\G(u, u) + ε) ≤
τ(D)∑

n=θ(G,τ(D))

1(Xn = u)

≤ exp−β(WD\G(u, u)− ε) / π(X,D,G) = ({y}, π0, . . . , πr−1, {z})
)

= 1 .

More precisely, for any u in
⋃r−1
k=0 πk, for any positive ε,

lim
β→∞

− 1
β

lnPβ

( τ(D)∑
n=θ(G,τ(D))

1(Xn = u) > exp−β(WD\G(u, u)− ε)

/ π(X,D,G) = ({y}, π0, . . . , πr−1, {z})
)

= +∞

and for any small enough positive ε

lim inf
β→∞

− 1
β

lnPβ

( τ(D)∑
n=θ(G,τ(D))

1(Xn = u) < exp−β(WD\G(u, u) + ε)

/ π(X,D,G) = ({y}, π0, . . . , πr−1, {z})
)
≥ ε.

Proof. We recall that −WD\G(u, u) = W (π(u,D \ G)) + H(π(u,D \ G)) −
W (u). These estimations follow from proposition 10.6. �
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Remark. The states of the exit saddle path are not necessarily those in which
the exit path spends most of its time. The states in which the exit path
spends most of its time are the ground states of the deepest cycles of the
exit cycle path.

11. Chronology of the exit path

In this section we will be interested in a more refined large deviation up-
per bound which controls all the arrows of the exit path and the order in
which they appear. With the same notation as before, we introduce the cost
function

Vx(D,G)(X) = WD(x,Xθ) +
τ(D)∑
n=θ+1

(
V (Xn−1, Xn) +W{Xθ+1,... ,Xn−1}(Xn−1, Xn−1)

)+
with the convention that W∅(u, u) = 0 in all cases. We consider the sequence
of random times ν0 = 0,

νk = inf
{
n > νk−1 : V (Xn−1, Xn) +WSn(Xn−1, Xn−1) > 0

}
,

where we have put Sn = {Xθ+1, . . . , Xn−1 }. The cost function defined
above is related to the events

Er(y, (sl), (Ak), z) =
{
Xθ = y, Xνk−1 = s2k−1, Xνk = s2k,

Sνk = Ak, 1 ≤ k ≤ r, τ(D) < νr+1, Xτ(D) = z
}

where the sets Ak are subsets of D \G and the points sl are in D \G. For
each of these events we have the following estimates.

Theorem 11.1. There is a positive constant K11 such that for any β

(K−1
11 a(β)K11)r+1 exp−βVx(E)

≤ Pβ(Er(y, (sl), (Ak), z)/X0 = x) ≤
(K11a(β)−K11)r+1 exp−βVx(E) .

Proof.

Pβ(Er(y, (sl), (Ak), z)/X0 = x) =
( ∞∑
m=0

Pβ(Xm = y, τ(D) > m/X0 = x)
)

×Pβ(Er(y, (sl), (Ak), z), Xτ(D\G) ∈ Dc/X0 = y).

Moreover

Pβ(Er(y, (sl), (Ak), z), Xτ(D\G) ∈ Dc/X0 = y) =
(10) Pβ(Xτ(D\G) = z, νr+1 > τ(D)/Xνr = s2r)×

r∏
k=1

Pβ(Xνk−1 = s2k−1, Xνk = s2k, Sνk = Ak/Xνk−1 = s2k−2, Sνk−1 = Ak−1)
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We have to estimate the term
(11)
Pβ(Xνk−1 = s2k−1, Xνk = s2k, Sνk = Ak/Xνk−1 = s2k−2, Sνk−1 = Ak−1).

We will deal with the case when Ak−1 6= Ak, which is the most intricate, the
other case is left to the reader. Let Ik be the collection of all the sequences
(u0, . . . , um) in (Ack−1)m+1 such that
• u0 = s2k−2,
• u0, . . . , um are distinct points,
• Ak−1 ∪ {u0, . . . , um } = Ak,
• CAk−1∪{u0,... ,ul−1 }(ul−1, ul) = 0.

If Ik is empty, then the term in formula (11) is zero, otherwise it is equal to

∑
(u0,... ,um)∈Ik

m∏
l=1

Pβ
(
Xαl = ul, νk > αl/Xαl−1 = ul−1,

(12) Sul−1 = Ak−1 ∪ {u0, . . . , ul−2 }
)

×Pβ
(
Xνk−1 = s2k−1, Xνk = s2k, Sνk = Ak/Xαm = um, Sαm+1 = Ak

)
where α0 = νk−1 and αl = inf{n > αl−1/Xn 6∈ Sn }. But

Pβ(Xαl = ul, νk > αl/ · · · ) =
Pβ(Xαl = ul/ · · · ) − Pβ(Xαl = ul, νk ≤ αl/ · · · ).

In addition, for some positive constants γ,C7, C8,

Pβ(Xαl = ul, νk ≤ αl/ · · · ) ≤ Pβ(νk ≤ αl/ · · · ) ≤ C7a(β)−C8 exp(−γβ) ,

C−1
7 a(β)C8 ≤ Pβ(Xαl = ul/ · · · ) ≤ C7a(β)−C8 .

Therefore for β large enough and for some positive constants C9, C10,

(13) C−1
9 a(β)C10 ≤ Pβ(Xαl = ul, νk > αl/ · · · ) ≤ C9a(β)−C10 .

We also have for some positive constants C11, C12

C−1
11 a(β)C12 exp−β

(
WAk(um, s2k−1) + V (s2k−1, s2k)

)
≤

(14) Pβ(Xνk−1 = s2k−1, Xνk = s2k, Sνk = Ak/Xαm = um, Sαm+1 = Ak)

≤ C11a(β)−C12 exp−β
(
WAk(um, s2k−1) + V (s2k−1, s2k)

)
.

Let us remark eventually that WAk(um, s2k−1) = WAk(s2k−1, s2k−1) be-
cause it is possible to go from um to s2k−1 in Ak at null cost. Putting
together (10), (12), (13), (14) and noticing that Pβ(Xτ(D\G) = z, νr+1 >
τ(D)/Xνr = s2r) is logarithmically equivalent to zero, we obtain the esti-
mates stated in the theorem. �
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Theorem 11.2. For any positive λ there is a positive constant K12 such
that, for any β,

Pβ(Vx(X) ≥ λ/X0 = x) ≤ K12a(β)−K12 exp−βλ.

Proof. Let

α = min
({ (

V (x, y) +WA(x, x)
)+ : x, y ∈ E, A ⊂ E

}
\ {0}

)
.

We write

P (νk < τ(D)/X0 = x) =
∑(( ∞∑

m=0

Pβ(Xm = y, τ(D) > m/X0 = x)
)
×

k∏
l=1

Pβ(Xνl−1 = s2l−1, Xνl = s2l, Sνl = Al/Xνl−1 = s2l−2, Sνl−1 = Al−1)
)

where the first summation set is { y ∈ G, (s1, . . . , s2k) ∈ E2k, (A1, . . . , Ak) ∈
P(E)k}. The same estimates as in theorem 11.1 show that for any k there
exist positive constant C13, C14 such that

Pβ(νk ≤ τ(D)/X0 = x) ≤ C13a(β)−C14 exp−β(kα+ min
y∈G

WD(x, y)).

We choose k such that kα+ miny∈GWD(x, y)) > 2λ and we write

Pβ(Vx(X) ≥ λ/X0 = x) ≤
Pβ(νk < τ(D)/X0 = x) + Pβ(Vx(X) ≥ λ, νk ≥ τ(D)/X0 = x).

The second term of the righthand side is the probability of a finite union
of events of the type described in theorem 11.1; applying the estimates of
theorem 11.1 to each of these events yields the desired inequality. �

12. Applications

In this section, we apply our results to study the way the process fall to the
bottom of a cycle or escape from the bottom of a cycle.

Falling to the bottom. Let π be a cycle and x a starting point in π.
We take D = π \ F (π) and G = π(x,D) i.e. we want to study the way
the chain either leaves π or reaches the bottom F (π) of the cycle. For
any point s0 in π(x,D) we have CD\{s0}(x, s0) = 0 (since D contains the
cycle π(x,D)). Theorem 9.1 shows that we must necessarily have (second
point of the characterization of the saddle paths of null cost)

V (s0, s1) = H(π(s0, D)) +W (π(s0, D))−W (s0).

Moreover s1 does not belong to G and is thus in the boundary of π(s0, D) =
π(x,D). Since by corollary 7.3

H(π(s0, D)) + W (π(s0, D)) − W (s0) ≤ V (s0, s1) − Cπ(s0,D)(s0, s1)

a saddle path of null Vx–cost has to satisfy Cπ(s0,D)(s0, s1) = 0 so that
in fact s1 belongs to B̃(π(s0, D)). Necessarily, the point s1 belongs to π.
In addition, CD\G(s1, s2r+1) = 0 whence s2r+1 is in the bottom F (π) (the
exit of D takes place in F (π)). In this situation, the index r∗ is null, the
ascending part of the saddle path is reduced to (s0).
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Escaping from the bottom. Let π be a cycle and x a starting point in the
bottom F (π). We take D = π and G = F (π) i.e. we want to study the way
the chain leaves π after its last visit to F (π). For any point s0 in F (π) we
have π(s0, D) = π and CD\{s0}(x, s0) = 0. By proposition 4.14 we have also
CD\{s0}(s0, D

c) = H(π). In this situation the indices r∗ and r∗ are equal
to the length r of the saddle path, the ascending part is (s0, . . . , s2r), the
ridge part is empty, the descending part is (s2r+1) and s2r+1 belongs to the
principal boundary of π. The global saddles are the optimal saddles exiting
from π i.e. the saddles (y, z) such that y ∈ π, z ∈ B̃(π) and W (y)+V (y, z) =
W (π) +H(π).

Recursive applications of the result. Knowing that the Markov chain
follows a fixed saddle path, we can recursively apply our result to obtain
information on the way it enters and exits from the successive cycles of the
associated cycle path: for instance, on the way it falls to the bottom or
escape from the bottom of an intermediate cycle.

13. The reversible dynamics of Metropolis

In this final section, we deal with the reversible case of the Metropolis dy-
namics. The reversibility of the dynamics induces some reversibility prop-
erties for the exit saddle path. This situation has also been studied in [35]
and in [37].

Let U : E 7→ R+ be a potential whose global minimum over E is zero.
We suppose that

∀x, y ∈ E V (x, y) <∞ ⇐⇒ V (y, x) <∞

and that V (x, y) =
(
U(y) − U(x)

)+ whenever V (x, y) < ∞. In this situa-
tion the virtual energy W coincides with the potential U and each quantity
admits a simplified expression with the help of U . For instance, for any
cycle π, H(π) = min{ (U(x)− U(π))+ : x ∈ B(π) }.
Proposition 13.1. (reversibility of the saddle path)
Let R be the reversing operator defined on the set of sequences of points of E
of odd length by R(s0, . . . , s2r+1) = (s2r+1, . . . , s0). The operator R is a
one to one map between the saddle paths of S(D,G) and S(Gc, Dc).

Proof. The map R is clearly one to one since R ◦ R is the identity map.
That R(S(D,G)) = S(Gc, Dc) is a consequence of the set equality D \G =
Gc \Dc and of the following facts:

V (s2k, s2k+1) <∞ ⇐⇒ V (s2k+1, s2k) <∞ ,

s2k ∈ π(s2k−1, D \G) ⇐⇒ s2k−1 ∈ π(s2k, Gc \Dc) ,

s2k+1 ∈ B(π(s2k, D \G)) ⇐⇒ s2k ∈ B(π(s2k+1, G
c \Dc)) . �

Lemma 13.2. Let (s0, . . . , s2r+1) be a saddle path. For all k in {1, . . . , r∗}
we have

U(s2k) + V (s2k, s2k+1) − H(π(s2k, D \G)) − U(π(s2k, D \G))
≥ max(U(s2k), U(s2k+1)) − max(U(s2k−2), U(s2k−1)).
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Proof. Since s2k−2 does not belong to π(s2k−1, D \G) (which coincides with
π(s2k, D \ G)) and V (s2k−2, s2k−1) is finite (which implies by reversibility
that V (s2k−1, s2k−2) is also finite), then s2k−2 belongs to the boundary
of the cycle π(s2k, D \ G). Either π(s2k, D \ G) is reduced to {s2k} and
H(π(s2k, D \G)) = 0, in which case the inequality of the lemma is satisfied,
or H(π(s2k, D \G)) > 0; in this last case, we have

U(s2k−2) ≥ H(π(s2k, D \G)) + U(π(s2k, D \G))

which gives the desired inequality. �

Theorem 13.3. (reversibility of the ascending part)
Let (s0, . . . , s2r+1) be a saddle path of S(D,G) of null Vs0(D,G)–cost.
For any k in {1, . . . , r∗}, the point s2k−2 belongs to the principal boundary
of π(s2k−1, D\G). Equivalently, the ascending part (s0, . . . , s2r∗) of the sad-
dle path (s0, . . . , s2r+1) is the descending part of a saddle path of S(Gc, π(s0, D)c)
of null Vs2r∗+1(Gc, π(s0, D)c)–cost.

Remark. For s ∈ π(s0, D) we have π(s,D\G) = π(s, π(s0, D)\G) = π(s,Gc\
π(s0, D)c).

Proof. Let (s0, . . . , s2r+1) be a saddle path of null Vs0–cost. We have by
lemma 13.2

V (s0, s1) +∑
1≤k≤r∗

(
U(s2k) + V (s2k, s2k+1)−H(π(s2k, D \G))− U(π(s2k, D \G))

)
≥ V (s0, s1) +

∑
1≤k≤r∗

max(U(s2k), U(s2k+1)) − max(U(s2k−2), U(s2k−1))

≥ U(s2r∗+1) − U(s0).

Now s2r∗+1 belongs to the principal boundary of π(s0, D) whence

U(s2r∗+1)− U(s0) = U(π(s0, D)) +H(π(s0, D))− U(s0)

which is also the value of the initial sum in the above formula (a necessary
condition for (s0, . . . , s2r+1) to be a saddle path of null Vs0–cost, see the
second condition given in theorem 9.1). It follows that all the intermediate
inequalities (given by lemma 13.2) are in fact equalities i.e. for all k in
{1, . . . , r∗}

U(π(s2k−1, D \G)) + H(π(s2k−1, D \G)) = max(U(s2k−2), U(s2k−1)).

This equality is equivalent to the fact that s2k−2 belongs to the principal
boundary of π(s2k−1, D \G). �

Theorem 13.4. (global reversibility of saddle paths of null cost between two
cycles)
Let π1 and π2 be two disjoint cycles of E and set G = π1, D = πc2.
The reversing operator R maps the saddle paths of null cost of S(D,G)
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onto the saddle paths of null cost of S(Gc, Dc); it leaves the ridge part in-
variant and exchanges the ascending and the descending part. More pre-
cisely, let (s0, . . . , s2r+1) be a saddle path of S(D,G) of null Vs0–cost. Then
R(s0, . . . , s2r+1) is a saddle path of S(Gc, Dc) of null Vs2r+1–cost. Its as-
cending part is (s2r+1, . . . , s2r∗+1), its ridge part is (s2r∗ , . . . , s2r∗+1) and
its descending part (s2r∗ , . . . , s0).

Proof. Let (s0, . . . , s2r+1) be a saddle path of null Vs0–cost. Proposition 13.1
shows that R(s0, . . . , s2r+1) belongs to S(Gc, Dc). We have∑
1≤k≤r

(
U(s2k) + V (s2k, s2k+1)−H(π(s2k, D \G))− U(π(s2k, D \G))

)
=

∑
1≤k≤r

(
max

(
U(s2k−1), U(s2k−2)

)
−H(π(s2k−1, D\G))−U(π(s2k−1, D\G))

)
−max(U(s1), U(s0)) + max(U(s2r+1), U(s2r))

so that

Vs0(s0, . . . , s2r+1) − Vs2r+1(R(s0, . . . , s2r+1)) = V (s0, s1) − V (s2r+1, s2r)
−max(U(s1), U(s0)) + max(U(s2r+1), U(s2r)) + WD(s0, s0)

−WGc(s2r+1, s2r+1)
= U(π(s2r+1, G

c)) + H(π(s2r+1, G
c)) − U(π(s0, D)) − H(π(s0, D))

(where we have used lemma 4.7 and proposition 4.14 to compute WD and
WGc). However the cycles π(s0, D) and π(s2r+1, G

c) do not depend on
the points s0, s2r+1 in π1 × π2: these cycles are two disjoint cycles which
are maximal proper subcycles of the smallest cycle π containing both π1

and π2. As a consequence, the quantities U(π(s0, D)) + H(π(s0, D)) and
U(π(s2r+1, G

c)) +H(π(s2r+1, G
c)) are equal to the level of π whence

Vs0(s0, . . . , s2r+1) = Vs2r+1(R(s0, . . . , s2r+1)).

Thus R(s0, . . . , s2r+1) has a null Vs2r+1–cost. The assertion concerning the
three parts of R(s0, . . . , s2r+1) is a straightforward consequence of the def-
inition (proposition 9.3). �

Corollary 13.5. Let π1 and π2 be two disjoint cycles of E. The set of
global saddles (respectively the set of global saddle points) between π1 and π2

coincides with the set of global saddles (resp. the set of global saddle points)
between π2 and π1.
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Appendix

In this appendix, we will state the counterpart of the main results of the pa-
per in the non homogeneous case. We will rely on Trouvé’s proofs, therefore
we will assume that a(β) = a = constant is independent of β.

We consider a family of time inhomogeneous Markov chains (P(β.)) on EN,
indexed by non decreasing sequences (βk)k∈N of positive real inverse temper-
atures. We use (Xn)n∈N to denote the canonical process on EN and assume
that for some positive constant a and some family (pβ)β∈R+ of Markov ma-
trices we have for any x, y ∈ E

a ≤ pβ(x, y) expβV (x, y) ≤ a−1, β ∈ R+,

and
P(β.)(Xn = y /Xn−1 = x) = pβn(x, y).

Theorem 13.6. (corresponding to theorem 5.2.)
There is a positive constant K, depending only on |E| and a, such that for
any non decreasing sequence (β.), any subsets D and G, G ⊂ D,

P(β.)

(
π(D,G) = ({y}, π0, . . . , πr−1, {z}), τ(D) > n

/ θ(G, τ(D)) = m,Xθ(G,τ(D)) = y
)

≤ K exp−βm+1

(
V (y, π0) +

r∑
k=1

Cπk−1(πk−1, πk)
)

×
n∏

l=m+1

(
1−K−1 exp

(
− βl( max

k=0,... ,r−1
H(πk)

))
and

n∑
l=m+1

expβl
(
V (y, π0) +

r∑
k=1

Cπk−1(πk−1, πk)
)

×P(β.)

(
π(D,G) = ({y}, π0, . . . , πr−1, {z}), τ(D) = l

/ θ(G, τ(D)) = m,Xθ(G,τ(D)) = y
)

≥ K−1 −
r∏

l=m+1

(
1−K−1 exp

(
− βl max

k=0,... ,r−1
H(πk)

))
.

Consequently

P(β.)

(
π(D,G) = ({y}, π0, . . . , πr−1, {z}), τ(D) ≤ n

/ θ(G, τ(D)) = m,Xθ(G,τ(D)) = y
)

≥ K−1 exp−βn
(
V (y, π0) +

r∑
k=1

Cπk−1(πk−1, πk)
)

×
(

1−K
n∏

l=m+1

(
1−K−1 exp

(
− βl max

k=0,... ,r−1
H(πk)

)))
.
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Proof. With the notations of Catoni [8] and Trouvé [41] (English translation
Trouvé [42]),

P(β.)

(
π(D,G) = ({y}, π0, . . . , πr−1, {z}), τ(D) = n

/ θ(G, τ(D)) = m,Xθ = y) =[
M(∅, π0)M(π0, π1) · · ·M(πr−1, {z})

]z,n
y,m

,

and the result follows by applying theorem 1.43 H2 and H3 of Trouvé [41]
(th. 4.5 of Trouvé [42]) to each kernel M(πk−1, πk) and using composition
lemma 1.40 (lemma 4.2 of Trouvé [42]) to combine these estimates. �

Theorem 13.7. (corresponding to theorem 6.2)
There is a positive constant K, depending only on |E| and a, such that for
any non increasing sequence (β.), any subsets D and G, G ⊂ D,

P(β.)

(
π(D,G) = ({y}, π0, . . . , πr−1, {z}), τ(D) > n

/ θ(G, τ(D)) = m,Xθ(G,τ(D)) = y
)

≤ K exp−βm+1

(
V (y, π0) +

r∑
k=1

Cπk−1(πk−1, πk)
)

×
n∏

l=m+1

(
1−K−1 exp−βl

(
max

k=0,... ,r−1
H(πk)

))
.

On the other hand
n∑

l=m+1

expβl
(
V (y, π0) +

r∑
k=1

Cπk−1(πk−1, πk)
)

×P(β.)

(
π(D,G) = ({y}, π0, . . . , πr−1, {z}), τ(D) = l

/ θ(G, τ(D)) = m,Xθ(G,τ(D)) = y)

≥ K−1 −
n∏

l=m+1

(
1−K−1 exp−βl

(
max

k=0,... ,r−1
H(πk)

))
.

Proof. We have

P(β.)

(
π(D,G) = ({y}, π0, . . . , πr−1, {z}), τ(D) = n / θ = m,Xθ = y)

=
[
M(∅, π0)M(π0, π1) · · ·M(πr−1, {z})

]z,n
y,m

,

with

M(πk−1, πk) =
∑

G∈M(πk−1)

M(πk−1, G)M(G, πk),

and the result comes from theorem 1.43 H3 and H4 of Trouvé [41] (theorem
4.5 of Trouvé [42]), for the upper bound, and from theorem 1.43 H2 for the
lower bound. �

As for theorem 7.4, what Trouvé [41] allows to do most straightforwardly
is to compute the probability of the odd points of the saddle path.
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Theorem 13.8. (corresponding to theorem 7.4)
There is a positive constant K, depending on |E| and a only, such that for
any non increasing sequence (β.), any subsets D and G, G ⊂ D,

P(β.)(s1 = z0, . . . , s2k+1 = zk, . . . , s2r+1 = zr, τ(D) > n

/ θ(G, τ(D)) = m,Xθ = y)

≤ K exp−βm+1

(
V (y, z0) +

r∑
k=1

Cπk−1(πk−1, zk)
)

×
n∏

l=m+1

(
1−K−1 exp

(
− βl max

0≤k<r
H(πk)

))
,

and

n∑
l=m+1

expβl
(
V (y, z0) +

r∑
k=1

Cπk−1(πk−1, zk)
)

×P(β.)(s1 = z0, . . . , s2r+1 = zr, τ(D) = l / θ(G, τ(D)) = m,Xθ = y)

≥ K−1 −
r∏

l=m+1

(
1−K−1 exp−βl max

0≤k<r
H(πk)

)
.

Proof.

P(β.)(s1 = z0, . . . , s2k+1 = zk, . . . , τ(D) = n / θ(G, τ(D)) = m,Xθ = y)

=
[
M(∅, {z0})M(π0, {z1})M(π1, {z2}) · · ·M(πr−1, {zr})

]zr,n
y,m

,

and the result follows from theorem 1.43 of Trouvé [41] (4.5 of Trouvé [42]).
�

Remark. Getting estimates for the whole saddle path from this theorem is
straightforward, since estimates for the whole saddle path (including its even
points) are nothing but estimates for the odd points of the saddle path of
the chain (Xn−1, Xn) with state space {(x, y) ∈ E /V (x, y) < +∞}. We
leave the details to the reader. We let also the reader generalize the results
of section 11 on the chronology of the exit path, applying Trouvé [41] to the
chain (Xn−1, Xn).

Theorem 13.9. (corresponding to theorem 8.2)
There is a positive constant K, depending only on |E| and a, such that for
any non increasing sequence (β.), any subsets D and G, G ⊂ D,

P(β.)(s1 = z0, . . . , s2r+1 = zr, τ(D) > n/ θ(G, τ(D)) = m,Xθ = y)

≤ K exp−βm+1

(
V (y, z0) +

r∑
k=1

Cπk−1(πk−1, zk)
)

×
n∏

l=m+1

(
1−K−1 exp−βl max

0≤k<r
H(πk)

)
,
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and
n∑

l=m+1

expβl
(
V (y, z0) +

r∑
k=1

Cπk−1(πk−1, zk)
)

×P(β.)(s1 = z0, . . . , s2r+1 = zr, τ(D) = n / θ(G, τ) = m,Xθ = y)

≥ K−1 −
n∏

l=m+1

(
1−K−1 exp−βl max

0≤k<r
H(πk)

)
.

Proof.

P(β.)(s1 = z0, . . . , s2r+1 = zr, τ(D) = n / θ(G, τ) = m,Xθ = y)

=
[
M(∅, {z0})M(π0, {z1}) · · ·M(πr−1, {zr})

]zr,n
y,m

,

and

M(πk−1, {zk}) =
∑

G∈M(πk−1)

M(πk−1, G)M(G, {zk}). �

Remark. It is also possible to derive from Trouvé [41] estimates for the series∑
l

P(β.)(Xl = y, τ(D,m) > l /Xm = x),

starting as in the remark following lemma 4.7 from the following inequalities:
N∑

l=n+1

P(β.)(Xl = y, τ(D,m) > l /Xm = x)

×P(β.)(Xτ(D\{y},l+1) 6∈ D/Xl = y)

≤
+∞∑
l=m

P(β.)(Xτ(D\{y},m) = y, τ(D \ {y},m) = l /Xm = x)

×P(β.)(τ(D, l) > n/Xl = y),

and
n∑

l=m

P(β.)(Xl = y, τ(D,m) > l /Xm = x)

×P(β.)(Xτ(D\{y},l+1) 6∈ D/Xl = y)

≥
n∑

l=m

P(β.)(Xτ(D\{y},m) = y, τ(D \ {y},m) = l /Xm = x)

×P(β.)(τ(D, l) ≤ n+ 1 /Xl = y).

In other words, if the last visit to y is posterior to time n, then the exit
from D is posterior to n, and occurred after y has been visited. On the
other hand, if the chain leaves D before time n+ 1, and has visited y in the
meantime, then its last visit to y occurred before time n.

Applying the first inequality to the inverse temperature sequence β̃l =
βl∧βN , and the second one directly to the sequence (β.), and using theorem
1.43 of Trouvé [41], we get the following theorem.
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Theorem 13.10. There is a positive constant K, depending only on |E|
and a, such that for any non increasing sequence (β.), any subset D, any
points x, y ∈ D, any times m ≤ n < N ,

N∑
l=n+1

P(β.)(Xl = y, τ(D,m) > l /Xm = x)

≤ K exp
(
βNWD(y, y)− βm+1CD\{y}(x, y)

)
×

n∏
l=m+1

(
1−K−1 exp−βlH(D)

)
,

and

n∑
l=m

P(β.)(Xl = y, τ(D,m) > l /Xm = x)

≥ exp
(
βm+1WD(y, y)− βnCD\{y}(x, y)

)
×
(
K−1 −

n∏
l=m+1

(
1−K−1 exp−βlH(D)

))
.

Therefore the whole of theorems 5.2, 6.2, 7.4 and 8.2 can be deduced
from Trouvé [41], or from its English translation Trouvé [42], in the case
a(β) = a = constant, using only simple identities based on the Markov
property.

To prove the case when a(β) depends on β from Trouvé [41], one has
to check moreover that the constant K in the preceding theorems of this
appendix can be chosen to be polynomial in a, which amounts to a careful
inspection of the proofs of Trouvé [41]. Thus, the whole of the present paper
can be derived by an induction proof, also valid in the non homogeneous
case, without any use of Freidlin and Wentzell identities based on graph
summations.
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