TD 1 : Covering Lemmas

Some notations : U(x, R) is the open ball of center x and radius R, B(x, R) is the closed ball of center x and radius R, \mathcal{L}^n is the Lebesgue measure in \mathbb{R}^n .

Exercise 1.— Almost everywhere Vitali's theorem.

Theorem. Let $E \subset \mathbb{R}^n$ be a Borel set and $\mathcal{F} \subset \{ \text{ closed balls} \}$ be a Vitali covering of E by closed balls, that is, for all $x \in E$,

 $\inf\{\operatorname{diam}(B) : B \in \mathcal{F} \text{ and } x \in B\} = 0.$

Then there exists a countable family of two by two disjoint closed balls $\mathcal{G} = \{B_k\}_{k \in \mathbb{N}} \subset \mathcal{F}$ such that $E \setminus \bigsqcup_k B_k$ is Lebesgue–negligible.

1. Let $W \subset \mathbb{R}^n$ be an open set such that $E \subset W$. Check that

 $\forall x \in E$, $\inf\{\operatorname{diam}(B) : B \in \mathcal{F} \text{ and } x \in B \text{ and } B \subset W\} = 0.$

- 2. Let $1 (1/2)5^{-n} < \theta < 1$. We assume $\mathcal{L}^n(E) < +\infty$.
 - (a) Show that there exists a countable family of two by two disjoint balls $\{B_i\}_{i\in\mathbb{N}}$ such that for all i, $B_i \subset W$ and

$$\mathcal{L}^n\left(E - \bigcup_i B_i\right) \le \left(1 - (1/2)5^{-n}\right)\mathcal{L}^n(E).$$

(b) Infer that there exists a finite family of two by two disjoint balls $\{B_i\}_{i=1}^N$ such that for all $i, B_i \subset W$ and

$$\mathcal{L}^n\left(E - \bigcup_{i=1}^N B_i\right) \le \theta \mathcal{L}^n(E).$$

(c) Show that there exist a countable family of two by two disjoint balls $\mathcal{G} = \{D_i\}_{i \in \mathbb{N}}$ and an increasing sequence of positive integers $(N_k)_{k \in \mathbb{N}^*}$ such that for all $k \ge 1$,

$$\mathcal{L}^n\left(E - \bigcup_{i=1}^{N_k} D_i\right) \le \theta^k \mathcal{L}^n(E).$$

- (d) Conclude the case $\mathcal{L}^n(E) < +\infty$.
- 3. Prove the theorem (without assuming $\mathcal{L}^n(E) < +\infty$ any more).

Notice that the same proof can be done with the exterior Lebesgue measure \mathcal{L}^{n*} (since we did not use the additivity but only the subadditivity) and thus obtain the result for any $E \subset \mathbb{R}^n$ without assuming that E is Borel or measurable.

4. Show that the theorem remains true if we replace \mathcal{L}^n by a doubling Radon measure μ : $\exists C \geq 1$, $\forall x \in \mathbb{R}^n, \forall r > 0$,

$$\mu(B(x,2r)) \le C\mu(B(x,r)).$$

Exercise 2.— A weak version of Sard's Lemma Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a differentiable function. We consider

 $Z = \{ x \in \mathbb{R}^n ; Df(x) \text{ is not invertible} \}.$

The aim of this exercise is to prove that f(Z) is Lebesgue negligible.

Université Paris Sud

Master 2 2020-2021

1. Let $x \in Z$ be fixed. Show that there exists $C_x > 0$ such that for all $0 < \delta \leq 1$ we can find $\rho_{x,\delta} > 0$ such that if $r \leq \rho_{x,\delta}$ then f(B(x,r)) is included in a set of the form

$$[-\delta r, \delta r] \times [-C_x r, C_x r]^{n-1}$$
,

up to translation and rotation.

2. Let $\eta > 0$, $\Omega \subset \mathbb{R}^n$ be a bounded open set and $x \in Z \cap \Omega$. Show that we can find $0 < r_x (= r_{x,\eta}) \leq 1$ such that $B(x, r_x) \subset \Omega$ and

$$\mathcal{L}^n(f(B(x,r_x))) \le \eta \mathcal{L}^n(B(x,r_x))$$
.

- 3. Cover $Z \cap U(0, R)$ with balls $B(x, r_x)$ (or $B(x, r_x/5)$) as in the previous question. Applying Besicovitch covering lemma (or Vitali covering lemma) conclude that f(Z) is negligible.
- 4. Prove the result without using any covering lemma under the stronger asymptot f of class C^1 .

Exercise 3.— Lebesgue's Theorem for the Differentiability of Monotone Functions The aim is to prove the following result:

Theorem (Lebesgue's Theorem). Let $f : [a, b] \subset \mathbb{R} \to \mathbb{R}$ be non-decreasing (monotone), then f is \mathcal{L}^1 -almost everywhere differentiable in]a, b[.

1. Let $f:[a,b] \subset \mathbb{R} \to \mathbb{R}$ be (strictly) increasing, p > 0 and define

$$E_p = \left\{ x \in]a, b[: \liminf_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Let us prove that if $F_p \subset E_p$ then $\mathcal{L}^{1*}(f(F_p)) \leq p\mathcal{L}^{1*}(F_p)$, where \mathcal{L}^{1*} is the outer Lebesgue measure in \mathbb{R} . We introduce the following notations, for $x \in \mathbb{R}, h \in \mathbb{R}^*$, $I_h(x) = \begin{cases} [x, x+h] & \text{if } h > 0\\ [x+h, x] & \text{if } h < 0 \end{cases}$ and (as f is increasing) $J_h(x) = \begin{cases} [f(x), f(x+h)] & \text{if } h > 0\\ [f(x+h), f(x)] & \text{if } h < 0 \end{cases}$.

(a) Let $U \subset [a, b]$ be an open set such that $F_p \subset U$, show that

 $\inf\{ \operatorname{diam}(J_r(x)) : \mathcal{L}^1(J_r(x)) < p\mathcal{L}^1(I_r(x)), I_r(x) \subset U \} = 0.$

- (b) Infer that $\mathcal{L}^{1*}(f(F_p)) \leq p\mathcal{L}^{1*}(F_p)$.
- 2. For q > 0, we similarly define $E^q = \left\{ x \in]a, b[: \limsup_{h \to 0} \frac{f(x+h) f(x)}{h} > q \right\}$. Show that if $F^q \subset E^q$ then $\mathcal{L}^{1^*}(f(F^q)) \ge q \mathcal{L}^{1^*}(F^q).$

3. (a) Show that the set of points $x \in]a, b[$ such that $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = +\infty$ is negligible (for \mathcal{L}^1). (b) For 0 , we define

$$E_p^q = \left\{ x \in]a, b[: \liminf_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Show that $\mathcal{L}^{1^*}(E_p^q) = 0.$

(c) Show that the set of points where f is not differentiable is negligible for Lebesgue measure.

If we only assume f non-decreasing, we can consider f(x) + x which is then increasing.