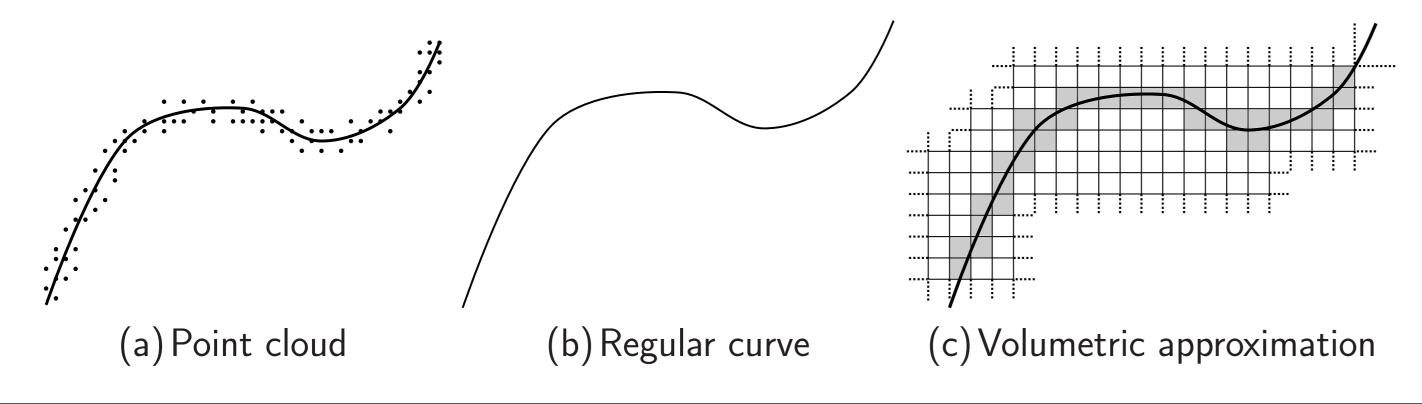
A multimodal approach to surface representation

Blanche Buet

Institut Camille Jordan, Université Claude Bernard Lyon 1

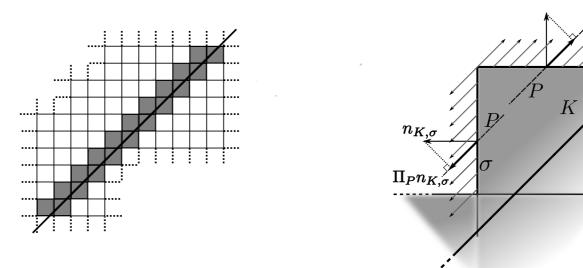
Motivations

- GOAL: A **unique** tool for describing **curves**, **surfaces** and their various **approximations** (point cloud, triangulations, volumetric approximations), with the purpose of:
- defining (approximate) mean curvature in any situation,
- providing quantitative conditions ensuring that a limit of given discretizations is (weakly) regular.



Classic first variation is not well adapted to discrete varifolds

► VOLUMETRIC APPROXIMATION of a straight line in a cartesian grid:



$$\|\delta V_{\mathcal{K}}\| = |\delta V_{\mathcal{K}}|(\Omega) \ge \frac{\sqrt{2}}{2h_{\mathcal{K}}} \text{length}(V)$$

tends to $+\infty$ when the size of the mesh $h_{\mathcal{K}}$ tends to 0.

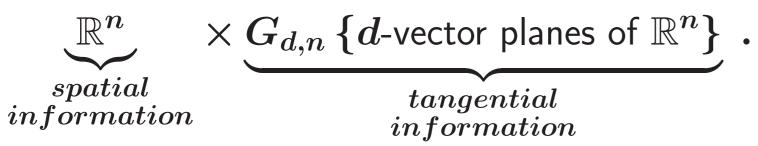
FIRST VARIATION OF POINT CLOUD VARIFOLDS: The first variation of a Point cloud varifold $V = \sum_i m_i \delta_{x_i} \otimes \delta_{P_i}$ is not even a Radon measure.

We propose a notion of approximate curvature for such varifolds, based on a regularization of the first variation.

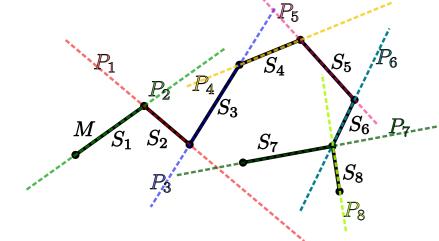
Regularization of the first variation

What is a varifold ?

A varifold is a measure containing both spatial information and tangential information. As a mathematical object, a d-varifold is a Radon measure in



► A FIRST EXAMPLE:



A varifold canonically associated to M is the **measure**: $v_M(x,S) = \sum_{i=1}^8 \mathcal{H}^1_{ig|_{S_i}}(x) \otimes \delta_{P_i}(S)$ in $\mathbb{R}^2 imes G_{1,2}$

RECTIFIABLE d-VARIFOLDS:

A rectifiable d-varifold is a measure of the form

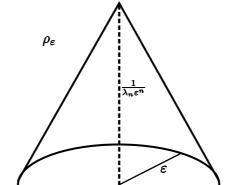
$$v_{M, heta}(x,S) = \underbrace{ heta(x)}_{>0} \mathcal{H}^d_{|M}(x) \otimes \underbrace{\delta_{T_xM}(S)}_{ ext{approximate}} ext{ with } M ext{ rectifiable set.}$$

First variation of a varifold: a generalized notion of curvature

• Let $M\subset \mathbb{R}^n$ be a C^2 d-sub-manifold. Then for every $X\in \mathrm{C}^1_\mathrm{c}(\mathbb{R}^n,\mathbb{R}^n)$, $\int_M \operatorname{div}_M X\,d\mathcal{H}^d=-\int_M < X, H>\,d\mathcal{H}^d$

This is actually a way to define the mean curvature vector $oldsymbol{H}$:

► EXPRESSION OF THE REGULARIZED FIRST VARIATION:



Let V be a d-varifold \mathbb{R}^n and denote Π_S the orthogonal projection on S,

$$iggred \sum \delta V st
ho_\epsilon(x) = rac{-1}{\lambda_n \epsilon^{n+1}} \int_{B_\epsilon(x) imes G_{d,n}} rac{\Pi_S(y-x)}{|y-x|} \, dV(y,S)$$

 well-defined even if V does not have bounded variation !
 QUANTITATIVE CONDITIONS OF RECTIFIABILITY: For any d-varifold V, we define

 $\mathcal{W}^1_\epsilon(V) = \|\delta V st
ho_\epsilon\|_{\mathrm{L}^1}$.

Let $V_i \xrightarrow{*} V$, then 1. For any $V_{\epsilon} \xrightarrow{*} V$, $\|\delta V\| \leq \liminf_{\epsilon} \mathcal{W}^1_{\epsilon}(V_{\epsilon})$. So that if there exists ϵ_i such that $\sup_i \int_{\mathbb{R}^n} |\delta V_i * \rho_{\epsilon_i}(x)| \, dx < +\infty$ then V has bounded first variation.

Moreover,

For any *d*-varifold of bounded first variation *V*, *W*_ϵ(*V*) → ||δ*V*||.
 For any rectifiable *d*-varifold with bounded first variation, there exists a sequence of volumetric varifolds (*V_i*)_i such that

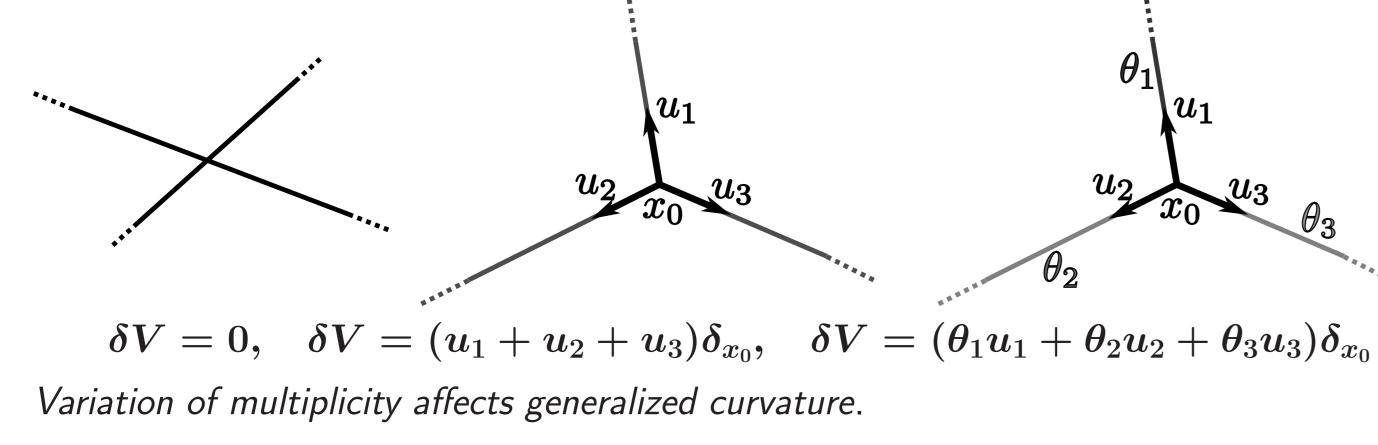
 $\mathcal{W}^1_{\epsilon_i}(V_i) o \|\delta V\|$.

So that W^1_ϵ Γ -converges to $\|\delta V\|$ (the total variation of δV) in the space of volumetric varifolds .

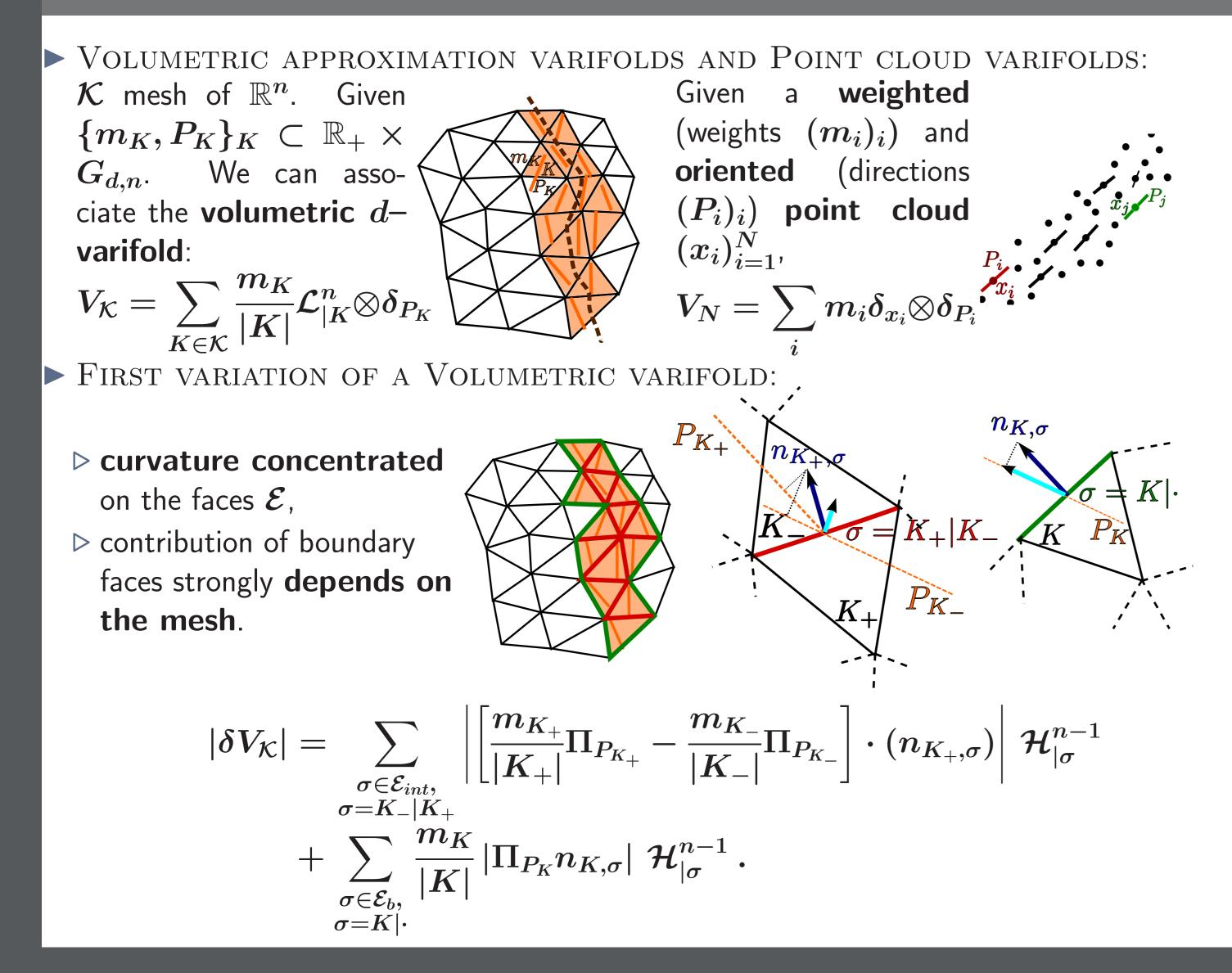
The first variation of a d-varifold V is the distribution of order 1

$$egin{aligned} \delta V &: \mathrm{C}^1_\mathrm{c}(\mathbb{R}^\mathrm{n},\mathbb{R}^\mathrm{n}) \longrightarrow \mathbb{R} \ & X & \longmapsto \int_{\mathbb{R}^n imes G_{d,n}} \mathrm{div}_S X(x) \, dV(x,S) \end{aligned}$$

- When δV is actually a distribution of order 0, it can be represented as a vector Radon measure in \mathbb{R}^n and V has locally bounded first variation.
- **Example**: If V is a **junction** of straight lines with directions u_i and multiplicities $heta_i$:



Discretizations endowed with a varifold structure



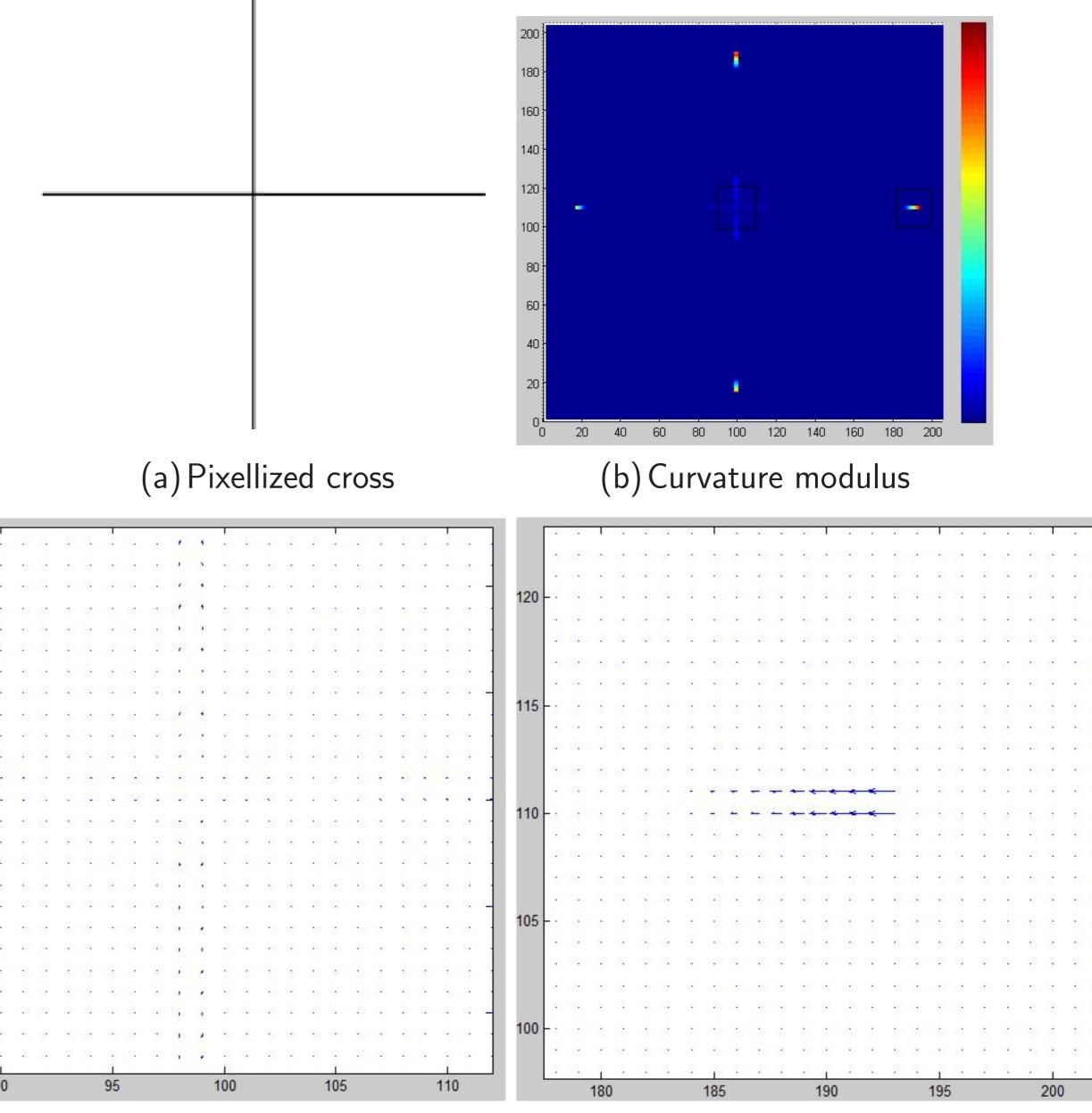
Perspectives

► APPROXIMATE WILLMORE ENERGIES:

$$egin{aligned} &\mathcal{W}^p_\epsilon(V)\ &=\int_x \left|rac{\delta V*
ho_\epsilon(x)}{\|V\|*
ho_\epsilon(x)}
ight|^p \,\|V\|*
ho_\epsilon(x)\,d\mathcal{L}^n(x)\ &=\int_x |H_\epsilon(x)|^p\,d\mu_\epsilon(x) \ . \end{aligned}$$

 $\mathcal{W}^{p}_{\epsilon}$ Γ -converges to the classical Willmore energy \mathcal{W}^{p} in the space of varifolds but what about the Γ -lim sup in the set of volumetric varifolds?

► NUMERICAL EXPERIMENTS:



 $T_{y}M$

(a) Curvature vector at the center

(b) Curvature vector at cross end points

 $T_y M$

 $\Pi_{T_yM}(y-x)$