TD 1 : Covering Lemmas

Some notations: $U(x, R)$ is the open ball of center x and radius $R, B(x, R)$ is the closed ball of center x and radius R, \mathcal{L}^{n} is the Lebesgue measure in \mathbb{R}^{n}.

Exercise 1.- Almost everywhere Vitali's theorem.
Theorem. Let $E \subset \mathbb{R}^{n}$ be a Borel set and $\mathcal{F} \subset\{$ closed balls $\}$ be a Vitali covering of E by closed balls, that is, for all $x \in E$,

$$
\inf \{\operatorname{diam}(B): B \in \mathcal{F} \text { and } x \in B\}=0
$$

Then there exists a countable family of two by two disjoint closed balls $\mathcal{G}=\left\{B_{k}\right\}_{k \in \mathbb{N}} \subset \mathcal{F}$ such that $E \backslash \sqcup_{k} B_{k}$ is Lebesgue-negligible.

1. Let $W \subset \mathbb{R}^{n}$ be an open set such that $E \subset W$. Check that

$$
\forall x \in E, \quad \inf \{\operatorname{diam}(B): B \in \mathcal{F} \text { and } x \in B \text { and } B \subset W\}=0 .
$$

2. Let $1-(1 / 2) 5^{-n}<\theta<1$. We assume $\mathcal{L}^{n}(E)<+\infty$.
(a) Show that there exists a countable family of two by two disjoint balls $\left\{B_{i}\right\}_{i \in \mathbb{N}}$ such that for all i, $B_{i} \subset W$ and

$$
\mathcal{L}^{n}\left(E-\cup_{i} B_{i}\right) \leq\left(1-(1 / 2) 5^{-n}\right) \mathcal{L}^{n}(E) .
$$

(b) Infer that there exists a finite family of two by two disjoint balls $\left\{B_{i}\right\}_{i=1}^{N}$ such that for all $i, B_{i} \subset W$ and

$$
\mathcal{L}^{n}\left(E-\cup_{i=1}^{N} B_{i}\right) \leq \theta \mathcal{L}^{n}(E) .
$$

(c) Show that there exist a countable family of two by two disjoint balls $\mathcal{G}=\left\{D_{i}\right\}_{i \in \mathbb{N}}$ and an increasing sequence of positive integers $\left(N_{k}\right)_{k \in \mathbb{N}^{*}}$ such that for all $k \geq 1$,

$$
\mathcal{L}^{n}\left(E-\cup_{i=1}^{N_{k}} D_{i}\right) \leq \theta^{k} \mathcal{L}^{n}(E)
$$

(d) Conclude the case $\mathcal{L}^{n}(E)<+\infty$.
3. Prove the theorem (without assuming $\mathcal{L}^{n}(E)<+\infty$ any more).

Notice that the same proof can be done with the exterior Lebesgue measure $\mathcal{L}^{n *}$ (since we did not use the additivity but only the subadditivity) and thus obtain the result for any $E \subset \mathbb{R}^{n}$ without assuming that E is Borel or measurable.
4. Show that the theorem remains true if we replace \mathcal{L}^{n} by a doubling Radon measure $\mu: \exists C \geq 1$, $\forall x \in \mathbb{R}^{n}, \forall r>0$,

$$
\mu(B(x, 2 r)) \leq C \mu(B(x, r)) .
$$

Exercise 2.- A weak version of Sard's Lemma
Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a differentiable function. We consider

$$
Z=\left\{x \in \mathbb{R}^{n} ; D f(x) \text { is not invertible }\right\} .
$$

The aim of this exercise is to prove that $f(Z)$ is Lebesgue negligible.

1. Let $x \in Z$ be fixed. Show that there exists $C_{x}>0$ such that for all $0<\delta \leq 1$ we can find $\rho_{x, \delta}>0$ such that if $r \leq \rho_{x, \delta}$ then $f(B(x, r))$ is included in a set of the form

$$
[-\delta r, \delta r] \times\left[-C_{x} r, C_{x} r\right]^{n-1}
$$

up to translation and rotation.
2. Let $\eta>0, \Omega \subset \mathbb{R}^{n}$ be a bounded open set and $x \in Z \cap \Omega$. Show that we can find $0<r_{x}\left(=r_{x, \eta}\right) \leq 1$ such that $B\left(x, r_{x}\right) \subset \Omega$ and

$$
\mathcal{L}^{n}\left(f\left(B\left(x, r_{x}\right)\right)\right) \leq \eta \mathcal{L}^{n}\left(B\left(x, r_{x}\right)\right)
$$

3. Cover $Z \cap U(0, R)$ with balls $B\left(x, r_{x}\right)$ (or $\left.B\left(x, r_{x} / 5\right)\right)$ as in the previous question. Applying Besicovitch covering lemma (or Vitali covering lemma) conclude that $f(Z)$ is negligible.
4. Prove the result without using any covering lemma under the stronger asumption f of class C^{1}.

Exercise 3.-Lebesgue's Theorem for the Differentiability of Monotone Functions
The aim is to prove the following result:
Theorem (Lebesgue's Theorem). Let $f:] a, b\left[\subset \mathbb{R} \rightarrow \mathbb{R}\right.$ be non-decreasing (monotone), then f is \mathcal{L}^{1}-almost everywhere differentiable in $] a, b[$.

1. Let $f:[a, b] \subset \mathbb{R} \rightarrow \mathbb{R}$ be (strictly) increasing, $p>0$ and define

$$
E_{p}=\{x \in] a, b\left[: \liminf _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}<p\right\}
$$

Let us prove that if $F_{p} \subset E_{p}$ then $\mathcal{L}^{1^{*}}\left(f\left(F_{p}\right)\right) \leq p \mathcal{L}^{1^{*}}\left(F_{p}\right)$, where $\mathcal{L}^{1^{*}}$ is the outer Lebesgue measure in \mathbb{R}. We introduce the following notations, for $x \in \mathbb{R}, h \in \mathbb{R}^{*}$, $I_{h}(x)=\left\{\begin{array}{lll}{[x, x+h]} & \text { if } & h>0 \\ {[x+h, x]} & \text { if } & h<0\end{array}\right.$ and (as f is increasing) $J_{h}(x)=\left\{\begin{array}{lll}{[f(x), f(x+h)]} & \text { if } & h>0 \\ {[f(x+h), f(x)]} & \text { if } & h<0\end{array}\right.$.
(a) Let $U \subset] a, b\left[\right.$ be an open set such that $F_{p} \subset U$, show that

$$
\inf \left\{\operatorname{diam}\left(J_{r}(x)\right): \mathcal{L}^{1}\left(J_{r}(x)\right)<p \mathcal{L}^{1}\left(I_{r}(x)\right), I_{r}(x) \subset U\right\}=0
$$

(b) Infer that $\mathcal{L}^{1 *}\left(f\left(F_{p}\right)\right) \leq p \mathcal{L}^{1 *}\left(F_{p}\right)$.
2. For $q>0$, we similarly define $E^{q}=\{x \in] a, b\left[: \limsup _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}>q\right\}$. Show that if $F^{q} \subset E^{q}$ then $\mathcal{L}^{1^{*}}\left(f\left(F^{q}\right)\right) \geq q \mathcal{L}^{1^{*}}\left(F^{q}\right)$.
3. (a) Show that the set of points $x \in] a, b\left[\right.$ such that $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=+\infty$ is negligible (for \mathcal{L}^{1}).
(b) For $0<p<q$, we define

$$
E_{p}^{q}=\{x \in] a, b\left[: \liminf _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}<p<q<\limsup _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}\right\}
$$

Show that $\mathcal{L}^{1^{*}}\left(E_{p}^{q}\right)=0$.
(c) Show that the set of points where f is not differentiable is negligible for Lebesgue measure. If we only assume f non-decreasing, we can consider $f(x)+x$ which is then increasing.

