
A NEW GENETIC ALGORITHM

Raphaël CERF
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Abstract. Here is a new genetic algorithm. It is built by randomly perturbing a two oper-
ators crossover–selection scheme. Three conditions of biological relevance are imposed on the

crossover. A new selection mechanism is used, which has the decisive advantage of preserving
the diversity of the individuals in the population. The attractors of the unperturbed process

are particular equi–fitness subsets of populations endowed with a rich structure. The random

vanishing perturbations are twofold: local perturbations of the individuals (mutations) and
loosening of the selection pressure. When the population size is greater than a critical value

which depends strongly on the optimization problem, their delicate asymptotic interaction

ensures the convergence (possibly in finite time) of the population toward the ideal attrac-
tor whose populations contain all the maxima of the fitness function. The process explores

without respite the neighbourhoods of the best points found so far (instead of focusing on

a particular point) and finds simultaneously all the global maxima of the fitness function; it
seems to be the first cooperative search procedure of this kind.
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1. Introduction

In the realm of stochastic optimization, attention has focused essentially on two tech-
niques during the last decade: simulated annealing [1] and evolutionary algorithms [12,16].

The fundamental problem may be stated as follows: given a finite but huge space (the
size precludes any exhaustive search procedure) endowed with a transition mechanism and
a real–valued function defined on this space, determine the set of its global maxima, or
find at least sub–optimal points, as fast as possible.

The theory of the simulated annealing is now extensively developed and a great number
of results describing the dynamics of this kind of algorithms in various settings are available
[1,2,3,4,5,8,9,11,13,14,15,17,18,19,20,22,24,25,26,27,28,29]. As far as we know, the most
accurate work in this area has been achieved by Catoni, in the spirit of the Freidlin–
Wentzell theory [2,3,4,5]. Nevertheless, the simulated annealing presents a fundamental
drawback: it is sequential in nature.

In an attempt to investigate the theoretical aspects of the parallelization of this al-
gorithm, Trouvé carried out a systematic study (initiated by Hwang and Sheu [19]) of
a broader class of algorithms he baptized generalized simulated annealing [26,27,28,29].
As it turns out, this framework is also well adapted for evolutionary algorithms. Let us
mention that several recent studies have been devoted to this kind of processes. Holley,
Kusuoka and Stroock [17,18] have developed an approach leading to an estimation of the
second eigenvalue of the infinitesimal generator of the Markov process. This method is
particularly well suited in reversible situations, but it has also been recently extended to
non–symmetric annealing processes by Deuschel and Mazza [8] and is thus potentially ap-
plicable to genetic algorithms. One of our major goals is to show how the large deviations
theory of Markov chains with rare transitions can be used to study the convergence of
genetic algorithms.

In a first paper [6], we proposed a Markovian model of Holland’s simple genetic algo-
rithm which is built by randomly perturbing a very simple selection scheme: mutations
and crossovers are considered as vanishing random perturbations. We proved that the
convergence toward the global maxima of the fitness function becomes possible when the
population size is greater than a critical value (which depends strongly on the optimization
problem). Surprisingly, the crossover is not fundamental to ensure this convergence: the
crucial point is the delicate asymptotic interaction between the local perturbations of the
individuals (i.e. the mutations) and the selection pressure.

In a second paper [7], we used the concepts introduced by Catoni [2,3,4] and further
generalized by Trouvé [27,28,29] to fathom more deeply the dynamics of the two operators
mutation–selection algorithm when the population size becomes very large. The key result
lies in the structure of the trajectories of populations joining two uniform populations: a
small group of individuals sacrifice themselves in order to create an ideal path which is then
followed by all other individuals. As a consequence, the various quantities associated with
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the algorithm (such as the communication cost, the virtual energy, the communication
altitude . . . ) are affine functions of the population size. We proved that the hierarchy
of cycles on the set of the uniform populations stabilizes. Furthermore, if the mutation
kernel is symmetric, the limiting distribution is the uniform distribution over the set of
the global maxima of the fitness function.

In this third paper, we introduce two major modifications to the previous schemes. The
crossover is now integrated in the unperturbed process and is not considered any more
as a random vanishing perturbation: although this operator is not essential to ensure the
desired convergence, it certainly increases the efficiency of the algorithm. Three conditions
of biological relevance are imposed on the crossover:
• When two identical individuals mate, they produce offsprings identical to themselves.
• There is always a non–zero probability that nothing happens during a crossover.
• The two individuals of the mating pair play symmetric roles (the populations are asexual).
The first condition is essential for our algorithm to work for every fitness function; the
second condition makes the analysis somewhat easier; the third condition is a natural
symmetry assumption which could be removed.
Furthermore, we propose a new selection mechanism which has the decisive advantage of
preserving the diversity of the individuals in the population.

The analysis of the algorithm follows the road opened by Freidlin and Wentzell [10].
Unlike the situations studied in [6,7], the structure of the set of the attractors of the
unperturbed process is very rich: these are particular subsets of populations and they
stand in one to one correspondence with the equi–fitness subsets of the state space whose
cardinality is less than the population size. When the population size is large enough, there
is a unique ideal attractor whose populations contain all the maxima of the fitness function.
We study the communication cost between attractors: the costs of bad transitions (either
those which decrease the maximal fitness of the population or those which lose some peak
fitness individuals) increase linearly with the population size, whereas the costs of good
transitions (those which create some new peak fitness individuals) remain bounded. As
a consequence, when the population size is greater than a critical value, the minimum
of the virtual energy corresponds to the ideal attractor previously described. Therefore
the sequence of the stationary measures (associated with a fixed level of intensity of the
perturbations) concentrates on this attractor as the perturbations vanish. The remaining
problem is to adapt carefully the rate of decreasing of the perturbations in order to obtain
an inhomogeneous Markov chain with the same limiting law. Besides, it is possible to
ensure a stronger convergence: we may force the process to be forever trapped in the
attraction basin of the ideal attractor after a finite number of transitions. Furthermore,
when the population size is large, the cycles which do not contain the ideal attractor are
reduced to one single attractor and the optimal convergence exponent increases faster than
an affine function of the population size. We show also how our general model specializes
to the case where the state space is {0, 1}N ; we discuss the role of the crossover and
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compare the genetic algorithm with the parallel (independent) simulated annealing on a
small numerical example.

One might wonder whether this asymptotic point of view is relevant for analyzing genetic
algorithms. Indeed, the current state of this large deviations theory (even the sharp large
deviations estimates of Catoni [4,5]) does not yet provide probability bounds which can be
effectively computed on a real problem. Therefore one does not know in practice when the
process is near the asymptotical regime. Anyway we hope that the paradigm we propose
is one of the very first steps toward a complete theory. Asymptotic convergence is the
least thing to require for such stochastic algorithms. Moreover our model should shed
some light on the true behavior of genetic algorithms. It provides also a tool to make
theoretical comparisons: we are able to analyze the optimal convergence exponent for
large population sizes (its rate of increase is a quantitative measurement of the intrinsic
parallelism of genetic algorithms), to feel the impact of the crossover operator on it, or to
compare it with the one associated with parallel (independent) simulated annealing.

Finally, let us summarize the important aspects of this work.
Our algorithm finds simultaneously all the global maxima of the objective function in
finite time and thus solves completely the optimization problem: it seems to be the first of
this kind. The cornerstone of this cooperative search procedure is the delicate asymptotic
interaction between the mutations and our enhanced selection mechanism; the process
explores simultaneously and without respite the neighbourhoods of the best points found
so far (instead of focusing on a particular point). Moreover, we hope to have found the
right way of using the crossover operator.

This paper has the following structure. The sections 2 to 7 are devoted to the description
of the model: the unperturbed process, its attractors and the random perturbations. The
main results are presented in section 8. The role of the crossover is analyzed in section 9.
In section 10 we show how our model enters the class of generalized annealing processes.
We then give technical results in sections 11 to 14 and prove the main results in the last
section 15.

General conventions. The cardinality of a set X will be noted indifferently |X| or cardX
and its characteristic function 1X . We adopt usual conventions concerning empty sets:

Q
∅

= 1, P
∅

= 0, min ∅ = +∞, max ∅ = −∞.

If s is a real number, bsc denotes the unique integer such that bsc ≤ s < bsc+ 1.
The Kronecker symbol δ(i, j) will be used to denote the identity matrix indexed by E:

∀i, j ∈ E δ(i, j) = 0 if i 6= j, δ(i, j) = 1 if i = j.

For any integer r, the set of the permutations over {1 · · · r} is denoted by S(r).
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2. The fitness landscape

We recall that a Markov kernel k on a finite set X is a a function k(x, y) defined on X×X
with values in [0, 1] verifying

∀x ∈ X
∑

y∈X
k(x, y) = 1.

Definition 2.1. An abstract fitness landscape consists in four objects (E, f, α, β) where
• E, the search space, is a finite space of states,
• f , the fitness function, is a positive non-constant function defined on E,
• α, the mutation kernel, is an irreducible Markov kernel on E,
• β, the crossover kernel, is a Markov kernel on the set E × E.

The points of E will be called individuals and will be mostly denoted by the letters
i, j, e. The quantity α(i, j) determines the rate at which the individual i mutates to j. The
irreducibility assumption on α, which means that

∀i, j ∈ E ∃e1, · · · , er ∈ E e1 = i, er = j, ∀k ∈ {1 · · · r − 1} α(ek, ek+1) > 0,

is essential to ensure that the whole space E can be explored with the help of the mutation
mechanism.

Similarly, the quantity β((i1, j1), (i2, j2)) is interpreted as the probability of producing
the pair of individuals (i2, j2) by performing a crossover on the couple (i1, j1). Throughout
this work, we impose the following conditions on the kernel β:

∀i ∈ E β((i, i), (i, i)) = 1,(1)

∀i, j ∈ E β((i, j), (i, j)) > 0,(2)

∀i1, j1, i2, j2 ∈ E β((i1, j1), (i2, j2)) = β((j1, i1), (j2, i2)).(3)

These three conditions have a natural biological interpretation.
Condition (1) states that when two identical individuals mate, they produce offsprings
identical to themselves. Condition (2) states that there is a non–zero probability that
nothing happens during the crossover. Condition (3) states that the two individuals of the
mating pair play symmetric roles (our population is asexual).
The set f∗ of the global maxima of f is

f∗ = { i ∈ E : f(i) = max
j∈E

f(j) }

and f(f∗) is the maximum value of f over E, i.e. maxj∈E f(j). Symbols with a star ∗
in superscript will denote sets realizing the minimum or the maximum of a particular
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functional. The main goal of a genetic algorithm is to locate the points of f∗, or at least
to find suboptimal points. The minimal and maximal variations of the fitness function are

δ = min { |f(i)− f(j)| : i, j ∈ E, f(i) 6= f(j) }, ∆ = max { |f(i)− f(j)| : i, j ∈ E }.

Let λ be a positive real number. We put fλ = f−1({λ}), which is the set of the points of the
search space having fitness λ, and we define similarly f+

λ = f−1(]λ,∞[), f−λ = f−1([0, λ[).
The maximal cardinality of a level set of the fitness function is Λ = max { |fλ| : λ ∈ R∗+ }.
If F is a subset of E, f(F ) (or sometimes simply fF ) denotes the set { f(i) : i ∈ F }.

3. The population space

A key principle of genetic algorithms is to make a population of individuals evolve
simultaneously in the fitness landscape. Let m be the population size of our algorithm. A
genetic algorithm is a stochastic process with state space the population space Em; the
m–uples of elements of E, i.e. the points of the set Em, are called populations and will
be mostly denoted by the letters x, y, z, u, v. We define a bracket operator [ ] on Em with
values in P(E), the set of all the subsets of E, by

x = (x1, · · · , xm) ∈ Em 7−→ [x] = {xk : 1 ≤ k ≤ m }

i.e. [x] is the set of all individuals present in the population x.
With f we associate a function f̂ defined on Em by

f̂(x) = f̂(x1, · · · , xm) = max { f(xk) : 1 ≤ k ≤ m }

i.e. f̂(x) is the maximal fitness of the individuals of the population x. In this way,
the fitness landscape (E, f, α, β) induces a landscape structure (Em, f̂) on the population
space Em. A key issue is to understand this new landscape and to determine whether it is
easier to optimize (Em, f̂) than the naive m–fold copy of (E, f). The peculiarity of genetic
algorithms is to introduce a cooperative dynamics on the search space.
We now introduce several notations describing the repartition of the fitness values in a
population or in a set of populations.
For x in Em, x̂ denotes the set of those elements of [x] which realize the value f̂(x):

x̂ = {xk : 1 ≤ k ≤ m, f(xk) = f̂(x) }.

The previous definitions [x], f̂(x), x̂ are extended to P(Em), the set of all the subsets
of Em, in a natural way: if K is a subset of Em, we have

[K] = {xk : 1 ≤ k ≤ m, x = (x1, · · · , xm) ∈ K },
f̂(K) = max { f(xk) : 1 ≤ k ≤ m, x = (x1, · · · , xm) ∈ K },

K̂ = {xk : 1 ≤ k ≤ m, x = (x1, · · · , xm) ∈ K, f(xk) = f̂(K) }.
6



For x in Em, we let xλ = [x] ∩ fλ (the individuals of the population x having fitness λ)
and we number the elements of the set xλ

xλ = {xλ1 , · · · , xλ|xλ| }

in the order they appear in the sequence (xk, 1 ≤ k ≤ m). Equivalently, we have

∀h, k 1 ≤ h < k ≤ |xλ| min { r : xr = xλh } < min { r : xr = xλk }.

Such a numbering is clearly unique. Whenever λ does not belong to f [x], the set xλ is
empty. For the special case λ = f̂(x) (i.e. where λ is the maximal value of the fitness in
the population x), we use the notation x̂ = { x̂1, · · · , x̂|bx| } (i.e. we replace xλ by x̂ in the
preceding notation).
Finally, for x in Em, we denote by λx1 , · · · , λx|f [x]| the |f [x]| elements of the set f [x] (i.e. the
set of the fitness values observed in the population x), where again the indexation respects
the order of appearance of the elements of f [x] in the sequence (f(xk), 1 ≤ k ≤ m), or
equivalently

∀h, k 1 ≤ h < k ≤ |f [x]| min { r : f(xr) = λxh } < min { r : f(xr) = λxk }.

When the context is unambiguous, we will drop the superscript in the above notations.

4. Example: the case E = {0, 1}N

We specialize our general model to the case where the state space E is {0, 1}N (N ∈ N).
A point i of E is a word of length N over the alphabet {0, 1} and is noted i = i1 · · · iN
where ik ∈ {0, 1}. The Hamming distance H(i, j) between two points i, j of E is the
number of letters where i and j differ:

H(i, j) = card { k : 1 ≤ k ≤ m, ik 6= jk }.

The mutation kernel α is defined by

α(i, j) =
{

0 if H(i, j) > 1,
1/N if H(i, j) = 1.

It is irreducible: the minimal number of transitions necessary to join two arbitrary points
of E through the kernel α is N .
In order to build the crossover operator, we define now a cutting operator Tk for k in
{0 · · ·N}; Tk maps E × E onto E × E and for i, j in E, we put Tk(i, j) = (i′, j′) where

i′ = i1 · · · ikjk+1 · · · jN , j′ = j1 · · · jkik+1 · · · iN .
7



Notice that T0 only exchanges the two individuals of the mating pair, i.e. T0(i, j) = (j, i),
whereas TN is the identity map over E × E.
For any pairs (i, j) and (i′, j′) of E × E, we put

C((i, j), (i′, j′)) = card { k : 1 ≤ k ≤ N, Tk(i, j) = (i′, j′) }

and we define finally the crossover kernel β by

β((i, j), (i′, j′)) =
C((i, j), (i′, j′)) + C((j, i), (i′, j′))∑

(i′′,j′′)∈E×E C((i, j), (i′′, j′′)) + C((j, i), (i′′, j′′))
.

It is a straightforward matter to check that conditions (1), (2), (3) are satisfied.

5. The unperturbed Process (X∞n )

We first describe the ground process which drives the algorithm. When there is no ran-
dom perturbation, the process under study is a Markov chain (X∞n ) with state space Em.
The superscript ∞ reflects the fact that this process corresponds to the limit behavior of
our model, when all perturbations vanish. The transition mechanism from X∞n to X∞n+1

is decomposed in two stages:

X∞n
crossover−−−−−−→ Z∞n

selection−−−−−−→ X∞n+1.

We describe now in detail the crossover and selection operators.

5.1. X∞n −→ Z∞n : crossover. The phenomenon of crossover is modeled as a random
operation on the couples formed by consecutive individuals of the population X∞n . This
random operation is the one naturally associated to the crossover kernel β of the abstract
fitness landscape (definition 2.1). The transition probabilities from X∞n to Z∞n are

(4) P (Z∞n = z/X∞n = x) = δm(xm, zm)
∏

1≤k≤m/2

β ((x2k−1, x2k), (z2k−1, z2k))

where δm(i, j) = δ(i, j) if m is odd (the last individual of the population has no mating
partner and remains unchanged after crossover) and δm(i, j) = 1 if m is even.
Notice here a fundamental difference with the model studied in [6]: the crossover is now
incorporated into the unperturbed process.

5.2. Z∞n −→ X∞n+1: selection. We propose here an enhanced version of the selection
mechanism used in the previous models [6,7] which has the decisive advantage of pre-
serving the diversity of the individuals present in the population. This mechanism may be
described roughly as follows. Suppose Z∞n = z. To build the population X∞n+1 = x, we first
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select randomly with the uniform distribution a permutation σ of S(|ẑ|). We divide the set
of indices {1 · · ·m} in |ẑ|+ 1 parts of approximately the same size (around bm/(|ẑ|+ 1)c).
The components of the r–th part (for 1 ≤ r ≤ |ẑ|) are set equal to ẑσ(r), that is, roughly,
for the indices k such that

1 + (r − 1)
⌊

m

|ẑ|+ 1

⌋
≤ k ≤ r

⌊
m

|ẑ|+ 1

⌋
we put xk = ẑσ(r) (for b c, see the initial conventions). The components of the (|ẑ|+ 1)–th
part are chosen independently with the uniform distribution on the set ẑ.
We now explicit precisely this transition mechanism.
We first define a triangular array of integers τ(k, h), 0 ≤ k ≤ h+ 1, 1 ≤ h ≤ m, by

∀h ∈ {1 · · ·m} τ(0, h) = 1, τ(h+ 1, h) = m,

∀k, h 1 ≤ k ≤ h ≤ m τ(k, h) = 2k
⌊

m

2(h+ 1)

⌋
+ 1.

Let x and z be two elements of Em. If there exists a permutation σ of S(|ẑ|) such that

∀h ∈ {1 · · · |ẑ|} ∀k τ(h− 1, |ẑ|) ≤ k < τ(h, |ẑ|) xk = ẑσ(h)

then

(5) P
(
X∞n+1 = x/Z∞n = z

)
=

1
|ẑ|!

∏
τ(|bz|,|bz|)≤k≤m

1bz(xk)
card ẑ

.

If no such permutation exists, then P
(
X∞n+1 = x/Z∞n = z

)
= 0.

Remark 1. In formula (5), the |ẑ|! stands for the choice of a random permutation belonging
to S(|ẑ|), and the product corresponds to the choice of the components of x whose indices
belong to the (|ẑ|+ 1)–th part.

Remark 2. The first |ẑ| parts of x have an even cardinal, so that the crossover can’t act on
a pair of individuals belonging to distinct parts. Since in addition each such part contains
only one type of individual, condition (1) shows that the crossover operator will have no
effect on the first |ẑ| parts of x. The main interest of the (|ẑ| + 1)–th part is to give the
opportunity to distinct individuals of |ẑ| to mate without constraints.

Remark 3. If m < 2(|ẑ| + 1), the first |ẑ| parts of x are empty, so that the components
of x are chosen independently with the uniform distribution on the set ẑ. However, the
dynamics of the algorithm becomes particularly interesting when m is large (as will be
shown later), and such situations won’t then occur.
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6. The attractors of the chain (X∞n )

Due to the selection mechanism, the populations generated by the Markov chain (X∞n )
have a very specific structure. In fact, the Markov chain (X∞n ) wanders through particular
subsets of Em which we call attractors. These subsets play the role of the attractors of
the deterministic dynamical system in the Freidlin–Wentzell theory [10]. The aim of this
section is to investigate the zoology of the attractors of the chain (X∞n ) and to understand
the dynamics of (X∞n ) on these attractors.

Definition 6.1. The attractors of the chain (X∞n ) are the sets of populations K such
that

i) [K] = K̂

ii) a population x = (x1, · · · , xm) of Em belongs to K if and only if
• ∀r ∈ {1 · · · |K̂|} ∀k, h τ(r − 1, |K̂|) ≤ k, h < τ(r, |K̂|) =⇒ xk = xh,

• {xk : 1 ≤ k < τ(|K̂|, |K̂|) } = [K],
• {xk : τ(|K̂|, |K̂|) ≤ k ≤ m } ⊂ [K].

The set of all the attractors is denoted by K (thus K ∈ P(P(Em))).

Remark. Notice that the property ii) is an equivalence: that is, each population x satisfying
the three conditions in ii) has to belong to K whenever K is an attractor. Conversely,
each population in K must fulfill these conditions.

Condition i) implies that the populations of the attractors are equi-fitness populations
(i.e. populations whose all individuals have the same fitness). More precisely, we have

∀K ∈ K ∃λ ∈ R∗+ ∀x ∈ K [x] ⊂ fλ

i.e. all the individuals belonging to the populations of a fixed attractor are in the same
level set of f . We denote by Kλ (respectively K+

λ ,K
−
λ ) the set of attractors K such

that [K] ⊂ fλ (resp. [K] ⊂ f+
λ , [K] ⊂ f−λ ). For an attractor K, we denote by f(K)

the unique real number λ such that K belongs to Kλ. We denote by K∗ the attractors
included in f∗ (i.e. K∗ = Kf(f∗)) and by K∗ the unique attractor (it exists for m ≥ |f∗|)
such that [K∗] = f∗. We let also K−∗ = K−f(f∗).

The transition mechanism implies that the process (X∞n ) is instantaneously absorbed
in the set of the populations which belong to attractors, i.e.

∀x ∈ Em P (∀n ≥ 1 ∃K ∈ K X∞n ∈ K/X∞0 = x) = 1.

Moreover, as a consequence of condition (2) on the crossover kernel β, we see that, for
each attractor K and each population x in K, the probability P

(
X∞n+1 ∈ K/X∞n = x

)
is

positive so that the process has a non–zero probability of staying in an attractor.
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We distinguish two kinds of attractors.
An attractor K is said to be unstable if

∃x ∈ K P
(
X∞n+1 ∈ K/X∞n = x

)
< 1.

An attractor K is said to be stable if

∀x ∈ K P
(
X∞n+1 ∈ K/X∞n = x

)
= 1.

Notice that the bracket operator [ ] provides a one to one correspondence between the
set K of all the attractors and the subset E of P(E) defined by

E = {F ⊂ E : |F | ≤ m, F̂ = F }.

In fact, if K is an attractor, for each x in K, we have [x] = [K], i.e. the bracket operator
is constant over K and thus characterizes K. As a consequence, two distinct attractors do
not intersect.
When m is small, the set E clearly depends on m, but for m ≥ Λ, it does not depend
any more on m, nor does the structure of the set of attractors K: only the size of the
populations changes, and the composition of the attractors is stabilized.
We use the crossover kernel β to build an operator on the set P(E). If F is a subset of E,
we define

β(F ) = { i ∈ E : ∃(i′, j′, j) ∈ F × F × E β((i′, j′), (i, j)) > 0 }.

The operator β̂ is the composition of the operators β and ̂, i.e.

β̂(F ) = { i ∈ β(F ) : f(i) = f̂(β(F )) }.

We have the following characterization of the stable attractors.

Lemma 6.2. An attractor K of K is stable if and only if β̂([K]) = [K] and m ≥
2(|K̂|+ 1).

Proof. This is an immediate consequence of the transition mechanism of the process (X∞n ):
if the above conditions are satisfied, we have

P
(
[X∞n+1] = [K]/X∞n ∈ K

)
= 1.

If β̂([K]) 6= [K], there is a non–zero probability that the crossover creates new individuals
not belonging to [K] with a fitness greater or equal than f̂(K), so that X∞n+1 has a positive
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probability of leaving K. If m < 2(|K̂| + 1), the selection mechanism does not guarantee
the survival of all the individuals of [K] so that

P
(
[X∞n+1]  [K]/X∞n ∈ K

)
> 0. �

We define a partial relation ≺
∞

on K: for each pair K1,K2 of attractors, we have

K1 ≺∞ K2 ⇐⇒ ∃x ∈ K1 ∃y ∈ K2 ∃r ∈ N P
(
X∞n+r = y/X∞n = x

)
> 0.

This relation is reflexive and transitive. In addition, the process X∞n can leave an attractor
only by creating with the crossover new individuals whose fitness is greater or equal to the
fitness of the starting attractor. Thus

K1 ≺∞ K2 =⇒ [K2] ⊂
∞⋃
n=0

β̂ (· · · β̂ (β̂︸ ︷︷ ︸
n times bβ

([K1])))

and the fitness cannot decrease during such a transition:

K1 ≺∞ K2, f(K1) 6= f(K2) =⇒ f(K1) < f(K2).

Suppose m ≥ 2(Λ + 1). The selection mechanism then never causes a loss of diversity
within a level set of f so that

K1 ≺∞ K2, f(K1) = f(K2) =⇒ [K1] ⊂ [K2]

and the relation ≺∞ is then a partial order on K.
If x is a population of Em which belongs to a (necessarily unique) attractor K, we
put K(x) = K. It follows from the very definition of the relation ≺

∞
that

∀n ≥ 1 K(X∞n ) ≺
∞
K(X∞n+1)

i.e. the sequence (K(X∞n ))n≥1 is increasing in the ordered set (K,≺∞). Since K is finite,
this sequence is stationary; with probability one, the limit

lim
n→∞

K(X∞n ) = K∞

is a maximal element of K for the order ≺∞. Yet, the maximal elements of K are precisely the
stable attractors. Finally, let K be a stable attractor. For any populations x, y belonging
to K, the probability transition P

(
X∞n+1 = y/X∞n = x

)
is independent of x and y (it

is completely determined by the set [K]). As a consequence, the process (X∞n ) admits a
unique invariant probability measure on the attractor K, which is the uniform distribution.

Remark. The main role of the crossover is to make unstable some attractors. Suppose for
instance we define the kernel β0 by

∀i1, j1, i2, j2 ∈ E β0((i1, j1), (i2, j2)) =
1
2
δ(i1, i2)δ(j1, j2) +

1
2
δ(i1, j2)δ(j1, i2)

so that the crossover can only exchange the individuals of the mating pair and never creates
new individuals. The corresponding algorithm is then a mutation–selection algorithm. In
this case, all the attractors are stable whenever m ≥ 2(|K̂|+ 1).

12



A numerical example on the space E = {0, 1}3. We consider the space E = {0, 1}3
and we define the fitness function f by

f({001, 011}) = {1}, f({010, 101}) = {2}, f({100}) = {3}, f({000, 110, 111}) = {4}.

We take m = 10. There are 15 attractors. If F is an equi–fitness subset of E, we de-
note by K(F ) the associated attractor. The attractors K(010, 101) and K(000, 111) are
unstable. All others attractors are stable. Actually, we have

K(000, 111)≺
∞
K(000, 110, 111), K(010, 101)≺

∞
K(100), K(010, 101)≺

∞
K(110).

The ideal attractor K∗ = K(000, 110, 111) contains 3! 34 = 486 populations.
A typical example of such a population is

(110, 110, 000, 000, 111, 111, 000, 111, 110, 000).

7. The perturbed Markov chain (X l
n)

The three operators of a genetic algorithm play different roles: the mutation tends to
disperse the population over the space E, the crossover helps the information to spread
quickly over the population and the selection tends to concentrate the population on the
current best individual. Our point of view is to consider the mutation and the selection
as random perturbations of very crude operators: random perturbations of the identity
map for the mutations, random perturbations of the very strong selection mechanism of
the chain (X∞n ) for the selection. Within this framework we are able to carry out an
analysis of the asymptotic dynamics of the algorithm when the perturbations vanish. It is
of course questionable whether this paradigm is relevant in practice. A major remaining
issue is to obtain operational probability bounds for real optimization problems. There
are several such attempts in this direction for sequential simulated annealing. Hajek and
Sasaki study a maximum matching problem [15], Jerrum a maximum clique problem [20]
and they analyze the rate of growth of the time necessary to reach a solution with a given
accuracy when the size of the problem tends to infinity. Jerrum and Sinclair succeed in
building polynomial-time algorithms designed to approximate the partition function of the
Ising model [21]. Lundy and Mees describes situations where convergence is exponentially
long, and others where termination occurs in polynomial time with a good practical con-
fidence [22]. Sinclair develops techniques to handle the multicommodity flow [23]. Sorkin
investigates the simulated annealing on fractal energy landscapes [24]. These interesting
results rely on features which depends strongly on the problem under study and cannot be
generalized easily. They are aimed at finding efficient implementations on real problems.

Nevertheless our abstract setting for genetic algorithms yields general conditions ensur-
ing the convergence of the genetic algorithm for any fitness landscape. We also put forward

13



the existence of critical population sizes. The paradigm we propose is somewhat different
from the practical implementations of genetic algorithms, where the parameters control-
ling the mutation and the selection are kept constant in time. On one hand our analysis
might be interpreted as the analysis of these temporally homogeneous genetic algorithms
for small values of the mutation rate and a strong selection pressure. The asymptotic
dynamics therefore gives a sharpened and simplified picture of the true dynamics. On the
other hand, the scheme of decreasing perturbations is a new procedure which should be
tested in practice to see whether it succeeds in accelerating the convergence (in the same
way that simulated annealing is an attempt to speed up the Metropolis algorithm).

We now describe precisely the perturbed transition mechanism. The previous Markov
chain (X∞n ) is randomly perturbed by two distinct mechanisms. The first one acts directly
upon the population and mimics the phenomenon of mutation. The second one consists in
loosening the selection of the individuals. The intensity of the perturbations is governed
by an integer parameter l: as l goes to infinity, the perturbations progressively disappear.
The transition mechanism of the perturbed Markov chain (X l

n) is decomposed in three
stages:

X l
n

mutation−−−−−−→ Y ln
crossover−−−−−−→ Zln

selection−−−−−−→ X l
n+1.

7.1. X l
n −→ Y ln: mutation. The mutations are modeled by random independent per-

turbations of the individuals of the population X l
n. These random perturbations are built

with the help of the mutation kernel α of the abstract fitness landscape (definition 2.1).
Let a be a positive real number, which we call the mutation cost. Define

αl(i, j) =
{
α(i, j)l−a if i 6= j

1−
∑
e6=i α(i, e)l−a if i = j

so that αl is an irreducible Markov kernel on E.
The transition probabilities from X l

n to Y ln are given by

P
(
Y ln = y/X l

n = x
)

= αl(x1, y1) · · ·αl(xm, ym).

Note that

(6) lim
l→∞

P
(
Y ln = y/X l

n = x
)

= δ(x1, y1) · · · δ(xm, ym)

i.e. the mutations vanish when l goes to infinity.

7.2. Y ln −→ Zln: crossover. The crossover is not perturbed in any way: this stage is
exactly the same as the passage from X∞n to Z∞n (formula (4)). We define the crossover
kernel β on Em × Em by

∀y, z ∈ Em β(y, z) = P
(
Zln = z/Y ln = y

)
= P (Z∞n = z/X∞n = y) .

14



7.3. Zln −→ X l
n+1: selection. We first describe informally the selection mechanism.

Suppose Zln = z and we wish to build the vector X l
n+1 = x.

We first traverse f [z]; with each element λ of this set, we associate a sequence ψ1, · · · , ψnλ
obtained by reordering randomly (all orders being equally probable) the set f−1({λ})∩f [z].
The population x is then built in the following way: for each component xk, 1 ≤ k ≤ m,
we draw a value λ under a distribution probability on the set f [z] which is biased toward
the high values. As l goes to infinity, this distribution concentrates on the value f̂(z).
With this value λ, we had previously associated a sequence ψ1, · · · , ψnλ . We divide the
set {1 · · ·m} in nλ + 1 parts. If the index k under consideration belongs to the r–th part,
where 1 ≤ r ≤ nλ, we set xk = ψr. If k belongs to the (nλ + 1)–th part, we choose xk
randomly and uniformly over the set {ψ1, · · · , ψnλ }.
We now describe precisely this mechanism.
Suppose always Zln = z. Let us recall some notations. The set f [z] contains |f [z]| distinct
values λz1, · · · , λz|f [z]|; throughout this section, when the context is unambiguous, we will
drop the superscript z in this notation, so that λk will stand for λzk. For each λ in f [z],
there are |zλ| distinct individuals in z whose fitness is equal to λ:

zλ = { zλ1 , · · · , zλ|zλ| }.

The vector X l
n+1 = x is built in the following way. For each h in {1 · · · |f [z]|}, we select

independently and randomly with the uniform distribution a permutation σh belonging
to S(|zλh |) = S(|[z]∩ fλh |). The law of each component xk (1 ≤ k ≤ m) of x is defined as
follows: we select randomly a value λ in the set f [z] with the distribution

∀h ∈ {1 · · · |f [z]|} P (λ = λh) =
exp(cλh ln l)∑|f [z]|
r=1 exp(cλr ln l)

where c is a positive real number, which we call the scaling parameter.
The value of xk is then chosen in the set zλ according to the value of the index k:
• if τ(|zλ|, |zλ|) ≤ k ≤ τ(|zλ| + 1, |zλ|) = m, then xk is chosen at random with the
uniform distribution over the set zλ = [z]∩ fλ (k lies in the last part of the set of indices).
• if there exists an index r in {1 · · · |zλ|} such that τ(r−1, |zλ|) ≤ k < τ(r, |zλ|), then we
put xk = zλσh(r), where h is the unique integer in {1 · · · |zλ|} satisfying λ = λh (the index k
lies in the r–th part of the set of indices, where 1 ≤ r ≤ |zλ|).
Remark. The selection mechanism at work in the chain (X∞n ) is obtained as a particular
case: the distribution probability on f [z] is degenerated and attributes mass one to f̂(z).
We give now an explicit expression for the transition probabilities.
Let x and z belong to Em. If [x] 6⊂ [z], we put σ(z, x) = ∅.
Suppose [x] ⊂ [z]. Let σ(z, x) be the set of the |f [z]|–uples of permutations

(σ1, · · · , σ|f [z]|) ∈ S(|zλ1 |)× · · · ×S(|zλ|f[z]| |)
15



satisfying the following property:
for each k in {1 · · ·m}, if h is the unique integer in {1 · · · |f [z]|} such that λh = f(xk), and
if for some r in {1 · · · |zλh |} we have τ(r − 1, |zλh |) ≤ k < τ(r, |zλh |), then xk = zλh

σh(r)
.

The transition probabilities from Zln to X l
n+1 are then given by the intuitive formula:

P
(
X l
n+1 = x/Zln = z

)
= (7)

|σ(z, x)|∏
λ∈f [z]

|zλ|!

 ∏
λ∈f [z]

m∏
k=τ(|zλ|,|zλ|)

(
1zλ(xk)
|zλ|

+ 1− 1zλ(xk)
) m∏

k=1

exp(cf(xk) ln l)∑
λ∈f [z] exp(cλ ln l)

.

We define the kernel γ on Em × Em by the identity

P
(
X l
n+1 = x/Zln = z

)
= γ(z, x)

m∏
k=1

exp(cf(xk) ln l)∑
λ∈f [z] exp(cλ ln l)

.

Only the last product in formula (7) depends upon l. It may be rewritten as
exp(c

∑m
k=1 f(xk) ln l)(∑

λ∈f [z] exp(cλ ln l)
)m .

As l goes to infinity, this term is equivalent to

exp
(
− c
(
mf̂(z)−

m∑
k=1

f(xk)
)

ln l
)

which tends to zero whenever [x] is not included in ẑ. Thus

lim
l→∞

P
(
X l
n+1 = x/Zln = z

)
=
|σ(z, x)|∏
λ∈f [z]

|zλ|!

(
m∏
k=1

1bz(xk)

)
|ẑ|τ(|bz|,|bz|)−1−m.

Yet, for x such that [x] ⊂ ẑ, we have either σ(z, x) = ∅ and P
(
X l
n+1 = x/Zln = z

)
= 0, or

|σ(z, x)| =
∏

λ∈f [z]\{ bf(z)}

|zλ|!

in which case (see formula (5))

(8) lim
l→∞

P
(
X l
n+1 = x/Zln = z

)
=
|ẑ|
|ẑ|!

τ(|bz|,|bz|)−1−m
= P

(
X∞n+1 = x/Z∞n = z

)
i.e. the limiting selection mechanism is the one used for the Markov chain (X∞n ).

Formulas (6) and (8) yield

∀y, z ∈ Em lim
l→∞

P
(
X l
n+1 = z/X l

n = y
)

= P
(
X∞n+1 = z/X∞n = y

)
so that the process (X l

n) is a perturbation of the process (X∞n ). A crucial point is that the
perturbations really interact as l goes to infinity. More precisely, the rates of convergence
in (6) and (8) should be logarithmically of the same order.
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8. Convergence of the genetic algorithm

We state now our main results. The proofs are delayed in the remaining sections of
the paper. Several critical quantities appear in the statements, like the critical population
size m∗, the critical heights H1 and H∗e . Explicit bounds of these quantities are obtained in
the proofs of the results; however these bounds involve some intricated constants associated
to the abstract fitness landscape. For the sake of clarity, we state the results without
introducing these constants. Let us also point out that the proofs yield also a lot of
informations concerning the structure of the most probable trajectories of the process.

The first important result deals with the concentration of the equilibrium law of the
algorithm on the ideal attractor K∗.

Theorem 8.1. (critical population size and limiting distribution)
There exists a critical population size m∗ depending on the fitness landscape (E, f, α, β),
the mutation cost a and the scaling parameter c, such that, when the population size m of
the algorithm is greater than m∗, the limit of the sequence of the stationary measures of
the Markov chains (X l

n), l ∈ N, as l goes to infinity, is the uniform distribution over the
ideal attractor K∗, that is

∀m ≥ m∗ ∀x, y ∈ Em ×K∗ lim
l→∞

lim
n→∞

P
(
X l
n = y/X l

0 = x
)

=
1
|K∗|

.

We next state some key facts concerning the cycle decomposition when the population
size is large.

Theorem 8.2. (structure of the cycles)
There exists another critical population size M∗ such that, when the population size m of
the algorithm is greater than M∗, each cycle over the set of attractors K not containing
the attractor K∗ is reduced to one single attractor K.

In fact, for m large enough, the set of the attractors does not depend any more on m (the
attractors are in one to one correspondence with particular subsets of E, see section 6).
The trace of the limiting dynamics on the set of the attractors stabilizes for m large and
does not depend any more on m. This could be proved using the same technique as in [7,
section 7].

Remark. Once more, this limiting structure is obtained as soon as the population size m
is greater than a critical value, the other parameters being fixed. This structure of cycles
is the most favorable one: the bad cycles, i.e. those which slow down the convergence, are
reduced to one single attractor.

In the next results, we suppose that the population size m is larger than m∗. Once
we know that the sequence of the stationary measures of the Markov chains (X l

n), l ∈ N,
17



concentrates on the ideal attractor K∗, the remaining problem is to build a process with the
same limiting law. From now onwards, we consider the inhomogeneous algorithm. That is,
the control parameter l is an increasing function of n and we deal with an inhomogeneous
Markov chain (X l(n)

n )n∈N: we will suppress the superscript l in most notations.
The challenging problem is to adapt the sequence (l(n))n∈N in order to have

∀x ∈ Em lim
n→∞

P (Xn ∈ K∗/X0 = x) = 1.

(l(n) should not increase too fast) and simultaneously, we wish to obtain the best rate
of convergence (l(n) should not increase too slowly). The answer to this now classical
problem is given by Catoni and Trouvé’s results [2,3,27,29].

The critical heights H1 and H∗e . For the definition and the properties of the height of
exit He, we refer the reader to Trouvé’s work [26,27,28,29]. The crucial constant for the
convergence of the algorithm is the critical height H1 defined by

H1 = sup {He(π) : π cycle not containing K∗ } .
The rate of escape from the basin of attraction of K∗ is

H∗e = He(
{
x ∈ Em : f∗ ⊂ [x]

}
).

Proposition 8.3. The critical height H1 is bounded as a function of m. The height H∗e
is greater than an affine function of m.

The proof is done in the appendix.
We now restate in our context Trouvé’s convergence result (Trouvé [27, Theorem 3.23]),

which is an extension of a result by Hajek [13] for the simulated annealing.

Theorem 8.4. Suppose m is larger than m∗. For all increasing sequences l(n) going to
infinity, we have the equivalence

sup
x∈Em

P (Xn 6∈ K∗/X0 = x) −→
n→∞

0 ⇐⇒
∞∑
n=0

l(n)−H1 =∞.

Furthermore, we may adapt the sequence l(n) in order to be trapped in the basin of
attraction of K∗ after a finite number of transitions.

Theorem 8.5. Suppose m is large enough to have m ≥ m∗ and H1 < H∗e .
For all increasing sequences l(n), we have the equivalence

∀x ∈ Em P (∃N ∀n ≥ N f∗ ⊂ [Xn] /X0 = x) = 1

⇐⇒
∞∑
n=0

l(n)−H1 =∞,
∞∑
n=0

l(n)−H
∗
e <∞.

Remark. Proposition 8.3 implies that for m large enough, we have H1 < H∗e so that
sequences l(n) with the desired properties do exist.
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The optimal rate of convergence. For the meaning and the properties of the optimal
convergence exponent, we refer the reader to [2,3,4,27,28,29]. We restate now Trouvé’s
result for the optimal convergence rate, which generalizes Catoni’s work.

Theorem 8.6. There exist two strictly positive constants R1 and R2 such that for all
m ≥ m∗ and all n

R1

nαopt
≤ inf

0≤l(1)≤···≤l(n)
max
x∈Em

P (Xn 6∈ K∗/X0 = x) ≤ R2

nαopt
.

Proposition 8.7. The optimal convergence exponent αopt is bounded between two affine
strictly increasing functions of m i.e. we have

0 < lim inf
m→∞

αopt

m
≤ lim sup

m→∞

αopt

m
< ∞.

The proof is done in the appendix.
The fact that the optimal convergence exponent αopt increases linearly with m shows

that our genetic algorithm is intrinsically parallel: it involves mostly local independent
computations. This nice feature will be further discussed in the next section, where we
compare the parallel (independent) simulated annealing with the genetic algorithm on a
very simple example.

9. The role of the crossover

The crossover operator is integrated into the ground process which drives the dynamics
of the genetic algorithm. It is therefore essential to impose some stability conditions on
it to make the convergence toward the global maxima possible for every fitness function.
Our condition (1),

∀i ∈ E β((i, i), (i, i)) = 1,

is the simplest form of such a requirement.

Proposition 9.1. Suppose there exist i and e such that i 6= e and

β((i, i), (e, e)) > 0 ,
∀j ∈ E \ {i} β((j, j), (j, j)) = 1 .

Then there exists a fitness function f such that, whatever the population size m ≥ 2, the
mutation cost a and the scaling factor c,

∀x ∈ Em lim
l→∞

lim
n→∞

P
(
[X l

n] ⊂ f∗/X l
0 = x

)
= 0 .
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The proof is done in the appendix.
Instead of imposing a general condition like (1), one could impose a condition depending

on a particular fitness function f . For instance, convergence can be ensured if

∀i ∈ f∗ β((i, i), (i, i)) = 1

or even if β(f∗) = f∗ (the notation β(f∗) is explained before lemma 6.2).
The condition (2),

∀i, j ∈ E β((i, j), (i, j)) > 0,

is not as crucial as the first one. However it makes the analysis of the set of attractors
somewhat simpler. Without it, one should impose a further restriction in the definition of
attractors (definition 6.1) so that

∀x ∈ K P (X∞n+1 ∈ K/X∞n = x) > 0 ,

otherwise the process might escape instantaneously from K with probability one. An
example of such a condition is

iii) ∀x ∈ K ∀i, j ∈ [x] β((i, j), (i, j)) > 0.

The condition (3),

∀i1, j1, i2, j2 ∈ E β((i1, j1), (i2, j2)) = β((j1, i1), (j2, i2)),

is superfluous and can be removed without affecting the analysis. However, it is a natural
condition of symmetry.

An important issue is to understand the impact of the crossover on the speed of conver-
gence of the algorithm. A natural direction for future research is to find how one should
implement efficiently the crossover operator in order to increase significantly the optimal
convergence exponent for a specific class of fitness functions. Let us see what happens on
a small numerical example.

We consider the space E = {0, 1}4 endowed with the mutation and crossover kernels
(α, β) defined in section 4. We define the fitness function f by

f({0000}) = {1000}, f({1000, 0100, 0010, 0001}) = {900},
f({1100, 1010, 1001, 0110, 0101, 0011}) = {800},

f({1110, 1101, 1011, 0111}) = {0}, f({1111}) = {1100}

so that f is a function of the number of digits of the individual equal to one.
Let β0 be the identity crossover kernel, that is

∀i1, j1, i2, j2 ∈ E β0((i1, j1), (i2, j2)) =
1
2
δ(i1, i2)δ(j1, j2) +

1
2
δ(i1, j2)δ(j1, i2).
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The algorithm with β0 corresponds to a genetic algorithm without crossover, that is a
mutation–selection algorithm. Let us denote by H1(β0), αopt(β0) the critical height and
the optimal exponent associated to the algorithm running with the crossover β0.

To compute H1 we look at the trajectories of minimal cost which start from the attractor
K(0000) and end into the attractor K(1111). With β0 (i.e. no crossover) and a sufficiently
large population size, the best way is to let an individual follow a mutation path like

0000→ 0100→ 0101→ 1101→ 1111

while all other individuals remain in 0000. Whenever this explorer reaches 1111, the
whole population jumps on 1111. This trajectory requires four mutations and an anti–
selection cost of c(3f(0000) − f(0100) − f(0101) − f(1101)), so that its global cost is
H1(β0) = 4a + 1300c. When a crossover mechanism is available, it is possible to build
more efficient paths which avoid the difficult saddles. In our example, a good way to avoid
the anti–selection of an individual containing three digits equal to one (like 1101) is to let
two individuals mutate from 0000 to 1100 and 0011 simultaneously and then to perform a
crossover between them:

(0000, 0000)→ (1000, 0010)→ (1100, 0011)→ (1111, 0000).

This requires four mutations, an anti–selection cost of c(2f(0000)− f(1000)− f(0010)) so
that the global cost is H1(β) = 4a+ 200c, which is much less than H1(β0).

We finally examine the rate of increase of the optimal convergence exponent when the
population size is sufficiently large. We obtain analogously

lim
m→∞

αopt(β)
m

=
min(a, 100c)

4a+ 200c
> lim

m→∞

αopt(β0)
m

=
min(a, 100c)
4a+ 1300c

.

Consider now m independent simulated annealing algorithms running over this fitness
landscape (the moves of the particle are determined by the mutation kernel α and the
simulated annealing does not make use of the crossover mechanism). We keep track of the
best point found by the m algorithms. The optimal convergence exponent of this process
is m/10. Trouvé proves that in general the optimal convergence exponent for parallel
annealing based on periodically interacting searches is always worse than for independent
multiple searches [25]. Introducing an interaction between simulated annealing algorithms
may therefore damage the speed of convergence. We see that, for large populations, the
optimal exponent of m independent simulated annealing is always better than the optimal
exponent αopt(β0) of the genetic algorithm without crossover. However, the situation
changes radically whenever a crossover mechanism is available. Indeed, if we choose for
instance a = 100c, we obtain αopt(β) ∼ m/6 which outperforms the m independent
simulated annealing algorithms. An appropriate cooperation mechanism can therefore
enhance significantly the speed of convergence.
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10. Asymptotic expansion of P
(
X l
n+1 = v/X l

n = u
)

The aim of this section is to show how our model fits into the framework of the gener-
alized simulated annealing. What we have to do is to study the asymptotic behaviour of
the transition matrix of (X l

n) as l goes to infinity. By the very construction of the process
(X l

n), we have

P
(
X l
n+1 = v/X l

n = u
)

=∑
y,z∈Em

P
(
X l
n+1 = v/Zln = z

)
P
(
Zln = z/Y ln = y

)
P
(
Y ln = y/X l

n = u
)
.

For each y, z in Em,

P
(
X l
n+1 = v/Zln = z

)
P
(
Zln = z/Y ln = y

)
P
(
Y ln = y/X l

n = u
)
∼

l→∞

(9) α(u, y)β(y, z) γ(z, v) exp
(
−
(
ad(u, y) + c

m∑
k=1

(f̂(z)− f(vk))
)

ln l
)

where we note for u, y in Em

α(u, y) =
∏

k:uk 6=yk

α(uk, yk)

and d(u, y) is the Hamming distance between the vectors u and y, i.e.

d(u, y) = card { k : 1 ≤ k ≤ m, uk 6= yk }.
The above quantity (9) vanishes whenever α(u, y)β(y, z) γ(z, v) = 0.
Let D1(u, v) be the set of all four–uples (u, y, z, v) satisfying α(u, y)β(y, z) γ(z, v) > 0.
We define next the communication cost V1 on Em × Em by

V1(u, v) = min
(u,y,z,v)∈D1(u,v)

ad(u, y) + c

m∑
k=1

(f̂(z)− f(vk)).

and we note D
∗
1(u, v) the elements of D1(u, v) which realize the above minimum. Putting

q1(u, v) =
∑

(u,y,z,v)∈D∗1(u,v)

α(u, y)β(y, z) γ(z, v),

we have
P
(
X l
n+1 = v/X l

n = u
)
∼

l→∞
q1(u, v) exp (−V1(u, v) ln l) .

Moreover, notice that for each u, v in Em,

P
(
X l
n+1 = v/X l

n = u
)

= 0 ⇐⇒ V1(u, v) =∞ ⇐⇒ q1(u, v) = 0.

We are now in the framework of the generalized simulated annealing studied by Trouvé
[26,27,28,29]. That is, the transition probabilities of the process (X l

n) form a family of
Markov kernels on the space Em indexed by l which is admissible for the communication
kernel q1 and the cost function V1 [27, Definition 3.1].
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11. The paths and their costs

If S is an arbitrary set, S(N) denotes the set of paths in S, that is the set of finite
sequences of elements of S. A path s in S is noted indifferently

s = (s1, · · · , sr), s = (s1, · · · , sr) or s = s1 → · · · → sr

and its length is noted |s| (r in the above example). A path s in S is said to join two
elements t1 and t2 if s1 = t1 and s|s| = t2; the set of all paths in S joining the points t1
and t2 is noted S(N)(t1, t2).
We will consider paths in the sets E,Em and P(E). Paths of Em will mostly be denoted
by the letter p and paths of P(E) by the letter q.
By Dm we denote the paths in Em which correspond to possible trajectories of the pro-
cess (X l

n), i.e. the paths p in Em satisfying

∀k 1 ≤ k < |p| V1(pk, pk+1) <∞.
The V1–cost of such a path is

V1(p) =
|p|−1∑
k=1

V1(pk, pk+1).

Notice that for the empty path (which has a null length), the cost is zero.
If p belongs to Em(N) \Dm, we put V1(p) =∞.
Similarly, by D

m
we denote the paths in Em which correspond to possible trajectories for

the whole process (the number of transitions r being variable)

X l
n → Y ln → Zln → X l

n+1 → Y ln+1 → · · · → Zln+r−1 → X l
n+r

i.e. such a path p includes the intermediate populations Y ln+k and Zln+k, 1 ≤ k < r, has a
length equal to 1 modulo 3 and satisfies

∀k 1 ≤ 3k < |p| α(p3k−2, p3k−1)β(p3k−1, p3k) γ(p3k, p3k+1) > 0.

The corresponding cost function V is defined by

V (p) =
∑

1≤3k<|p|

a d(p3k−2, p3k−1) + c
m∑
h=1

(
f̂(p3k)− f(p3k+1

h )
)

if the path p belongs to D
m

(here p3k+1
h is the h–th component of the vector p3k+1) and

V (p) =∞ otherwise. We put also for y, z in Em

Dm(y, z) = Dm ∩ Em(N)(y, z) , D =
⋃

m∈N∗
Dm ,

and we define similarly D
m

(y, z), D (just replace D by D in the above formulas).
The bracket operator [ ] provides a natural projection from the set ∪m∈N∗Em(N) onto
P(E)(N): with each path p = (p1, · · · , pr) in Em we associate the path [p] = ([p1], · · · , [pr])
in P(E). Finally, we put [D] = { [p] : p ∈ D }.
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12. The minimal communication cost and the virtual energy

Definition 12.1. We define the minimal communication cost V for y and z in Em by

V (y, z) = inf {V1(p) : p ∈ Dm(y, z) }.

Notice that for all x in Em, we have V (x, x) = 0.
If F,G are two subsets of Em, we define

V (F,G) = inf {V1(p) : p ∈ Dm, p1 ∈ F, p|p| ∈ G } = inf {V (y, z) : y ∈ F, z ∈ G }.

Let g be a graph on Em. The cost of g is

V (g) =
∑

(x→y)∈g

V (x, y).

This definition works also for a path p in Em if we consider the path as a graph over Em.
Notice that for the empty graph (which has no arrows), the cost is zero.
We recall that an x–graph is a graph with no arrow starting from x and such that for
any y 6= x there exists a unique path in g leading from y to x. The set of all x–graphs is
denoted by G(x). For more details and notations concerning graphs, see [10, chapter 6].

Definition 12.2. The virtual energy W associated with the cost function V is defined by

∀x ∈ Em W (x) = min {V (g) : g ∈ G(x) }.

We put also for any subset F of Em

W (F ) = min {W (x) : x ∈ F }, W ∗ = {x ∈ Em : W (x) = W (Em) }.

Proposition 5.4 of [7] shows that this quantity could equivalently be defined through the
cost function V1 instead of V . The point is that the sequence of the stationary measures
of the Markov chains (X l

n), l ∈ N, concentrates on the set W ∗ as l goes to infinity.

Proposition 12.3. (Freidlin and Wentzell)

∀x ∈ Em lim
l→∞

lim
n→∞

P
(
X l
n ∈W ∗/X l

0 = x
)

= 1.

We face here the same difficulty as in the case of the mutation–selection algorithm: the
size of the state space increases geometrically with the population size m. Anyway, we are
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mostly interested in the way the chain (X l
n) visits the populations of the attractors K. We

use the same technique as in [7]. Since

∀x ∈ Em ∃K ∈ K V (x,K) = 0,

then theorems 5.8 and 7.3 of [7] show that the dynamics of the process may be studied by
considering only the restrictions of the communication cost V and the virtual energy W
to the set of the populations belonging to the attractors. Furthermore, we have

∀K ∈ K ∀x, y ∈ K V (x, y) = 0

so that
∀K1,K2 ∈ K ∀x1 ∈ K1 ∀x2 ∈ K2 V (x1, x2) = V (K1,K2)

and similarly
∀K ∈ K ∀x ∈ K W (x) = W (K).

The functionals W and V may thus be seen as defined on the set of attractors K rather
than on the set of populations belonging to attractors.

For the sake of completeness, we recall also the definition of the communication altitude,
as well as the construction of the hierarchy of cycles. These tools will only be used for
theorem 8.2. For the details, we refer the reader to [27,28] as well as to [8, section 4] where
they are used to compute spectral estimates.

Definition 12.4. (Trouvé, [27, Definition 3.15])
The communication altitude A(K1,K2) between two distinct attractors K1 and K2 is

A(K1,K2) = inf { max
1≤k<|p|

W (pk) + V (pk, pk+1) : p ∈ Dm, p1 ∈ K1, p
|p| ∈ K2 }.

For any K in K, we put A(K,K) = W (K).

Definition 12.5. Let λ ∈ R. We define an equivalence relation Rλ on the set

Wλ = {K ∈ K : W (K) ≤ λ }
by

∀K1,K2 ∈Wλ, K1RλK2 ⇐⇒ A(K1,K2) ≤ λ.

Proposition 12.6. (Trouvé, [27, Proposition 3.21])
The set of cycles in K associated with the cost function V is

C(K) =
⋃
λ∈R+

Wλ

/
Rλ

where Wλ

/
Rλ is the quotient set of the equivalence classes of Wλ for the relation Rλ.

We will now study the costs of the transitions between the attractors. As it turns out,
the costs of the bad transitions increase linearly with the population size m, whereas the
costs of the good transitions remain bounded (as functions of m).

25



13. The costs of the bad transitions

We distinguish two kinds of bad transitions: those which lose some peak fitness indi-
viduals and those which decrease the fitness.

Lemma 13.1. (loss of diversity in f∗)
Let K1,K2 be two elements of K such that [K1] ⊂ f∗, [K2] ⊂ f∗ (i.e. K1, K2 ∈ K∗).
We have

V (K1,K2) ≥
⌊

m

2(|f∗|+ 1)

⌋
min (a, cδ∗) card ([K1] \ [K2])

where δ∗ = min{ f(f∗)− f(i) : i 6∈ f∗ }.

Proof. Let K1,K2 be two attractors of K∗. Put [K1] \ [K2] = { e1, · · · , er } and let p be a
path joining the attractors K1 and K2, i.e. p1 ∈ K1, p

|p| ∈ K2. We define for ι in {1 · · · r},

t(ι) = min { k : 0 ≤ k < |p|, k ≡ 0 (mod 3), eι 6∈ [pk+1] ∩ [pk+2] ∩ [pk+3] }

i.e. t(ι) is the last time equal to 0 modulo 3 before the disappearance of eι in the path p.
We make the conventions p0 = p1 and p|p|+1 = p|p|+2 = p|p|.
The transition mechanism implies the following fact:
for each ι in {1 · · · r}, there exists hι in {1 · · · |p̂t(ι)|} such that

∀h τ(hι − 1, |p̂t(ι)|) ≤ h < τ(hι, |p̂t(ι)|) p
t(ι)+1
h ∈ f∗ =⇒ p

t(ι)+1
h = eι.

Therefore, the r sets indexed by ι in {1 · · · r}

{ t(ι), t(ι) + 1, t(ι) + 2 } × {h : τ(hι − 1, |p̂t(ι)|) ≤ h < τ(hι, |p̂t(ι)|) }

have pairwise empty intersections, and it follows that

V (p) ≥
r∑
ι=1

τ(hι,|bpt(ι)|)−1∑
h=τ(hι−1,|bpt(ι)|) c

(
f̂(pt(ι))− f(pt(ι)+1

h )
)

+ a
(
1− δ(pt(ι)+1)

h , p
t(ι)+2
h )

)
.

Let ι belong to {1 · · · r} and suppose

c
(
f̂(pt(ι))− f(pt(ι)+1

h )
)

+ a
(
1− δ(pt(ι)+1)

h , p
t(ι)+2
h )

)
= 0

for some h satisfying τ(hι−1, |p̂t(ι)|) ≤ h < τ(hι, |p̂t(ι)|). This implies pt(ι)+1
h = p

t(ι)+2
h = eι.

Suppose that

1 +
1
2
(
τ(hι, |p̂t(ι)|)− τ(hι − 1, |p̂t(ι)|)

)
=
⌊

m

2(|p̂t(ι)|+ 1)

⌋
+ 1
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such terms vanish. Necessarily, there exists an odd index h such that

τ(hι − 1, |p̂t(ι)|) ≤ h < τ(hι, |p̂t(ι)|) and p
t(ι)+1
h = p

t(ι)+2
h = p

t(ι)+1
h+1 = p

t(ι)+2
h+1 = eι.

The crossover operator does not affect the pair (pt(ι)+2
h , p

t(ι)+2
h+1 ) (by condition (1)) and

we have also p
t(ι)+3
h = p

t(ι)+3
h+1 = eι. Thus the individual eι is present in the popula-

tions pt(ι)+1, pt(ι)+2, pt(ι)+3, which contradicts the definition of t(ι).
We have proved that less than

⌊
m/(2(|p̂t(ι)|+ 1))

⌋
terms vanish in each sum (1 ≤ ι ≤ r)

τ(hι,|bpt(ι)|)−1∑
h=τ(hι−1,|bpt(ι)|) c

(
f̂(pt(ι))− f(pt(ι)+1

h )
)

+ a
(
1− δ(pt(ι)+1)

h , p
t(ι)+2
h )

)
.

Moreover, we know that f̂(pt(ι)) = f(f∗) (since eι ∈ [pt(ι)]), and each non–zero term is
necessarily greater than min (a, cδ∗), so that the above sum is greater than(
τ(hι − 1, |p̂t(ι)|)− τ(hι, |p̂t(ι)|)−

⌊
m

2(|p̂t(ι)|+ 1)

⌋)
min (a, cδ∗)

=
⌊

m

2(|p̂t(ι)|+ 1)

⌋
min (a, cδ∗).

Yet p̂t(ι) ⊂ f∗ so that |p̂t(ι)| ≤ |f∗|. Finally we obtain

V (p) ≥
⌊

m

2(|f∗|+ 1)

⌋
min (a, cδ∗) r

(where r = card ([K1] \ [K2])) and taking the infimum over all paths p joining the attrac-
tors K1 and K2 yields the desired inequality. �

To obtain a lower bound for the communication cost between two attractors, we will
study the possible trajectories of a pair of contiguous individuals within a given path of
populations joining the two attractors.

Definition 13.2. (admissible paths)
Let q be a path in P(E). We say that the pair (ik, jk), 1 ≤ k ≤ |q|, of paths in E is
admissible for q if

i) ∀k ∈ {1 · · · |q|} ik ∈ qk, jk ∈ qk

ii) ∀k 1 ≤ 3k < |q|
• either i3k−2 = i3k−1 or α(i3k−2, i3k−1) > 0
• either j3k−2 = j3k−1 or α(j3k−2, j3k−1) > 0
• β((i3k−1, j3k−1), (i3k, j3k)) > 0
• f(i3k+1) = f(j3k+1) =⇒ i3k+1 = j3k+1.
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The set of all pair of paths admissible for the path q is denoted by A(q).

We define the quantity ρ(K1,K2) for K1 and K2 in K to be the infimum

inf
{ ∑

1≤3k<|q|

a
(
2− δ(i3k−2, i3k−1

)
− δ(j3k−2, j3k−1)) + c

(
2f̂(q3k)−f(i3k+1)−f(j3k+1)

)
where q ∈ [D], q1 = [K1], q|q| = [K2], (ik, jk)1≤k≤|q| ∈ A(q), i1 = j1

}
.

We put
ρ = min

{
ρ(K1,K2) : K1,K2 ∈ K, ρ(K1,K2) > 0

}
.

Since the quantities ρ(K1,K2) are finite sums involving terms of the form a or c
(
f(i)−f(j)

)
(where f(i) ≥ f(j)), we have ρ ≥ min (a, cδ) > 0.

Lemma 13.3. Let K1 and K2 belong to K. Suppose ρ(K1,K2) = 0.
Then there exists a path q in the set [D] such that

q1 = [K1], q|q| = [K2] and f̂(q1) ≤ f̂(q4) ≤ · · · ≤ f̂(q|q|−3) ≤ f̂(q|q|),

i.e. the sequence
(
f̂(q3k+1)

)
, 1 ≤ 3k + 1 ≤ |q|, is non–decreasing.

In particular, we have f(K1) ≤ f(K2).

Corollary 13.4. Let K1 and K2 be two attractors such that f(K1) > f(K2).
Then ρ(K1,K2) ≥ ρ ≥ min (a, cδ) > 0.

Proof. Let K1 and K2 be as in the hypothesis of lemma 13.3. By definition of ρ(K1,K2),
there exists a path q in [D] and a pair (ik, jk), 1 ≤ k ≤ |q|, of paths in E admissible for q
such that q1 = [K1], q|q| = [K2], i1 = j1 and∑
1≤3k<|q|

a
(
2− δ(i3k−2, i3k−1

)
− δ(j3k−2, j3k−1)) + c

(
2f̂(q3k)− f(i3k+1)− f(j3k+1)

)
= 0.

This relation implies that, for each k, 1 ≤ 3k < |q|, we have

(10) i3k−2 = i3k−1, j3k−2 = j3k−1, f(i3k+1) = f(j3k+1) = f̂(q3k).

Since the pair of paths (ik, jk) is admissible for the path q, the last of the above equalities
implies that i3k+1 = j3k+1 for each k, 1 ≤ 3k < |q|. Notice also that i1 = j1.
Moreover the crossover has no effect when two identical individual mates (condition (1)),
so that

∀k 1 ≤ 3k < |q| i3k = j3k = i3k−1 = j3k−1.(11)

Therefore, we conclude from (10) and (11) that

∀k 1 ≤ 3k < |q| f̂(q3k+1) = f̂(q3k) ≥ f̂(q3k−2)

and the sequence
(
f̂(q3k+1)

)
, 1 ≤ 3k + 1 ≤ |q|, is non–decreasing. �
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Lemma 13.5. (lower bound for the communication cost)
Let K1 and K2 belong to K. We have the inequality

V (K1,K2) ≥
(
m

4
− Λ + 3

2

)
ρ(K1,K2).

(We recall that Λ = max { |fλ| : λ ∈ R∗+ }.)

Proof. Let p be a path in D joining the attractors K1 and K2 (i.e. p1 ∈ K1, p
|p| ∈ K2).

We make the convention p0 = p1. Putting

τk =
1
2
(
τ(|p̂3k−3|, |p̂3k−3|)− 1

)
= |p̂3k−3|

⌊
m

2(|p̂3k−3|+ 1)

⌋
, 1 ≤ 3k < |p|,

we have

V (p) =
∑

1≤3k<|p|

m∑
h=1

a
(
1− δ(p3k−2

h , p3k−1
h )

)
+ c

(
f̂(p3k)− f(p3k+1

h )
)

≥
∑

1≤3k<|p|

τk−1∑
h=0

a
(
2− δ(p3k−2

2h+1, p
3k−1
2h+1

)
− δ(p3k−2

2h+2, p
3k−2
2h+2))

(12) + c
(
2f̂(p3k)− f(p3k+1

2h+1)− f(p3k+1
2h+2)

)
.

Let h belong to {1 · · ·Λ}. Let m = 2(h+1)q+r be the euclidean division of m by 2(h+1);
we have (since h ≥ 1 and 0 ≤ r < 2(h+ 1))

2h
⌊

m

2(h+ 1)

⌋
= 2hq = 2h

m− r
2(h+ 1)

=
h

h+ 1
(m− r) > 1

2
(
m− 2(h+ 1)

)
≥ m

2
− Λ− 1.

For each k, 1 ≤ 3k < |p|, the very definition of Λ implies 1 ≤ |p̂3k−3| ≤ Λ whence

τ(|p̂3k−3|, |p̂3k−3|) > m

2
− Λ.

It follows from (12) that (the · · · stands for the summand in the last sum of (12))

V (p) ≥
∑

1≤3k<|p|

∑
0≤h<τk

· · · · · · =
∑

1≤3k<|p|

∑
1≤2h+1<τ(|bp3k−3|,|bp3k−3|)

· · · · · ·

≥
∑

1≤3k<|p|

∑
1≤2h+1<m/2−Λ

· · · · · · =
∑

1≤2h+1<m/2−Λ

∑
1≤3k<|p|

· · · · · ·
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Yet, for each h such that 1 ≤ 2h+1 < m/2−Λ, the pair of paths (pk2h+1, p
k
2h+2), 1 ≤ k ≤ |p|,

is admissible for [p] and satisfy also p1
2h+1 = p1

2h+2: as a consequence, the sum∑
1≤3k<|p|

a
(
2− δ(p3k−2

2h+1, p
3k−1
2h+1

)
− δ(p3k−2

2h+2, p
3k−2
2h+2)) + c

(
2f̂(p3k)− f(p3k+1

2h+1)− f(p3k+1
2h+2)

)
is greater than ρ(K1,K2) and finally V (p) ≥ (m/4− (Λ + 3)/2) ρ(K1,K2). Taking the
infimum over all the paths joining K1 and K2 gives the inequality of the lemma. �

In the same flavor as the two preceding lemmas, we have the

Proposition 13.6. Let K1,K2 be two elements of K such that f(K1) = f(K2).
Then

V (K1,K2) ≥ min (a, cδ) min
(⌊

m

2(Λ + 1)

⌋
card

(
[K1] \ [K2]

)
,
m

4
− Λ + 3

2

)
.

Proof. Let p be a path in Em joining the attractors K1 and K2. We consider two cases.
• Suppose the sequence (f̂(p3k+1)), 1 ≤ 3k+ 1 ≤ |p|, is not non–decreasing: there exists
an index h, 1 < 3h+ 1 ≤ |p|, such that f(K1) > f̂(p3h+1) and an attractor K3 satisfying

V (p3h+1, K3) = 0, f(K3) = f̂(p3h+1).

Clearly V (p) ≥ V (K1,K3) and corollary 13.4 and lemma 13.5 imply

V (K1,K3) ≥ min (a, cδ)
(
m

4
− Λ + 3

2

)
.

• Suppose the sequence (f̂(p3k+1)), 1 ≤ 3k + 1 ≤ |p|, is non–decreasing. Then we have

∀k 1 ≤ 3k + 1 ≤ |p| f̂(p3k+1) = f(K1) = f(K2) = θ.

We modify (just for the purpose of the proof!) the function f in the following way:
for each i in E, if f(i) is strictly greater than θ, we set f(i) = θ − δ. The attractors K1

and K2 then become elements of K∗ and we are in a situation analogous to lemma 13.1.
Moreover the cost of the path p, i.e. the quantity

V (p) =
∑

1≤3k<|p|

a d(p3k−2, p3k−1) + c

m∑
h=1

(
f̂(p3k)− f(p3k+1

h )
)

decreases when evaluated with the new function f . Actually, for any indices h and k such
that 1 ≤ 3k < |p|, 1 ≤ h ≤ m, the value f(p3k+1

h ) remains unchanged (since it was lower
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or equal than θ) and the value f̂(p3k), which was greater or equal than θ, becomes equal
to θ (since f̂(p3k+1) = θ and [p3k+1] ⊂ [p3k], the set [p3k] necessarily intersects the set fθ).
Application of lemma 13.1 yields

V (p) ≥
⌊

m

2(|fθ|+ 1)

⌋
min (a, cδθ) card ([K1] \ [K2])

where δθ = min{ θ − f(i) : i ∈ E, f(i) < θ }.
In both cases, the inequality of the lemma is satisfied. �

14. The costs of the good transitions

We distinguish also two kinds of good transitions: those which create some new peak
fitness individuals and those which increase the fitness.
We note by R the minimal number of transitions necessary to join two arbitrary points of
E through the kernel α, i.e. R is the smallest integer satisfying

∀i, j ∈ E ∃ r ≤ R ∃e1, · · · , er+1 ∈ E such that
e1 = i, er+1 = j, ∀k ∈ {1, · · · , r} α(ek, ek+1) > 0.

Lemma 14.1. (increasing of diversity in f∗)
Let

V ∗ = max
i,j∈f∗

min
{
ar + c

r+1∑
k=1

f(f∗)− f(ek) : e1 = i, er+1 = j,
r∏

k=1

α(ek, ek+1) > 0
}
.

We have
V ∗ ≤ aR+ c(R− 1)∆ ≤ (a+ c∆)|E| < ∞

and
sup
m∈N∗

max
K1∈K∗, K1 6=K∗

min
K2∈K∗, [K1] [K2]

V (K1,K2) ≤ V ∗.

(We recall that K∗ is the unique attractor such that [K∗] = f∗.)

Proof. The inequalities V ∗ ≤ aR+ c(R− 1)∆ ≤ (a+ c∆)|E| < ∞ are straightforward.
Let K1 belong to K∗ \ {K∗}. There exists a point i in [K1], a point j in f∗ \ [K1] and a
path e1 → · · · → er+1 in E joining i and j such that

∀k ∈ {1 · · · r} α(ek, ek+1) > 0, ∀k ∈ {2 · · · r} ek 6∈ f∗,

ar + c

r+1∑
k=1

f(i)− f(ek) ≤ V ∗.
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Let p be a path in Em defined by the extremal conditions

p1 ∈ K1 with p1
m = i and pr+1 ∈ K2 where K2 ∈ K∗, [K2] = [K1] ∪ {j}

(there exists a unique attractor K2 satisfying [K2] = [K1] ∪ {j})
and having for intermediate populations

∀k ∈ {2 · · · r} ∀h ∈ {1 · · ·m− 1} pkh = p1
h, pkm = ek.

In this path, the first m− 1 components remain fixed and the last component follows the
path e1 → · · · → er+1. Clearly [K1]  [K2] and V (K1,K2) ≤ V (p) ≤ V ∗. �

Lemma 14.2. (increasing of fitness)
Let

V + = max
i∈E\f∗

min
{
ar + c

r∑
k=1

f(i)− f(ek) : e1 = i, f(er+1) > f(i),
r∏

k=1

α(ek, ek+1) > 0
}
.

We have
V + ≤ aR+ c(R− 1)∆ ≤ (a+ c∆)|E| < ∞

and

(13) sup
m∈N∗

max
K1∈K\K∗

min
K2∈K, f(K2)>f(K1)

V (K1,K2) ≤ V +.

Proof. The proof is similar to the proof of the preceding lemma. Let K1 belong to K \K∗
and let i belong to [K1]. By definition of V +, there exists a path e1 → · · · → er+1 in E
such that e1 = i, f(er+1) > f(i) and

∀k ∈ {1 · · · r} α(ek, ek+1) > 0, f(ek) ≤ f(i),

ar + c
r∑

k=1

f(i)− f(ek) ≤ V +.

There exists a subdivision k1 = 1 < k2 < · · · < ks−1 < ks = r+ 1 of {1 · · · r + 1} such that
f(ek1) = f(ek2) = · · · = f(eks−1) = f(i) and

∀k ∈ {1 · · · r + 1} \ { k1, · · · , ks } f(ek) < f(i).

For each ι, 1 < ι < s, let Kι be the unique attractor such that [Kι] = [K1]∪{ ek2 , · · · , ekι }.
Let Ks be the attractor { (er+1, · · · , er+1) } (i.e. Ks contains only the population whose
all components are equal to er+1). Clearly, the attractor Ks satisfies f(Ks) > f(K1).
Let p be a path in Em such that, for each ι in {1 · · · s}, pkι belongs to Kι and

∀ι ∈ {1 · · · s− 1} ∀k ∈ { kι + 1, · · · , kι+1 − 1 } pkm = ek, ∀h ∈ {1 · · ·m− 1} pkh = pkιh

(during the transition from Kι to Kι+1, the first m−1 components remain fixed and the last
component follows the mutation path ekι → · · · → ekι+1). The path p belongs to Dm, joins
the attractorsK1 andKs, and its cost is less than V +. It follows that V (K1,Ks) ≤ V +. �
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15. The asymptotic dynamics of the algorithm

In this section, we put together the results of the previous sections 13 and 14 in order
to prove theorem 15.5 which implies theorem 8.1. We give an explicit upper bound on the
critical population size m∗ in corollary 15.6. We end the section with theorem 15.7, which
is theorem 8.2 with an explicit upper bound on M∗.

The basic tools used to study the asymptotic dynamics of the process are the Freidlin-
Wentzell graphs [10, chapter 6]. For completeness, we recall the basic definition.

Definition 15.1. (X–graphs)
Let H be a finite set and let X be a subset of H. An X–graph is a graph consisting of
arrows h1 → h2 (h1 ∈ H \X, h2 ∈ H,h 1 6= h2) satisfying

(1) every point of H \X is the initial point of exactly one arrow;
(2) there are no closed cycles in the graph.

Condition (2) may be replaced by
(2′) for any point h1 of H \X there exists a sequence of arrows leading from h1 to some

point h2 of X.
The set of X–graphs is denoted by G(X) and we will use the letter g to denote graphs.

We will consider graphs on the set of attractors K.
For any graph g over K, we define its cost by

V (g) =
∑

(K1→K2)∈g

V (K1,K2).

If X and Y are two subsets of K, we denote by GX(Y ) the set of Y –graphs over X ∪ Y .
For instance, we have G(X) = GK(X) = GK\X(X).
We define

WX(Y ) = min
g∈GX(Y )

∑
(K1→K2)∈g

V (K1,K2) = min
g∈GX(Y )

V (g).

We note G∗X(Y ) the set of graphs in GX(Y ) which realize this minimum.
If g is a graph over K, its restriction g|λ to the level λ is the graph

g|λ = { (K1 → K2) ∈ g : K1 ∈ Kλ}.

Theorem 15.2. (sufficient condition to ensure W ∗ = {K∗})
If the inequality∑
λ∈f(E\f∗)

WKλ(K+
λ ) + WK∗(K

∗) <
∑

λ∈f(E\f∗)

WKλ(K−λ ∪ K
+
λ ) + (14)

min
(

min
K∈K∗\{K∗}

WK∗({K} ∪ K−∗ ) , WK∗(K−∗ ) − max
K∈K−∗

min
K′, f(K′)6=f(K)

V (K,K ′)
)
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is satisfied, then the minimum of the virtual energy corresponds to the ideal attractor K∗,
i.e. W ∗ = {K∗}, and therefore

∀x ∈ Em lim
l→∞

lim
n→∞

P
(
[X l

n] = f∗/X l
0 = x

)
= 1.

Proof. Let g be a graph over K. We decompose the sum V (g) in the following way:

V (g) =
∑

λ∈f(E)

∑
K1∈Kλ

(K1→K2)∈g

V (K1,K2) =
∑

λ∈f(E)

∑
(K1→K2)∈g|λ

V (K1,K2)

i.e.
V (g) =

∑
λ∈f(E)

V (g|λ).

Suppose now that g is in G(K) for some K in K. Put θ = f(K).
Then g|λ belongs to GKλ(K−λ ∪ K

+
λ ) whenever λ 6= θ whence

(15) V (g|λ) ≥ WKλ(K−λ ∪ K
+
λ ).

We consider two cases, depending upon the value of θ.
• θ = f(f∗). In this case, g|θ belongs to GK∗({K} ∪ K−∗ ) so that

(16) V (g|θ) ≥ WK∗({K} ∪ K−∗ ).

Summing up inequalities (15) and (16) yields

V (g) ≥
∑

λ∈f(E\f∗)

WKλ(K−λ ∪ K
+
λ ) + WK∗({K} ∪ K−∗ ).

Taking the minimum over all g in G(K), we have

W (K) ≥
∑

λ∈f(E\f∗)

WKλ(K−λ ∪ K
+
λ ) + WK∗({K} ∪ K−∗ )

and taking again the minimum over all K in K∗ \ {K∗}, we obtain

(17) min
K∈K∗\{K∗}

W (K) ≥
∑

λ∈f(E\f∗)

WKλ(K−λ ∪ K
+
λ ) + min

K∈K∗\{K∗}
WK∗({K} ∪ K−∗ ).
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• θ 6= f(f∗). Let K ′ be any element of K−θ ∪ K
+
θ ; then g|θ ∪ {(K → K ′)} is a graph

belonging to GKθ (K
−
θ ∪ K

+
θ ) whence

V (g|θ) ≥ WKθ (K
−
θ ∪ K

+
θ )− V (K,K ′)

and this inequality being valid for all K ′ outside Kθ, we have

(18) V (g|θ) ≥ WKθ (K
−
θ ∪ K

+
θ )− min

K′, f(K′) 6=f(K)
V (K,K ′).

Summing up inequalities (15) and (18) yields

V (g) ≥
∑

λ∈f(E)

WKλ(K−λ ∪ K
+
λ ) − min

K′, f(K′)6=f(K)
V (K,K ′).

Taking the minimum over all g in G(K), we obtain

W (K) ≥
∑

λ∈f(E)

WKλ(K−λ ∪ K
+
λ ) − min

K′, f(K′)6=f(K)
V (K,K ′)

and taking again the minimum over all K in K \ K∗ = K−∗ , we have

(19) min
K∈K−∗

W (K) ≥
∑

λ∈f(E)

WKλ(K−λ ∪ K
+
λ ) − max

K∈K−∗
min

K′, f(K′) 6=f(K)
V (K,K ′).

Combining together inequalities (17) and (19), we see that

min
K 6=K∗

W (K) ≥
∑

λ∈f(E\f∗)

WKλ(K−λ ∪ K
+
λ ) + (20)

min
(

min
K∈K∗\{K∗}

WK∗({K} ∪ K−∗ ) , WK∗(K−∗ ) − max
K∈K−∗

min
K′, f(K′)6=f(K)

V (K,K ′)
)
.

We build now a graph g of G(K∗) which describes the most desirable dynamics of our
algorithm. For each λ in f(E \ f∗), we select a graph gλ in the set G∗Kλ(K+

λ ). Let gf(f∗)

be a graph of G∗K∗(K
∗). We define the graph g as the union of the graphs (gλ)λ∈f(E):

(K1 → K2) ∈ g ⇐⇒ ∃λ ∈ f(E) (K1 → K2) ∈ gλ.

Clearly g belongs to G(K∗). Furthermore, we have by construction

V (g) =
∑

λ∈f(E)

V (g|λ) =
∑

λ∈f(E\f∗)

WKλ(K+
λ ) +WK∗(K

∗).
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It follows that

(21) W (K∗) ≤
∑

λ∈f(E\f∗)

WKλ(K+
λ ) +WK∗(K

∗).

Putting together inequalities (20) and (21) and the hypothesis (14) of the theorem, we
see finally that W ∗ = {K∗}. �

Of course, inequality (14) is strongly linked with the optimization problem: the quan-
tities involved there are built with the fitness function f , the mutation kernel α, the
crossover kernel β, the population size m and the parameters a, c. However, this inequal-
ity is of little practical interest: we will now derive stronger and simpler conditions to
ensure W ∗ = {K∗}.

Corollary 15.3. Suppose that

(22) WKλ(K+
λ ) ≤ WKλ(K−λ ∪ K

+
λ ) for all λ in f(E \ f∗) ,

(23) WK∗(K
∗) < WK∗(K−∗ ) − max

K∈K−∗
min

K′, f(K′)6=f(K)
V (K,K ′) ,

(24) WK∗(K
∗) < min

K∈K∗\{K∗}
WK∗({K} ∪ K−∗ )) .

Then W ∗ = {K∗}.

Proof. Clearly, inequalities (22), (23), (24) imply inequality (14). �

We will show that these inequalities hold when the population size m is sufficiently
large. First, the left–hand side member of (23) and (24) is bounded.

Proposition 15.4. The quantity WK∗(K
∗) is bounded as a function of m:

(25) sup
m∈N∗

WK∗(K
∗) < |K∗|V ∗ = 2|f

∗| V ∗ < ∞.

Proof. We build a graph g belonging to GK∗(K
∗) whose cost is less or equal than |K∗|V ∗.

For each K in K∗ \ {K∗}, there exists by lemma 14.1 an attractor K ′ belonging to K∗
such that [K]  [K ′] and V (K,K ′) ≤ V ∗. We consider successively each attractor K
of K∗ \ {K∗} and we add such an arrow (K → K ′) to the graph: the resulting graph g
belongs to GK∗(K

∗) and its cost is less than (|K∗| − 1)V ∗. �
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Theorem 15.5. Let m be an integer such that

(26) ρ

(
m

4
− Λ + 3

2

)
> max

K1∈K−∗
min

K2, f(K2)>f(K1)
V (K1,K2) + WK∗(K

∗) ,

(27)
⌊

m

2(|f∗|+ 1)

⌋
min (a, cδ∗) > WK∗(K

∗) .

For this integer, we have W ∗ = {K∗} and in addition

∀x ∈ Em ∀y ∈ K∗ lim
l→∞

lim
n→∞

P
(
X l
n = y/X l

0 = x
)

=
1
|K∗|

.

Corollary 15.6. There exists a critical population size m∗ such that the conclusion of
theorem 15.5 holds for all m greater than m∗. In addition, m∗ is smaller than

max
(

2(Λ + 3) +
4
ρ

(2|f
∗|V ∗ + V +) ,

2|f
∗|+1V ∗(|f∗|+ 1)
min(a, cδ∗)

)
.

We recall that Λ = max { |fλ| : λ ∈ R∗+ }, δ∗ = min{ f(f∗)− f(i) : i 6∈ f∗ }, ρ is introduced
after definition 13.2, V ∗ in lemma 14.1 and V + in lemma 14.2. Moreover, we have the
crude estimates max(V ∗, V +) ≤ aR+ c(R− 1)∆ and ρ ≥ min(a, cδ).

Proof. The corollary is a straightforward consequence of theorem 15.5 together with in-
equalities (13) and (25). In particular, the conditions (26) and (27) of theorem 15.5 are
fulfilled as soon as

ρ

(
m

4
− Λ + 3

2

)
≥ 2|f

∗| V ∗ + V +,⌊
m

2(|f∗|+ 1)

⌋
min (a, cδ∗) ≥ 2|f

∗| V ∗.

Proof of theorem 15.5. We prove that if the integerm satisfies the inequalities (26) and (27),
then the set of inequalities (22), (23), (24) is fulfilled.
Let λ be in f(E \ f∗) and let g be a graph belonging to GKλ(K−λ ∪ K

+
λ ). This graph may

contain a finite number of transitions from Kλ to K−λ : K1 → K ′1, · · · ,Kr → K ′r. The first
inequality (26) implies that for each Kh, 1 ≤ h ≤ r, there exists K ′′h in K+

λ such that

ρ

(
m

4
− Λ + 3

2

)
> V (Kh,K

′′
h)
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and lemma 13.5 yields V (Kh,K
′′
h) < V (Kh,K

′
h).

Let g̃ be the graph obtained from g by replacing the r arrows K1 → K ′1, · · · ,Kr → K ′r by
K1 → K ′′1 , · · · ,Kr → K ′′r . The graph g̃ is in the set GKλ(K+

λ ) and satisfies V (g̃) ≤ V (g).
This construction being valid for any graph of GKλ(K−λ ∪ K

+
λ ), we have

WKλ(K+
λ ) ≤ WKλ(K−λ ∪ K

+
λ )

for all λ in f(E \ f∗) and the first condition (22) is proved.
Concerning the second condition (23), we notice that any graph g belonging to GK∗(K−∗ )
contains at least an arrow starting from K∗ and ending in K−∗ . Thus

WK∗(K−∗ ) ≥ min
K∈K∗,K′ 6∈K∗

V (K,K ′)

and lemma 13.5 implies

WK∗(K−∗ ) ≥
(
m

4
− Λ + 3

2

)
ρ

which, together with (26), yields (23).
Similarly, any graph belonging to GK∗({K} ∪ K−∗ ) (where K 6= K∗) contains either a
transition from K∗ to an attractor K of f∗ or to an attractor K of K−∗ , so that

min
K∈K∗,K 6=K∗

WK∗({K} ∪ K−∗ ) ≥ min
{
V (K∗,K) : K ∈ K, K 6= K∗

}
and lemmas 13.1 and 13.5 show that this quantity is greater than

min
(⌊

m

2(|f∗|+ 1)

⌋
min (a, cδ∗) ,

(
m

4
− Λ + 3

2

)
ρ

)
so that inequalities (26), (27) imply the third and last condition (24). Corollary 15.3
implies that W ∗ = {K∗}. Thus the sequence of the stationary measures of (X l

n), l ∈ N,
concentrates on K∗ as l goes to infinity (proposition 12.3).

It remains now to prove that the limiting distribution is the uniform distribution
over K∗. We could proceed as in [7] and use the representation formula of the stationary
measure involving Freidlin–Wentzell graphs. However, this result is rather a consequence
of the following fact: the virtual energy possesses a unique minimum at K∗ and the un-
perturbed process (X∞n ) admits a unique invariant probability measure on K∗ (which is
the uniform distribution over K∗). We are thus in a situation analogous to Theorem 4.2
of [10, chapter 6]. �

38



Theorem 15.7. (structure of the cycles)
Let m be such that

(28) min
(⌊

m

2(Λ + 1)

⌋
,

(
m

4
− Λ + 3

2

))
min (a, cδ) > max

(
V +, V ∗

)
.

Then each cycle over the set of attractors K not containing the attractor K∗ is reduced to
one single attractor K.

Proof. We define an order ≺ on the set of attractors K by

∀K1,K2 ∈ K K1 ≺ K2 ⇐⇒ f(K1) < f(K2) or f(K1) = f(K2), [K1] ⊂ [K2].

Notice that this order is an extension of the previous order ≺
∞

i.e.

∀K1,K2 ∈ K K1≺∞K2 =⇒ K1 ≺ K2.

Furthermore, the set K admits a greatest element which is precisely the attractor K∗:

∀K ∈ K K ≺ K∗.

Now let π be a cycle over K not containing K∗. Suppose π is not reduced to one attractor.
Let K be a maximal element of π for the order ≺. Then, for each K ′ in π distinct from K,
we have either f(K ′) < f(K) or f(K ′) = f(K), [K] 6⊂ [K ′].
Proposition 13.6, corollary 13.4 and lemma 13.5 then imply

∀K ′ ∈ π \ {K} V (K,K ′) ≥ min (a, cδ) min
(⌊

m

2(Λ + 1)

⌋
,
m

4
− Λ + 3

2

)
.

Let K ′ be an element of π \ {K} such that V (K,K ′) is minimal. Then A(K,K ′) =
W (K) + V (K,K ′) (where A is the communication altitude) whence

A(K,K ′) ≥ W (K) + min (a, cδ) min
(⌊

m

2(Λ + 1)

⌋
,
m

4
− Λ + 3

2

)
.

Yet lemmas 14.1 and 14.2 show that there exists an attractor K ′′ such that

K ≺ K ′′, K 6= K ′′, V (K,K ′′) ≤ max (V +, V ∗)

whence
A(K,K ′′) ≤ W (K) + max (V +, V ∗).

Inequality (28) yields A(K,K ′′) < A(K,K ′) so that necessarily the attractor K ′′ belongs
to the cycle π: but this contradicts the maximality of K in the ordered set (π,≺). �
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Appendix

Proof of proposition 8.3. To obtain an upper bound on H1, it is enough to consider only
the cycles over the set of attractors K. We also know that the attractors not containing K∗

are reduced to one attractor. Therefore

H1 ≤ max
K∈K\{K∗}

min {V (K,K ′) : K ′ ∈ K, K ′ 6= K } .

Lemmas 14.1 and 14.2 show that H1 ≤ max (V +, V ∗). Similarly, Proposition 1.33 of [28],
proposition 13.6 and lemma 13.5 imply that H∗e is greater than an affine increasing function
of m. �

Proof of theorem 8.7. The definition of αopt is [27, Definition 3.22]

αopt = min
{
W (π)−W (K∗)

He(π)
: π cycle not containing K∗

}
.

For a cycle π not containing K∗, the quantity He(π) remains bounded whereas the virtual
energy W (π) is greater than an affine strictly increasing function of m (a graph belonging
to GK(π) contains necessarily a bad transition). Finally, the virtual energy of the ideal
attractor W (K∗) is bounded as a function of m. �

Proof of proposition 9.1. Let f be constant over E \ {i} and such that f(i) > f(j) for
all j 6= i. We denote by K(j) the attractor associated to the point j (which consists simply
of the uniform population (j, · · · , j)). On one hand we have V (K(i),K(e)) = 0 since a
massive crossover event can transform the uniform population (i, · · · , i) into the uniform
population (e, · · · , e) (such an event does not involve the random perturbations and has a
null cost). On the other hand, the algorithm cannot escape from K(e) without performing
at least one mutation (since β((e, e), (e, e)) = 1, the crossover has no effect on (e, · · · , e)).
Therefore V (K(e),K) > 0 for any attractor K. Let g be a graph in G(K(i)) realizing the
value W (K(i)) (see the beginning of section 15). We remove the arrow starting from K(e)
(which has a positive cost) and we add the arrow K(i) → K(e) (of null cost). This way
we obtain a graph of G(K(e)) whose cost is strictly less than the cost of g. It follows
that W (K(e)) < W (K(i)). Proposition 12.3 implies that the sequence of the stationary
measures does not concentrate on K(i) when the perturbations vanish. �
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