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1. Introduction

We consider the family of bidimensional linear control systems (P ) described by a generic
second order equation subject to a scalar control:

x′′ + a1(t)x′ + a0(t)x ∈ Φ(t) = [φ1(t), φ2(t)] a.e., (x(0), x′(0), x(T ), x′(T )) = (x0, v0, x1, v1)

where φ1 ≤ φ2 ∈ L1([0, T ]) and a1, a0 ∈ C([0, T ]), x0, v0, x1, v1 ∈ R, x ∈W 2,1([0, T ]).
The function y is said to be a bang–bang solution to (P ) if it solves (P ) and moreover

y′′ + a1(t)y′ + a0(t)y ∈ extr Φ(t) = {φ1(t), φ2(t)} a.e. (1)

Existence of bang–bang solutions has been proved for instance by Cesari [4, Theorem 16.3].
The purpose of this paper is to prove that given an arbitrary solution x to (P ), there exists
a bang–bang solution y such that

∀t ∈ [0, T ] y(t) ≤ x(t) (2)

and in addition y′′ + a1y
′ + a0y steers from φ1 to φ2 only a finite number of times.

Motivation of such a problem was to study the reachable set

YcT = {(y(T ), y′(T )) : y ≤ c, y′′+ a1(t)y′+ a0(t)y ∈ extr Φ(t) a.e., (y(0), y′(0)) = (x0, v0)}

where c is an arbitrary function. A consequence of Theorem 3.1 is that YcT coincides with

X cT = {(y(T ), y′(T )) : y ≤ c, y′′ + a1(t)y′ + a0(t)y ∈ Φ(t) a.e., (y(0), y′(0)) = (x0, v0)}.

Notice that X cT is convex so that the above assumption implies that YcT is convex too.
Another motivation arises from non–convex problems of the calculus of variations (see [1]).

A possible approach in order to find bang–bang solutions is to use Lyapunov Theorem
on the range of a vector measure [4, §16.1].
Here, the solution of x′′ + a1(t)x′ + a0(t)x = ρ(t), x(0) = x′(0) = 0 is given by

x(t) =
∫ t

0

h(t, s)ρ(s) ds

where h ∈ C1([0, T ]× [0, T ]) and for each s ∈ [0, T ] the function hs(.) = h(., s) ∈ C2([0, T ])
is the solution to the associated homogeneous differential equation satisfying the initial
conditions hs(s) = 0, h′s(s) = 1; Lyapunov Theorem yields the existence of a measurable
subset E of [0, T ] such that∫ T

0

h(T, s)ρ(s) ds =
∫ T

0

h(T, s)(φ1(s)χE(s) + φ2(s)χ[0,T ]\E(s)) ds, (3)∫ T

0

∂h

∂t
(T, s)ρ(s) ds =

∫ T

0

∂h

∂t
(T, s)(φ1(s)χE(s) + φ2(s)χ[0,T ]\E(s)) ds. (4)
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Clearly, by differentiating under the integral sign, the function y defined by

y(t) =
∫ t

0

h(t, s)(φ1(s)χE(s) + φ2(s)χ[0,T ]\E(s)) ds (5)

is a bang–bang solution. However, this approach does not give any information on the
behaviour of y with respect to x on [0, T ].
Here we prove a new Lyapunov’s type theorem concerning the range of a two–dimensional
vector measure whose densities are such that their quotient is monotone: in this case, the
set E can be chosen in the form [α, β]. Remark that this is not true in general; for instance
there are no α, β ∈ [0, 3π] satisfying∫ β

α

sin t dt =
∫ 3π

0

sin tχ[0,π]∪[2π,3π](t) dt
∫ β

α

1 dt =
∫ 3π

0

1χ[0,π]∪[2π,3π](t) dt.

In our application the equalities h(s, s) = 0 and ∂h
∂t (s, s) = 1 imply that the monotonicity

condition is locally fulfilled; this allows us to build a set E satisfying (3)–(4) as a finite
union of intervals and, in the case where φ1 < ρ < φ2 are continuous, to choose E in such
a way that neither 0 nor T belong to its closure.
These facts, together with a decomposition of the kernel h(t, s) into a linear combination
of linearly independent functions are the main tools that we use in order to show that the
bang–bang solution y defined by (5) satisfies the inequality y ≤ x.
As an application we consider the problem of minimizing the integral functionals

I(x, u) =
∫ T

0

f(t, x(t), u(t)) dt

where x : [0, T ] → R2 is such that x(0), x′(0), x(T ), x′(T ) are fixed and u is a control
belonging to U(t, x) ⊂ R2. The classical approach to obtain existence of a minimum is
to impose conditions in order to have the lower semicontinuity of I with respect to u (for
instance convexity of u 7→ f(t, x, u)).

Recently in an effort to provide existence criteria other than convexity in u some suf-
ficient conditions have been given: for problems of the calculus of variations (x′ = u in
the above setting) and for maps of the form f(t, x, x′) = g(t, x) + h(t, x′), existence of
solutions has been obtained by requiring that the real map x 7→ g(t, x) be monotone [5]
or, for x in Rn, that the same function be concave [2]. Optimal control problems escaping
to convexity conditions have been handled in [6].
It has been proved further in [3] that there exists a dense subset D of C(R) such that, for
g in it, the problem

minimize
∫ T

0

g(x(t)) dt+
∫ T

0

h(x′(t)) dt : x(0) = x0, x(T ) = x1

admits a solution for every lower semicontinuous h satisfying growth conditions.
Our theorem gives a straightforward generalization of the above result.
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2. Assumptions and Preliminary Results

Let φ1, φ2 ∈ L1[0, T ], φ1 ≤ φ2 and put Φ(t) = [φ1(t), φ2(t)] ⊂ R. We are interested in
the solutions of the following control problem.

Problem P. a1, a0 ∈ C([0, T ]), x0, x1, v0, v1 ∈ R, x ∈W 2,1[0, T ]

x′′ + a1(t)x′ + a0(t)x ∈ Φ(t) a.e. (P)

x(0) = x0, x′(0) = v0, x(T ) = x1, x′(T ) = v1.

By extr Φ we mean the extreme points of Φ i.e. extr Φ(t) = {φ1(t), φ2(t)}.

Definition 2.1. A function y ∈ W 2,1[0, T ] is said to be a bang–bang solution to (P) if y
solves (P) and, moreover,

y′′ + a1(t)y′ + a0(t)y ∈ extr Φ(t) a.e.

The following representation formula of the solutions to (P) will be used later.

Proposition 2.1. There exists a function h ∈ C1([0, T ] × [0, T ]) satisfying Property (S)
below such that, for each function ρ ∈ L1([0, T ]), the solution of

x′′ + a1(t)x′ + a0(t)x = ρ(t), x(0) = x′(0) = 0 (Pρ)

is given by the formula

x(t) =
∫ t

0

h(t, s)ρ(s) ds . (2.1)

Moreover for each s ∈ [0, T ] the function h(., s) is of class C2([0, T ]).

Property S.
1) There exist w1, w2 ∈ C2([0, T ]) , z1, z2 ∈ C1([0, T ]) such that

∀s, t ∈ [0, T ] h(t, s) = w1(t)z1(s) + w2(t)z2(s) (2.2)

and W (w1, w2, t) = det
∣∣∣∣w1(t) w2(t)
w′1(t) w′2(t)

∣∣∣∣ 6= 0.

For each t0 in [0, T ] there exists δ > 0 such that if we set Iδ = [t0 − δ, t0 + δ] ∩ [0, T ] then:
2) ∀s, t ∈ Iδ h(t, s) > 0 if s < t, h(t, s) < 0 if t < s (whence h(s, s) = 0);
3) ∀s, t ∈ Iδ ∂h

∂t (t, s) > 0;
4) ∀t ∈ Iδ s 7→ h(t, s)/∂h∂t (t, s) is decreasing on Iδ.
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Proof of Proposition 2.1. For each s ∈ [0, T ], let hs(.) = h(., s) ∈ C2([0, T ]) be the solution
to

h′′s (t) + a1(t)h′s(t) + a0(t)hs(t) = 0 hs(s) = 0, h′s(s) = 1.

Set z(t) =
∫ t

0
h(t, s)ρ(s) ds. Differentiation under the integral sign shows that z is a solution

to (Pρ) whence, by uniqueness, z = x.
In order to prove the second part of the claim, let w1, w2 ∈ C2([0, T ]) be two solutions of
the differential equation

x′′ + a1(t)x′ + a0(t)x = 0 (2.3)

such that their wronskian

W (w1, w2, t) = det
∣∣∣∣w1(t) w2(t)
w′1(t) w′2(t)

∣∣∣∣
is non zero for every t. Such functions exist since the set of the solutions of a second order
linear differential equation is a two–dimensional vector space. Since for each s ∈ [0, T ], the
function hs is a solution to (2.3) then there exist z1, z2 defined on [0, T ] such that

∀s, t ∈ [0, T ] hs(t) = w1(t)z1(s) + w2(t)z2(s). (2.4)

Conditions on hs at s and equation (2.4) yield{
hs(s) = 0 = w1(s)z1(s) + w2(s)z2(s)

h′s(s) = 1 = w′1(s)z1(s) + w′2(s)z2(s)

Since W (w1, w2, s) 6= 0 for each s, we find

z1(s) = − w2(s)
W (w1, w2, s)

, z2(s) =
w1(s)

W (w1, w2, s)

so that z1, z2 ∈ C1([0, T ]) hence h(t, s) = hs(t) belongs to C1([0, T ]× [0, T ]).
By construction

∀s ∈ [0, T ] h(s, s) = 0 and
∂h

∂t
(s, s) = 1

implying

∀s ∈ [0, T ]
d

ds
h(s, s) = 0⇔ ∀s ∈ [0, T ]

∂h

∂t
(s, s) +

∂h

∂s
(s, s) = 0

⇔ ∀s ∈ [0, T ]
∂h

∂s
(s, s) = −1.
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As a consequence

∀s ∈ [0, T ]
∂

∂s

(
h
∂h
∂t

)
(s, s) = −1.

By continuity for a fixed t0 in [0, T ], there exists δ > 0 such that

∀s, t ∈ [t0 − δ, t0 + δ] ∩ [0, T ]
∂h

∂t
(t, s) > 0 and

∂

∂s

(
h
∂h
∂t

)
(t, s) < 0;

for this δ properties S 2)3)4) are satisfied.

Assume for instance Φ(t) = [0, φ(t)] and let ρ ∈  L1[0, T ] be such that 0 ≤ ρ ≤ φ. For a
solution x to (Pρ) formula (2.1) yields, in particular,

x(T ) =
∫ T

0

h(T, s)ρ(s) ds , (2.5)

x′(T ) =
∫ T

0

∂h

∂t
(T, s)ρ(s) ds. (2.6)

Let us point out that the classical Lyapunov Theorem on the range of a vector measure
[4, §16.1] allows to find a bang–bang solution. In fact its application yields the existence
of a measurable subset E of [0, T ] such that∫ T

0

h(T, s)ρ(s) ds =
∫ T

0

h(T, s)φ(s)χE(s) ds , (2.7)∫ T

0

∂h

∂t
(T, s)ρ(s) ds =

∫ T

0

∂h

∂t
(T, s)φ(s)χE(s) ds , (2.8)

so that the function x̄ defined by

x̄(t) =
∫ t

0

h(t, s)φ(s)χE(s) ds

is, by Proposition 2.1, a bang–bang solution to (P) (with φ1 = 0, φ2 = φ, x0 = v0 = 0).
However, for 0 < t < T , the Lyapunov Theorem does not give any information on the
relative positions of x̄ and the original solution x.
The purpose of Proposition 2.2 below is to show that if s 7→

(
h/∂h∂t

)
(t, s) is monotone

on [0, T ] then the measurable subset E can be chosen to be an interval [α, β] with 0 ≤ α ≤
β ≤ T . This will allow us, taking into account property S 4), to define in §3 a bang–bang
solution y satisfying y(t) ≤ x(t) for each t.
In what follows [a, b] is an interval of R, ρ and φ are two functions belonging to L1([a, b])
satisfying 0 ≤ ρ ≤ φ. We say that r ∈ R is positive (resp. negative) if r ≥ 0 (resp. r ≤ 0).
We consider the following hypothesis.
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Hypothesis H. The functions f, g belong to L∞([a, b]) and are positive almost every-
where. Moreover there exists a strictly monotone positive function k such that

g(t) = k(t)f(t) a.e.

We have the following Lyapunov’s type result.

Proposition 2.2. Let f, g satisfy hypothesis H. Then there exist α, β ∈ R such that, if we
put E = [α, β], we have:∫ b

a

ρ(s)f(s) ds =
∫ β

α

φ(s)f(s) ds =
∫ b

a

φ(s)f(s)χE(s) ds ; (2.9)∫ b

a

ρ(s)g(s) ds =
∫ β

α

φ(s)g(s) ds =
∫ b

a

φ(s)g(s)χE(s) ds . (2.10)

Moreover, α and β are unique if ρ, φ, f, g are continuous, and 0 < ρ < φ, f > 0, g > 0.

In order to prove Proposition 2.2, we need the following fundamental Lemma.

Lemma 2.1. Assume that f, g satisfy hypothesis H and let α, β ∈ [a, b] be such that∫ b

α

φ(s)f(s) ds =
∫ b

a

ρ(s)f(s) ds (2.11)∫ β

a

φ(s)f(s) ds =
∫ b

a

ρ(s)f(s) ds. (2.12)

Then, if k is increasing, we have∫ b

α

φ(s)g(s) ds ≥
∫ b

a

ρ(s)g(s) ds, (2.13)∫ β

a

φ(s)g(s) ds ≤
∫ b

a

ρ(s)g(s) ds. (2.14)

If k is decreasing on [a, b], inequalities (2.13) and (2.14) are reversed.
Moreover, inequalities (2.13)–(2.14) are strict if 0 < ρ < φ and f > 0, g > 0 a.e.

Proof of Lemma 2.1. Assume for instance that k is increasing. To prove (2.14) let fφ, fρ
be the monotone functions defined by

fφ(t) =
∫ t

a

φ(s)f(s) ds fρ(t) =
∫ t

a

ρ(s)f(s) ds.
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The Lebesgue–Stieltjes formula for integration by parts yields∫ b

a

ρ(s)g(s) ds =
∫ b

a

ρ(s)k(s)f(s) ds

=
∫ b

a

k(s) dfρ(s)

= k(b)fρ(b)− k(a)fρ(a)−
∫ b

a

fρ(s) dk(s);

analogously we have∫ β

a

φ(s)g(s) ds = k(β)fφ(β)− k(a)fφ(a)−
∫ β

a

fφ(s) dk(s).

Taking into account that fφ(a) = fρ(a) = 0 and that by (2.12) fρ(b) = fφ(β), we are thus
led to show that ∫ b

a

fρ(s) dk(s)−
∫ β

a

fφ(s) dk(s) ≤ (k(b)− k(β))fρ(b). (2.15)

By our assumptions we have

∀t ∈ [a, b] fφ(t) ≥ fρ(t); (2.16)

therefore ∫ b

a

fρ(s) dk(s)−
∫ β

a

fφ(s) dk(s) ≤
∫ b

β

fρ(s) dk(s). (2.17)

Furthermore the functions fρ and k being increasing we have∫ b

β

fρ(s) dk(s) ≤ (k(b)− k(β))fρ(b)

which, together with (2.17), gives (2.15).
To prove the final part of the lemma, it is enough to remark that if f > 0 and ρ > 0

then, by (2.12), β 6= a; if moreover 0 < ρ < φ a.e. then inequality (2.16) is strict for every
t > a so that (2.17) is strict too (k being increasing). Similar arguments prove (2.13). �
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Proof of Proposition 2.2.

i) Existence.
a) Assume first 0 < ρ < φ and f > 0 , g > 0 a.e. Let α1, α2, β1, β2∈ [a, b] be such that∫ b

α1

φ(s)f(s) ds =
∫ b

a

ρ(s)f(s) ds, (2.18)∫ b

α2

φ(s)g(s) ds =
∫ b

a

ρ(s)g(s) ds, (2.19)∫ β1

a

φ(s)f(s) ds =
∫ b

a

ρ(s)f(s) ds, (2.20)∫ β2

a

φ(s)g(s) ds =
∫ b

a

ρ(s)g(s) ds. (2.21)

Assume for instance that k is decreasing on [a, b]. In this situation Lemma 2.1 yields

β2 ≤ β1 α2 ≤ α1. (2.22)

The function v defined by

v(x) =
∫ x

a

φ(s)f(s) ds

is continuous and increasing with values in [0, v(b)]: let v−1 denote its inverse function.
Set m to be

m =
∫ b

a

ρ(s)f(s) ds.

Since, by (2.18), v(b) = v(α1) +m then v(α) +m ∈ [0, v(b)] if and only if a ≤ α ≤ α1; this
allows us to introduce the continuous function ξ1 defined by the formula

∀α ∈ [a, α1] ξ1(α) = v−1(v(α) +m).

By definition, we have

∀α ∈ [a, α1]
∫ ξ1(α)

α

φ(s)f(s) ds = v(ξ1(α))− v(α) = m =
∫ b

a

ρ(s)f(s) ds (2.23)

so that, by (2.20) and (2.22), we deduce

∀α ∈ [a, α1] ξ1(α) ≥ β1 ≥ β2. (2.24)
9



Similarly, equality (2.21) allows to define a continuous function ξ2 : [β2, b]→ R such that
we have

∀β ≥ β2

∫ β

ξ2(β)

φ(s)g(s) ds =
∫ b

a

ρ(s)g(s) ds (2.25)

from which joint with (2.19) and (2.22) we deduce

∀β ≥ β2 ξ2(β) ≤ α2 ≤ α1. (2.26)

We deduce from (2.24) and (2.26) that the composed application

ξ2 ◦ ξ1 : [a, α1]
ξ1−−−−→ [β2, b]

ξ2−−−−→ [a, α1]

is defined and continuous from [a, α1] into itself and therefore admits a fixed point ᾱ. Thus,
if we set β̄ = ξ1(ᾱ) we have ᾱ = ξ2(β̄). Equalities (2.23) and (2.25) with α, β replaced by
ᾱ, β̄ yield the conclusion.

b) let ρn = ρ + 1
n , φn = φ + 2

n , fn = f + 1
n so that 0 < ρn < φn and fn > 0 a.e. and

set gn = kfn so that the monotonicity of k implies that gn > 0 a.e. and fn, gn satisfy H.
By a) there exist αn, βn such that

∫ b

a

ρn(s)fn(s) ds =
∫ βn

αn

φn(s)fn(s) ds; (2.27)∫ b

a

ρn(s)gn(s) ds =
∫ βn

αn

φn(s)gn(s) ds. (2.28)

By compactness we may assume αn → α, βn → β. The conclusion follows by passing
through the limit in (2.27) and (2.28).

ii) Uniqueness.
Assume that 0 < ρ < φ, f > 0, g > 0 are continuous and that, for instance, k is decreasing.
By i)a) the points α such that there exists β satisfying (2.11) and (2.12) are the fixed points
of the composed map ξ2 ◦ ξ1. By definition the functions ξ1, ξ2 are differentiable and we
have

∀α ∈ [a, α1] ξ′1(α) =
v′(α)

v′(ξ1(α))
=

φ(α)f(α)
φ(ξ1(α))f(ξ1(α))

;

∀β ∈ [β2, b] ξ′2(β) =
φ(β)g(β)

φ(ξ2(β))g(ξ2(β))
.
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In order to prove the claim we notice that if α satisfies ξ2 ◦ ξ1(α) = α then

(ξ2 ◦ ξ1)′(α) = ξ′2(ξ1(α))ξ′1(α) =
k(ξ1(α))
k(α)

. (2.29)

By (2.23) we have ξ1(α) > α so that the strict monotonicity of k implies k(ξ1(α)) < k(α)
and thus (ξ2 ◦ ξ1)′(α) < 1 whenever ξ2 ◦ ξ1(α) = α. Let S = {α ∈ [a, b] : ξ2 ◦ ξ1(α) = α}.
Clearly, S is compact and non–empty by i); moreover, taking (2.29) into account, for each
α ∈ S there exists η such that

∀t ∈]α− η, α[ ξ2 ◦ ξ1(t) > t

∀t ∈]α, α+ η[ ξ2 ◦ ξ1(t) < t.
(2.30)

As a consequence, the set S has no accumulation points and is therefore finite.
Let α1 = minS and assume S 6= {α1}; let α2 = minS \ {α1}. Then by (2.30) there exist
t1 < t2 ∈ [α1, α2] such that ξ2 ◦ ξ1(t1) < t1 and ξ2 ◦ ξ1(t2) > t2. Therefore there exists
t̄ ∈ [t1, t2] such that ξ2 ◦ ξ1(t̄ ) = t̄, a contradiction. �
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3. Main Result

Theorem 3.1. Let x ∈ W 2,1([0, T ]) be a solution to (P). Then there exists a bang–bang
solution y to (P) satisfying

∀t ∈ [0, T ] y(t) ≤ x(t).

Moreover there exists a set E which is a finite union of intervals such that

y′′ + a1(t)y′ + a0(t)y = φ1(t)χE(t) + φ2(t)χ[0,T ]\E(t) a.e.

Corollary 1. Under the above assumption, there exists a bang–bang solution y satisfying

∀t ∈ [0, T ] y(t) ≥ x(t).

Proof of Corollary 1. Let −Φ be defined by the equality (−Φ)(t) = −Φ(t). Clearly, x̃ = −x
solves

x̃′′ + a1(t)x̃′ + a0(t)x̃ ∈ −Φ(t) a.e.

By Theorem 3.1 there exists a bang–bang solution ỹ satisfying the same boundary condi-
tions as x̃ and satisfying

∀t ∈ [0, T ] ỹ(t) ≤ x̃(t).

Then the function y defined by

∀t ∈ [0, T ] y(t) = −ỹ(t)

is a solution to our problem. �

Proof of Theorem 3.1. Let h be the function defined in Proposition 2.1.

i) We show that it is not restrictive to assume

Φ(t) = [0, φ(t)] (φ ∈ L1([0, T ]), φ > 0 a.e.) and x0 = v0 = 0.

In fact, let Φ(t) = [φ1(t), φ2(t)] and x satisfy

x′′ + a1(t)x′ + a0(t)x ∈ Φ(t) a.e.

Then the function x̃ defined by

x̃(t) = x(t)− x′(0)t− x(0)
12



satisfies x̃(0) = x̃′(0) = 0 and

x̃′′ + a1(t)x̃′ + a0(t)x̃ ∈ [ψ1(t), ψ2(t)] a.e.

where

ψ1(t) = φ1(t)− a0(t)x′(0)t− a1(t)x′(0)− a0(t)x(0),

ψ2(t) = φ2(t)− a0(t)x′(0)t− a1(t)x′(0)− a0(t)x(0).

Moreover, by Proposition 2.1, the function x̄ defined by

x̄(t) = x̃(t)−
∫ t

0

h(t, s)ψ1(s) ds

satisfies x̄(0) = 0, x̄′(0) = 0 and

x̄′′ + a1(t)x̄′ + a0(t)x̄ ∈ [0, ψ2(t)− ψ1(t)] a.e.

If we assume that Theorem 3.1 holds for such an interval and initial boundary conditions,
there exists a function ȳ satisfying

ȳ(0) = x̄(0), ȳ′(0) = x̄′(0), ȳ(T ) = x̄(T ), ȳ′(T ) = x̄′(T ),

ȳ′′ + a1(t)ȳ′ + a0(t)ȳ ∈ {0, ψ2(t)− ψ1(t)} a.e.,

∀t ∈ [0, T ] ȳ(t) ≤ x̄(t).

It is now easy to check that the function y defined by

y(t) = ȳ(t) +
∫ t

0

h(t, s)ψ1(s) ds+ x′(0)t+ x(0)

is a solution to our problem.

ii) Assume first that δ of property (S) can be chosen in such a way that Iδ = [0, T ]. In
this case, if we set

ρ = x′′ + a1x
′ + a0x

then by Proposition 2.1 we can write

x(t) =
∫ t

0

h(t, s)ρ(s) ds, (3.1)

13



where h satisfies property S 1) and in addition:

∀s, t ∈ [0, T ] h(t, s) > 0 if s < t, h(t, s) < 0 if t < s (3.2)

∀s, t ∈ [0, T ]
∂h

∂t
(t, s) > 0, (3.3)

∀t ∈ [0, T ] s 7→ h(t, s)/
∂h

∂t
(t, s) is decreasing on [0, t]. (3.4)

In particular the functions f and g defined on [0, T ] by

g(s) = h(T, s) f(s) =
∂h

∂t
(T, s)

verify hypothesis H with k(.) = h(T, .)/∂h∂t (T, .).
By Proposition 2.1, each bang–bang solution y such that x(0) = x′(0) = 0 is given by the
formula y(t) =

∫ t
0
h(t, s)ν(s) ds for some measurable function ν with values in {0, φ(t)}.

We are thus led to show that there exists such a ν satisfying∫ T

0

h(T, s)ρ(s) ds =
∫ T

0

h(T, s)ν(s) ds, (3.5)∫ T

0

∂h

∂t
(T, s)ρ(s) ds =

∫ T

0

∂h

∂t
(T, s)ν(s) ds (3.6)

and for each t in [0, T ], ∫ t

0

h(t, s)ρ(s) ds ≥
∫ t

0

h(t, s)ν(s) ds. (3.7)

a) Assume 0 < ρ < φ a.e.
By Proposition 2.2 there exist α, β ∈ [0, T ] such that∫ T

0

h(T, s)ρ(s) ds =
∫ β

α

h(T, s)φ(s) ds, (3.8)∫ T

0

∂h

∂t
(T, s)ρ(s) ds =

∫ β

α

∂h

∂t
(T, s)φ(s). ds (3.9)

It is clear that if we set
ν(s) = φ(s)χ[α,β](s) (3.10)

then (3.5) and (3.6) are satisfied. In order to prove (3.7) we first show that under our
assumptions on ρ and φ we have

0 < α < β < T. (3.11)
14



Notice first that the equalities (α, β) = (0, T ) or α = β cannot hold otherwise by (3.8)
ρ = φ or ρ = 0 a.e., a contradiction. Assume, for instance, α = 0 and β < T , the case
α > 0 and β = T being similar. Under this assumption, equalities (3.8) and (3.9) become∫ T

0

h(T, s)ρ(s) ds =
∫ β

0

h(T, s)φ(s) ds, (3.12)∫ T

0

∂h

∂t
(T, s)ρ(s) ds =

∫ β

0

∂h

∂t
(T, s)φ(s) ds. (3.13)

Property (3.4) and the assumption 0 < ρ < φ a.e. allow us to apply Lemma 2.1 from
which we deduce ∫ T

0

h(T, s)ρ(s) ds <
∫ β

0

h(T, s)φ(s) ds,

contradicting (3.12).
Set y(t) =

∫ t
0
h(t, s)ν(s) ds so that (3.8) and (3.9) become y(T ) = x(T ) and y′(T ) = x′(T ).

Purpose of what follows is to show (3.7), i.e. that y(t) ≤ x(t) for each t. We consider the
cases t ∈ [0, α], t ∈ [β, T ], t ∈ [α, β] separately.
Inequality (3.7) is trivial if t ≤ α; in fact we have

y(t) = 0 ≤
∫ t

0

h(t, s)ρ(s) ds = x(t),

the inequality being strict for t ∈]0, α]. In particular

y(α) < x(α). (3.14)

Assume t ∈ [β, T ].
Since, taking (3.2) into account, h(t, s) ≤ 0 whenever s ≥ t, we have

∀t ≥ β
∫ T

t

h(t, s)ρ(s) ds ≤ 0 =
∫ T

t

h(t, s)ν(s) ds (3.15)

or equivalently

∀t ≥ β
∫ T

0

h(t, s)ρ(s) ds−
∫ t

0

h(t, s)ρ(s) ds ≤
∫ T

0

h(t, s)ν(s) ds−
∫ t

0

h(t, s)ν(s) ds. (3.16)

Therefore, in order to prove that y(t) ≤ x(t) for t ∈ [β, T ] it is enough to show that

∀t ∈ [β, T ]
∫ T

0

h(t, s)ρ(s) ds =
∫ T

0

h(t, s)ν(s) ds. (3.17)
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For this purpose, we use property S 1). Equalities (3.8) and (3.9) become
w1(T )

∫ T

0

z1(s)(ρ(s)− ν(s)) ds+ w2(T )
∫ T

0

z2(s)(ρ(s)− ν(s)) ds = 0

w′1(T )
∫ T

0

z1(s)(ρ(s)− ν(s)) ds+ w′2(T )
∫ T

0

z2(s)(ρ(s)− ν(s)) ds = 0

The condition on the wronskian of w1, w2 at T implies∫ T

0

z1(s)(ρ(s)− ν(s)) ds = 0, (3.18)∫ T

0

z2(s)(ρ(s)− ν(s)) ds = 0. (3.19)

Multiplying (3.18) by w1(t), (3.19) by w2(t) and adding the two equations we obtain∫ T

0

(w1(t)z1(s) + w2(t)z2(s))ρ(s) ds =
∫ T

0

(w1(t)z1(s) + w2(t)z2(s))ν(s) ds

which, together with property S 1), gives (3.17). Moreover remark that since inequality
(3.15) is strict for t 6= T , then

y(β) < x(β). (3.20)

At this stage, we only need to prove that (3.7) holds for t ∈ [α, β].
Assume by contradiction that there exists t ∈ [α, β] such that x(t) = y(t). Let

t̄ = sup{t ∈ [α, β] : x(t) = y(t)}.

Then α < t̄ < β and by the very definition of t̄, x(t̄ ) = y(t̄ ) so that

y′(t̄ )− x′(t̄ ) = lim
t→t̄+

y(t)− x(t)
t− t̄

≤ 0.

It follows that ∫ t̄

α

h(t̄, s)φ(s) ds =
∫ t̄

0

h(t̄, s)ρ(s) ds, (3.21)∫ t̄

α

∂h

∂t
(t̄, s)φ(s) ds ≤

∫ t̄

0

∂h

∂t
(t̄, s)ρ(s) ds. (3.22)
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For each s ∈ [0, t̄[ let f(s) = h(t̄, s), g(s) = ∂h
∂t (t̄, s) and k = f/g so that by (3.2)-(3.4) the

function k is increasing and f > 0, g > 0. If we replace (a, b) by (0, t̄), Lemma 2.1 together
with (3.21) imply that ∫ t̄

α

∂h

∂t
(t̄, s)φ(s) ds >

∫ t̄

0

∂h

∂t
(t̄, s)ρ(s) ds

thus contradicting (3.22).

b) Assume, in general, 0 ≤ ρ ≤ φ a.e. and let φn, ρn ∈ L1([0, T ]) be such that

0 < ρn < φn a.e. and ρn → ρ, φn → φ in L1([0, T ])

(for instance ρn = ρ+ 1
n , φn = φ+ 2

n ).
Corresponding to each n, there exist αn, βn ∈ [0, T ] such that, if we set νn = φnχ[αn,βn]

then we have ∫ T

0

h(T, s)ρn(s) ds =
∫ T

0

h(T, s)νn(s) ds, (3.23)∫ T

0

∂h

∂t
(T, s)ρn(s) ds =

∫ T

0

∂h

∂t
(T, s)νn(s) ds (3.24)

and, for each t in [0, T ], ∫ t

0

h(t, s)ρn(s) ds ≥
∫ t

0

h(t, s)νn(s) ds. (3.25)

The interval [0, T ] being compact, we may assume αn → α, βn → β for some α ≤ β ∈ [0, T ].
Clearly νn = φnχ[αn,βn] converges to φχ[α,β] in L1([0, T ]), therefore if we pass through the
limit in (3.23), (3.24), (3.25) and we set ν = φχ[α,β] we obtain (3.5), (3.6) and (3.7).

iii) In the general case, using property S and the compactness of [a, b], there exists a
subdivision a0 = 0 < a1 < · · · < al < T = al+1 of [0, T ] such that, if we put Ij = [aj , aj+1],
we have
• ∀s, t ∈ Ij h(t, s) > 0 if s < t, h(t, s) < 0 if t < s ;
• ∀s, t ∈ Ij ∂h

∂t (t, s) > 0 ;
• ∀t ∈ Ij s 7→ h(t, s)/∂h∂t (t, s) is decreasing on Ij .
By ii), on each interval Ij there exist αj , βj such that the solution yj to the problem

y′′ + a1(t)y′ + a0(t)y = φ1(t)χ[aj ,αj ]∪[βj ,bj ](t) + φ2(t)χ[αj ,βj ](t) a.e. on Ij
17



with the initial conditions

yj(aj) = x(aj), y′j(aj) = x′(aj)

satisfies the equalities

yj(aj+1) = x(aj+1), y′j(aj+1) = x′(aj+1)

and moreover yj(t) ≤ x(t) for each t ∈ Ij .
Clearly the function y ∈ W 2,1([0, T ]) obtained by glueing together the functions yj is a
solution to our problem. �

Remark 3.1. The proof of Theorem 3.1, part ii)a) shows in fact that when 0 < ρ < φ, we
have y(t) < x(t) on ]0, T [.

Remark 3.2. With the notations introduced in Proposition 2.1, the proof of Theorem 3.1
(part ii)) shows that if T = δ then, given a solution x to (P), there exists a bang–bang
solution y ≤ x satisfying

y′′ + a1(t)y′ + a0(t)y = min Φ(t) on [0, α] ∪ [β, T ],

y′′ + a1(t)y′ + a0(t)y = max Φ(t) on [α, β].

The number δ depending only on the function h, it can happen that δ = +∞.
This is the case when a1 and a0 are constant and the equation λ2 + a1λ+ a0 = 0 admits
two real roots λ1, λ2. In fact, under this assumption we have either

h(t, s) =
1

λ2 − λ1
(eλ2(t−s) − eλ1(t−s)) if λ1 6= λ2, or

h(t, s) = (t− s)eλ(t−s) if λ1 = λ2 = λ.
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4. Applications

Our first application concerns the reachable set of bang–bang constrained solutions.
Let c be an arbitrary function defined on [0, T ] and consider the reachable sets X cT and YcT
associated to (P ) defined by

X cT = {(y(T ), y′(T )) : y ≤ c, y′′ + a1(t)y′ + a0(t)y ∈ Φ(t) a.e., (y(0), y′(0)) = (x0, v0)}

YcT = {(y(T ), y′(T )) : y ≤ c, y′′+ a1(t)y′+ a0(t)y ∈ extr Φ(t) a.e., (y(0), y′(0)) = (x0, v0)}.
Then Theorem 3.1 claims X cT = YcT whence YcT is convex.
Finally, we give an application to the calculus of variations.

Theorem 4.1. Let a0, a1 ∈ C([0, T ]), φ1, φ2 ∈ L1([0, T ]) verify φ1(t) ≤ φ2(t) a.e. Let
x0, v0, x1, v1 be 4 fixed real numbers. Then there exists a dense subset D of C(R) for the
uniform convergence such that for g in D the problem

minimize
{ ∫ T

0

g(x(t)) dt+
∫ T

0

h(ρ(t)) dt
}

on the subset of W 2,1([0, T ])× L1([0, T ]) of those functions (x, ρ) satisfying

(x(0), x′(0), x(T ), x′(T )) = (x0, v0, x1v1), x′′+a1(t)x′+a0(t)x = ρ(t) ∈ [φ1(t), φ2(t)] a.e.

admits at least one solution for every lower semicontinuous function h satisfying the growth
condition h(u) ≥ cψ(|u|), ψ being l.s.c. and convex, limr→+∞ ψ(r)/r = +∞.

Proof. With our theorem 3.1 and the preceding application, the proof is a direct adaptation
of the proof given in [3]. �
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