
Introduction to random walks on noncommutative spaces

Philippe Biane

Abstract. We introduce several examples of random walks on noncommu-
tative spaces and study some of their probabilistic properties. We emphasize
connections between classical potential theory and group representations.

1. Introduction

Whereas random walks form one of the most investigated class of stochastic
processes, their noncommutative analogues have been studied only recently. In
these lectures I will present some results on random walks which take their values
in noncommutative spaces. The notion of a noncommutative space has emerged
progressively from the development of quantum physics, see e.g. [C]. The key idea
is to consider not the space itself but the set of real, or complex functions on it.
For a usual space, this forms an algebra, which is commutative by nature. A non-
commutative space is given by a noncommutative (usually complex) algebra which
is to be thought of as the algebra of complex functions on the space. We shall ex-
plain this idea in more details in section 2, and in particular define noncommutative
probability spaces. Once noncommutative spaces have been defined in this way it
is easy to define random variables, and stochastic processes taking their values in
these spaces. Rather than starting an abstract theory, these lectures will consist
mainly in a collection of examples, which I think show that this notion is interest-
ing and worth studying. We shall begin with the most simple stochastic process
namely the Bernoulli random walk. We shall show how to quantize it in order to
construct the quantum Bernoulli random walk. Simple as it is this noncommutative
stochastic process exhibits quite deep properties, related to group representation
and potential theory. Actually interpreting it as a random walk with values in a
noncommutative space, the dual of SU(2), we will be lead to define random walks
with values in duals of compact groups. The study of such random walks in the
case of special unitary groups uncovers connections with potential theory, in par-
ticular with the Martin boundary. We will investigate more on these connections.
From the Bernoulli random walk we can take limit objects, as in the central limit
theorem. One of these objects is a noncommutative Brownian motion which we
construct as a family of operators on a Fock space and interpret then as a con-
tinuous time stochastic process with independent increments, with values in the
dual of the Heisenberg group. We then extend this construction to more general
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noncompact locally compact groups. Finally we will also start to consider quantum
groups in the last section.

The next section consists in preliminaries about C∗ and von Neumann algebras
and noncommutative spaces.

2. Noncommutative spaces and random variables

2.1. What are noncommutative spaces? The random walks that we are
going to study take their values in noncommutative spaces, so we should start by
making this notion more precise. In many parts of mathematics, one studies spaces
through the set of functions defined on them. There can be many kind of functions,
e.g. measurable, integrable, continuous, bounded, differentiable, and so on. Each
property of the functions reflects a property of the space on which they are defined.
Sometimes, in probability theory for example, one is even not interested at all in the
space, but only in the functions themselves, the random variables. Also very often
the set of complex functions considered determines completely the underlying space.
This is the case for example for compact topological spaces, determined by their
algebra of continuous functions, or differentiable manifolds which are determined
by their smooth functions. The common feature shared by these situations is that
all these spaces of complex valued functions are commutative algebras. It has been
realized, since the beginning of quantum mechanics that one can obtain a better
description of nature by relaxing this commutativity hypothesis. Henceforth we
shall consider a non commutative space as given by a complex algebra, which plays
the role of space of functions on the space. We will see many examples throughout
these lectures. Some algebras may come equipped with a supplementary structure,
for example an antilinear involution, a norm, a preferred linear form, a topology,
etc... Actually most of the times these algebras will be algebras of operators on
some complex Hilbert space H , and the involution will be given by the adjoint
operation. We shall decribe the kind of algebras we will consider, mainly C∗ and
von Neumann algebras. We will use the language and some basic results in the
theory of these objects, but we will need no deep knowledge of them. We will
only assume that the reader is familiar with the spectral theorem for selfadjoint
operators on a Hilbert space. We refer for example to the treatises [D1], [D2] or
[T] for more details.

2.2. C∗ algebras. A C∗ algebra is a normed ∗-algebra which is isometric with
a subalgebra of the algebra B(H) of all bounded operators on some complex Hilbert
spaceH , stable under taking the adjoint, and closed for the operator norm topology.
Elements in a C∗-algebra of the form aa∗ for some a ∈ A are called positive. Positive
elements are exactly the selfadjoint positive operators which belong to the algebra.

Let X be a locally compact topological space, then the algebra of complex
continuous functions on X , vanishing at infinity, is a C∗-algebra, and the famous
Gelfand-Naimark theorem states that any commutative C∗-algebra is isomorphic
to such an algebra. The topological space is compact if and only if the algebra has a
unit, and there is a one to one correspondence between the points of the space and
the characters of the algebra, that is, the continuous algebra homomorphisms with
values in the complex numbers, or equivalently with the maximal closed ideals,
therefore the space is unique up to homeomorphism and can be recovered from
the algebra. It is usually denoted by spec(A) if A is the C∗-algebra. Thus we
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should think of a C∗-algebra as providing the algebra of continuous functions on
some noncommutative space. Note that C∗ algebras are closed under continuous
functional calculs, namely if a is a self-adjoint element in a C∗ algebra, and f a
continuous functions on its spectrum, then the operator f(a) also belongs to the
algebra C. This can be easily seen by approximating uniformly f by polynomials
on the spectrum of a.

If A ⊂ B(H) is a C∗-algebra, then the multiplier algebra M(A) of A is the
set of all operators x such that xA ⊂ A and Ax ⊂ A. It is a C∗ algebra with a
unit, containing A. It coincides with A if and only if A has a unit. If A is abelian,
then M(A) is just the algebra of all bounded continuous functions on spec(A). In
the noncommutative situation, it corresponds to the Stone-Cech compactification
of the topological space underlying the algebra.

Continuous positive linear functionals on a C∗ algebra play the role of positive
bounded measures. Here positivity for a functional means that it is positive on
positive elements. Again in the commutative case, by Riesz’ theorem, such linear
functionals correspond to finite positive Borel measures on the underlying topolog-
ical space. Positive linear functionals of norm one are called states, and correspond
to probability measures in the commutative case. A large supply of states is given
by unit vectors in the Hilbert space on which the C∗ algebra acts. Indeed any such
vector ψ defines a state by the formula

ωψ(a) = 〈aψ, ψ〉 a ∈ A

Given a self adjoint element a in a C∗ algebra A, and a state σ on A, there
exists a unique measure on R, with compact support, such that

σ(f(a)) =

∫

f(x)dµ(x) for all continuous f on R.

The support of this measure is included in the spectrum of a. The GNS construc-
tion assigns to every C∗ algebra, with a continuous positive linear functional σ, a
representation of the algebra on a Hilbert space. A linear functional is called tracial
if for any a, b ∈ A one has τ(ab) = τ(ba).

Each continuous map between topological spaces f : X → Y gives rise to a
continuous algebra morphism Φf : C0(Y ) → C0(X);h 7→ h ◦ f , and conversely any
such algebra morphism comes from a continuous map, therefore one can think of a
homomorphism between C∗ algebras as a continuous map between the underlying
noncommutative spaces (with the direction of the arrows reversed). One must note
however that there may exist very few morphisms between two C∗ algebras. For
example there does not exist any nonzero homomorphism from the finite dimen-
sional C∗ algebra Mn(C) to Mm(C) if n > m. Indeed this is a purely algebraic fact,
since Mn(C) is a simple algebra, if a homomorphism from Mn(C) is not injective,
then it must be 0.

2.3. von Neumann algebras. Let S be a subset of B(H), then its commu-
tant S′ is the set of bounded operators which commute with every element of S. A
von Neumann algebra is a subalgebra of B(H) which is closed under under taking
the adjoint, and is equal to its bicommutant, i.e. the commutant of its commutant.
By the von Neumann bicommutant theorem the von Neumann algebras are the
∗-subalgebra of B(H), containing the identity operator, and closed for the strong
topology. Since the strong topology is weaker than the operator norm topology any
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von Neumann algebra is also a unital C∗ algebra, although generally too large to
be interesting as such.

A von Neumann algebra is closed under Borel functional calculus, namely if
a ∈M is self-adjoint and f is a bounded Borel function on the spectrum of a, then
f(a) belongs to M , and again, the same is true for f(a1, . . . , an) where a1, . . . , an are
commuting selfadjoint operator in the von Neumann algebra, and f is a bounded
Borel function defined on the product of their spectra. The nuance between C∗

algebras and von Neumann algebras can be grasped by looking at the commutative
case. Indeed commutative von Neumann algebras correspond to measure spaces,
more precisely any commutative von Neumann algebra is isomorphic to the algebra
L∞(X,m) where X is a measure space and m a positive measure (the algebra
actually depends only on the class of the measure). This statement can be seen as
a reformulation of the spectral theorem for commuting self-adjoint operators on a
Hilbert space. Therefore it is natural to think of von Neumann algebras as ”algebras
of non commutative random variables”. A normal state on a von Neumann algebra
is a positive linear form which is continuous for the σ-weak topology and takes
the value 1 on the unit. It corresponds, in the commutative case, to a probability
measure, which is absolutely continuous with respect to the measure m. We shall
sometimes call a von Neumann algebra, with a normal state, a ”non commutative
probability space”.

A weight on a von Neumann algebra is a map ϕ from the cone of positive
elements of the von Neumann algebra to [0,+∞], which is additive, and homoge-
neous, i.e. ϕ(λx) = λϕ(x) for x positive and real λ > 0. A weight is called normal
if supi∈I ϕ(xi) = ϕ(sup(xi)i∈I) for every bounded increasing net (xi)i∈I . Coming
back to the commutative case, weights are positive, possibly unbounded measures,
in the measure class of m. A weight µ is called finite if µ(1) <∞, in this case µ is
a multiple of a state.

Given a selfadjoint element, a ∈M and a normal state σ on M , we denote by
µa the distribution of a, namely the measure such that

σ(f(a)) =

∫

f(x)dµa(x)

for all bounded Borel functions on spec(a). More generally if a1, . . . , an is a family
of commuting self-adjoint operators in M , their joint distribution is the unique
probability measure µa1,...,an on R

n such that

σ(f(a1, . . . , an)) =

∫

f(x)dµa1,...,an(x)

for all bounded Borel function f on Rn.

Let N ⊂ M be a von Neumann subalgebra, and σ a state on M , then a
conditional expectation of M onto N is a norm one projection σ(.|N) such that
σ(a|N) = a for all a ∈ N , σ(abc|N) = aσ(b|N)c for all a, c ∈ N, b ∈ M , and
σ(σ(b|N)) = σ(b) for all b ∈ M . Given M,N and σ, such a map need not exist,
but it always exists, and is unique, if σ is tracial.

We will consider spatial tensor products of von Neumann algebras. IfA ⊂ B(H)
and B ⊂ B(K) are two von Neumann algebras, their algebraic tensor product acts
on the Hilbert space H⊗K, and the spacial tensor product of A and B is defined as
the von Neumann algebra generated by this tensor product. Given an infinite family
of von Neumann algebra (Ai; i ∈ I) equipped with normal states ωi it is possible
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to construct an infinite tensor product ⊗i(Ai, ωi) which is a von Neumann algebra
with a state ⊗iωi. One considers operators of the form ⊗i∈Iai where ai ∈ Ai and
ai 6= Id only for a finite number of i ∈ I. These generate an algebra, which is the
algebraic tensor product of the Ai. One can define a positive linear functional on
this algebraic tensor product by ω(⊗i∈Iai) =

∏

ωi(ai). The GNS construction then
yields a Hilbert space H , with a pure state on B(H), and the von Neumann algebra
tensor product is the von Neumann algebra in B(H) generated by this algebraic
tensor product.

2.4. Random variables, stochastic processes with values in some non-

commutative space. Given a von Neumann algebra M equipped with a normal
state σ, and a C∗ algebra C, a random variable with values in C (or, more appropri-
ately, in the noncommutative space underlying C), is a norm continuous morphism
from C to M . The distribution of the random variable ϕ : C → M is the state on
C given by σ ◦ ϕ. If the algebra C is commutative, then it corresponds to some
topological space, and the state σ ◦ϕ to a probability measure on this space. When
C = C0(R) there exists a self-adjoint element a ∈ M such that ϕ(f) = f(a) for
all f ∈ C, and we are back to the situation in the preceding section, where the
distribution of a was defined. We will call the state σ ◦ ϕ the distribution of the
random variable ϕ. More generally a family of random variables with values in
some noncommutative space, indexed by some set, is a stochastic process.

If A and B are two C∗-algebras, a positive map Φ : A→ B is a linear map such
that Φ(a) is positive for each positive a ∈ A. When A and B are commutative, thus
A = C0(X) and B = C0(Y ), such a linear map can be realized as a measure kernel
k(y, dx) where for each y ∈ Y one has a finite positive measure k(y, dx) on X . If A
and B are unital, and Φ(I) = I then this kernel is a Markov kernel, i.e. all measures
are probability measures. Thus we see that the generalization of a Markov kernel to
the non-commutative context can be given by the notion of positive maps. It turns
out however that this notion is slightly too general to be useful and it is necessary
to restrict oneself to a particular class called completely positive maps.

Definition 2.1. A linear map between two C∗ algebras A and B is called
completely positive if, for all n ≥ 0, the map Φ⊗ Id : A⊗Mn(C) → B ⊗Mn(C) is
positive. It is called unit preserving if furthermore Φ(Id) = Id.

We shall consider semigroups of unit preserving, completely positive maps on
a C∗ algebra C. These will be indexed by a set of times which will be either the
nonnegative integers (discrete times) or the positive real line (continuous time).
Thus a discrete time semigroup of unit preserving, completely positive maps on a
C∗ algebra C will be a family (Φn : C → C)n≥0 of completely positive maps, such
that Φn ◦ Φm = Φn+m. In continuous time we will have a family (Φt)t∈R+ which
satisfies Φt ◦ Φs = Φt+s. In the discrete time setting one has Φn = (Φ1)

n and the
semigroup is deduced from the value at time 1. We shall denote generally the time
set by T when we do not specify whether we are in discrete or continuous time.

Definition 2.2. Let C be a C∗ algebra, then a dilation of a semigroup (Φt)t∈T
of completely positive maps on C is given by a von Neumann algebra M , with a
normal state ω, an increasing family of von Neumann subalgebras Mt; t ∈ T , with
conditional expectations ω(.|Mt), and a family of morphisms jt : C → (M,ω) such
that for any t ∈ T and a ∈ C, one has jt(a) ∈Mt and for all s < t

(2.1) ω(jt(a)|Ms) = js(Φt−s(a))
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A dilation of a completely positive semigroup is the analogue in noncommuta-
tive probability of a Markov process, and the equation (2.1) expresses the Markov
property of the process: the conditional expectation of the future on the past is a
function of the present.

Given a completely positive semigroup and an initial state, a dilation always
exists [S].

Consider a completely positive semigroup on a C∗ algebra C, and let B ⊂ C be
a commutative C∗ subalgebra, thus isomorphic to C0(X) for some locally compact
topological space X . If the image algebras jt(B); t ∈ T generate a commutative
von Neumann algebra N ⊂M , then there exists a probability space (Ω,F , P ) such
that (N , ω) ∼ L∞(Ω,F , P ), and random variables Xt : Ω → X , corresponding to
the morphisms jt restricted to B, which form a classical stochastic process. If fur-
thermore the C∗ algebra B is invariant by the completely positive semigroup, then
this semigroup defines a Markov semigroup of transition probabilities on the space
X , and the stochastic process (Xt)t∈T is a Markov process with these probability
transitions. This remark will be at the basis of many constructions of classical
stochastic processes starting from quantum ones.

Once a dilation of a completely positive semigroup is given, one can compute,
for times t1 < . . . < tn, and a1, . . . , an ∈ C,

ω(jt1(a1) . . . jtn(an)) = σ(Φt1 (a1(Φt2−t1(a2(. . .Φtn−tn−1(an)) . . .)

where σ = ω ◦ j0 is the initial state on C (the distribution of the process at time
0). Observe however that when the algebras jt(C); t ∈ T do not commute, this
condition does not specifiy the values of

ω(jt1(a1) . . . jtn(an))

when the times t1, . . . , tn are not ordered. We will say that two dilations j(1), ω1

and j(2), ω2, are equivalent if one has

ω1(j
(1)
t1 (a1) . . . j

(1)
tn (an)) = ω2(j

(2)
t1 (a1) . . . j

(2)
tn (an))

where t1, . . . , tn is an arbitrary sequence of times (i.e. not necessarily increasing)
and a1, . . . , an ∈ C. Thus if C is a commutative algebra, then all commutative di-
lations with the same initial distribution are equivalent, but for a given semigroup
of completely positive maps there may exist a lot of non equivalent dilations. Ac-
tually we shall encounter in these lectures some natural non commutative dilations
of Markov semigroups on classical spaces! An important source of such dilations
comes from restrictions: if B ⊂ C is a subalgebra and the completely positive semi-
group leaves B invariant, then the restriction of (jt)t∈T to the subalgebra B is a
dilation of the restriction of the completely positive semigroup.

3. Quantum Bernoulli random walks

3.1. Quantization of the Bernoulli random walk. Our first example of a
quantum random walk will be the quantization of the simple (or Bernoulli) random
walk. This is just the random walk whose independent increments have values ±1.
In order to quantize it we will replace the set of increments {±1} by its quantum
analogue, namely the space of two by two complex matrices, with its structure of
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C∗-algebra. The subset of hermitian operators is a four dimensional real subspace,
generated by the identity matrix I as well as the three matrices

σx =

(

0 1
1 0

)

σy =

(

0 −i
i 0

)

σz =

(

1 0
0 −1

)

The matrices σx, σy, σz are the Pauli matrices. They satisfy the commutation
relations

(3.1) [σx, σy] = 2iσz; [σy , σz] = 2iσx; [σz , σx] = 2iσy.

The group SU(2) acts by the automorphisms A → UAU∗ on this C∗-algebra. We
observe that this group is much larger than the group of symmetries of the two
points space (which consists just of a two elements group). This action leaves the
space generated by I invariant, and acts by rotations on the real three dimensional
space generated by the Pauli matrices. Indeed the inner product on the space of
hermitian matrices 〈A,B〉 = Tr(AB) is invariant by unitary conjugation.

A state ω on M2(C) is given by a positive hermitian matrix S with trace 1, by
the formula

ω(A) = Tr(AS).

The most general such matrix can be written as

S =
1

2

(

1 + u v + iw
v − iw 1 − u

)

where (u, v, w) ∈ R3 satisfies u2 + v2 + w2 ≤ 1. The extreme points on the unit
sphere (sometimes called the ”Bloch sphere” in the physics litterature), correspond
to pure states, when S is a projection on a one dimensional subspace. Any hermitian
operator has a two-point spectrum, hence in a state ω its distribution is a probability
measure on R supported by at most two points. In particular, for each of the Pauli
matrices, its distribution in the state ω is a probability measure on {±1}, given by

(3.2) P (σx = 1) =
1 + v

2
P (σy = 1) =

1 + w

2
P (σz = 1) =

1 + u

2

Mimicking the construction of a random walk, we use the infinite product
algebra (M2(C), ω)⊗N (recall the construction of section 2.3). For each Pauli matrix
we build the matrices

xn = I⊗(n−1) ⊗ σx ⊗ I⊗∞ yn = I⊗(n−1) ⊗ σy ⊗ I⊗∞, zn = I⊗(n−1) ⊗ σz ⊗ I⊗∞

which represent the increments of the process. It is easy to see that, for example, the
operators xn, for n ≥ 1, form a commuting family of operators, which is distributed,
in the state ω∞, as a sequence of independent Bernoulli random variables.

Then we put

Xn =

n
∑

i=1

xi; Yn =

n
∑

i=1

yi Zn =

n
∑

i=1

zi.

This gives us three families of operators (Xn)n≥1; (Yn)n≥1 and (Zn)n≥1 on this
space.

We observe that each of these three families consists in commuting operators,
hence has a joint distribution. It is not difficult to check that this distribution is
that of a Bernoulli random walk, whose increments have distribution given by the
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probability distributions on {±1} of formula (3.2). The three families of operators,
however do not commute. In fact using the commutation relations (3.1) one sees
that for n,m positive integers, one has

[xn, ym] = 2izmδnm

and

(3.3) [Xn, Ym] = 2iZn∧m

as well as the similar relations obtained by cyclic permutation of X,Y, Z. We will
call the family of triples of operators (Xn, Yn, Zn);n ≥ 1 a quantum Bernoulli
random walk. We shall later interpret this noncommutative process as a random
walk with values in some noncommutative space, however for the moment we will
study some of its properties related to the automorphisms of the algebra M2(C).

3.2. The spin process. Because of the rotation invariance of the commuta-
tion relations (3.1), we see that for any unitary matrix U we can define conjugated
variables

xUn = I⊗(n−1) ⊗ UσxU
∗ ⊗ I⊗∞

yUn = I⊗(n−1) ⊗ UσyU
∗ ⊗ I⊗∞

zUn = I⊗(n−1) ⊗ UσzU
∗ ⊗ I⊗∞

and

XU
n =

n
∑

i=1

xUi ; Y Un =

n
∑

i=1

yUi ZUn =

n
∑

i=1

zUi

then this new stochastic process is obtained from the original quantum Bernoulli
random walk by a rotation matrix. It follows by a simple computation, using the
commutation relations, that X2

n + Y 2
n + Z2

n is invariant under conjugation, namely
one has

X2
n + Y 2

n + Z2
n = (XU

n )2 + (Y Un )2 + (ZUn )2

for any unitary matrix U .

Lemma 3.1. For all m,n ≥ 1 one has

[X2
n + Y 2

n + Z2
n, X

2
m + Y 2

m + Z2
m] = 0

Actually we shall prove that [Xn, X
2
m + Y 2

m + Z2
m] = 0 if m ≤ n. This follows

from the computation

[Xn, Y
2
m] = [Xn, Ym]Ym + Ym[Xn, Ym] = 2i(ZmYm + YmZm)

[Xn, Z
2
m] = [Xn, Zm]Zm + Zm[Xn, Ym] = −2i(ZmYm + YmZm)

Using invariance of the commutation relations by cyclic permutation of X,Y, Z we
also have [Yn, X

2
m+Y 2

m+Z2
m] = [Zn, X

2
m+Y 2

m+Z2
m] = 0, and the result follows. �

We deduce from this that the family of operators (X2
n + Y 2

n + Z2
n);n ≥ 1

is commutative, and therefore defines a classical process. We shall compute its
distribution now. For this we introduce the operators Sn =

√

X2
n + Y 2

n + Z2
n + I.

By the preceding Lemma, the family (Sn)n≥0 is a commuting family of operators,
therefore one can consider their joint distribution.
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Theorem 3.2. Let us take for ω the tracial state, then the operators (Sn;n ≥ 1)
form a Markov chain, with values in the positive integers, such that P (S1 = 2) = 1,
and transition probabilities

p(k, k + 1) =
k + 1

2k
; p(k, k − 1) =

k − 1

2k
.

In order to prove the theorem, it is enough to consider the process up to a finite
time n. So we shall restrict considerations to a finite product M2(C)⊗n acting on
(C2)⊗n. We remark that the state ω⊗n on (C2)⊗n is the unique tracial state,

and it gives, to every orthogonal projection on a subspace V , the value dim(V )
2n .

We shall find a basis of this space consisting of joint eigenvectors of the operators
(Sk; 1 ≤ k ≤ n). For this we analyze the action of the operators A+

n := 1
2 (Xn− iYn)

and A−
n = 1

2 (Xn + iYn). One has

A+
n =

n
∑

j=1

I⊗(j−1) ⊗ α+ ⊗ I⊗n−j A−
n =

n
∑

j=1

I⊗(j−1) ⊗ α− ⊗ I⊗n−j

where

α+ =

(

0 0
1 0

)

α− =

(

0 1
0 0

)

.

Let us call e0, e1 the canonical basis of C2. An orthonormal basis of (C2)⊗n is given
by the vectors eU ;U ⊂ {1, 2, . . . , n} where eU = ei1 ⊗ . . .⊗ ein , ik = 1 if k ∈ U and
ik = 0 if k /∈ U . In terms of this basis the action of A+

n and A−
n is given by

A+
n eU =

∑

k/∈U eU∪{k}
A−
n eU =

∑

k∈U eU\{k}
ZneU = (n− 2|U |)eU

Let us consider the vector e∅ = e⊗n0 and its images by the powers of A−
n , normalized

to have norm one. These are the vectors

εjn =

√

j!(n− j)!

n!

∑

U⊂{1,2,...,n};|U|=j
eU j = 0, 1, . . . , n

and these vectors are orthogonal. The action of the operators A+
n , A

−
n , Zn on these

vectors is given by

A+
n ε

j
n =

√

(j + 1)(n− j)εj+1
n

A−
n ε

j
n =

√

j(n− j + 1)εj−1
n

Znε
j
n = (n− 2j)εjn

Snε
j
n = (n+ 1)εjn

In particular we see that these vectors belong to the eigenspace of Sn of eigenvalue
n+ 1. We shall generalize this computation to find the common eigenspaces of the
operators S1, S2, . . . , Sn.

Lemma 3.3. Let J = (j1, . . . , jn) be a sequence of integers such that

• i) j1 = 2
• ii) ji ≥ 1 for all i ≤ n
• iii) |ji+1 − ji| = 1 for all i ≤ n− 1
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then there exists a subspace HJ of (C2)⊗n of dimension jn = l+ 1, which is an
eigenspace of S1, . . . , Sn, with respective eigenvalues j1, . . . , jn, and an orthonormal
basis (φ0, . . . , φl) such that

A+
nφj =

√

(j + 1)(l − j)φj+1

A−
n φj =

√

j(l − j + 1)φj−1

Znφj = (l − 2j)φj

Furthermore, the spaces HJ are orthogonal and (C2)⊗n = ⊕JHJ .

Proof of the lemma. We shall use induction on n. The lemma is true for n =
1, using φ0 = e0;φ1 = e1. Assume the lemma holds for n, and let J = (j1, . . . , jn) be
a sequence satisfying the conditions i), ii), iii), of the lemma. We shall decompose
the space HJ ⊗ C2 as a direct sum of two subspaces. Let the vectors ψj and ηj be
defined by

ψj =

√

l − j + 1

l + 1
φj ⊗ e0 +

√

j

l + 1
φj−1 ⊗ e1 j = 0, . . . , l + 1

and

ηj =

√

j + 1

l + 1
φj+1 ⊗ e0 −

√

l − j

l + 1
φj ⊗ e1 j = 0, . . . , l − 1

It is easy to check that these vectors form an orthonormal basis of the tensor product
HJ ⊗ C2, and a simple computation using

Xn+1 = Xn + I⊗n ⊗ σx, Yn+1 = Yn + I⊗n ⊗ σy , Zn+1 = Zn + I⊗n ⊗ σz

shows that these vectors have the right behaviour under these operators. �

We can now prove theorem 3.2, indeed for any sequence satisfying the hypothe-
ses of lemma 3.3 one has

P (S1 = j1, . . . , Sn = jn) =
jn
2n

=
j1
2

j2
2j1

. . .
jn

2jn−1

where the right hand side is given by the distribution of the Markov chain of theorem
3.2. �

We shall give another, more conceptual, proof of the former result in section 5,
using the representation theory of the group SU(2) and Clebsch-Gordan formulas.
For this we shall interpret the quantum Bernoulli random walk as a Markov process
with values in a noncommutative space, but we need first to give some definitions
pertaining to bialgebras and group algebras, which we do in the next section.

4. Bialgebras and group algebras

4.1. Coproducts. Let X be a finite set, and F(X) be the algebra of complex
functions on X . A composition law on X is a map X×X → X . This gives rise to a
unit preserving algebra morphism ∆ : F(X) → F(X ×X), where F(X ×X) is the
algebra of functions on X ×X , and one has a natural isomorphism F(X ×X) ∼
F(X) ⊗F(X). Conversely, such an algebra morphism ∆ : F(X) → F(X) ⊗F(X)
comes from a composition law, and many properties of the composition law can
be read on it. For example, associativity translates into coassociativity of the
coproduct which means that

(∆ ⊗ I) ◦ ∆ = (I ⊗ ∆) ◦ ∆



INTRODUCTION TO RANDOM WALKS ON NONCOMMUTATIVE SPACES 11

whereas commutativity gives cocommutativity for the coproduct, which means that

v ◦ ∆ = ∆

where v : F(X) ⊗ F(X) → F(X) ⊗ F(X) is the flip automorphism v(a ⊗ b) =
b⊗ a. In order to obtain an analogue of a composition law in the noncommutative
context, one can define a coproduct for any algebra A as a morphism ∆ : A →
A ⊗ A, however in general the algebraic tensor product is too small for obtaining
interesting examples. Think for example to the case A = Cb(X), X a locally
compact space, and see that A ⊗ A ⊂ Cb(X × X) is a small subspace. We shall
therefore consider coproducts which take values in a suitable completion of the
algebraic tensor product. An algebra endowed with a coassociative coproduct is
called a bialgebra. If the algebra is a C∗ (resp. a von Neumann) algebra and the
tensor product is the minimal C∗ product (resp. the von Neumann algebra tensor
product), then one has a C∗ (resp. a von Neumann) bialgebra.

Some further properties of a coproduct are the existence of the dual notion of
the unit element and the inverse, which are respectively called a counit, ε : A→ C

and an antipode, i : ∆ → ∆.
A Hopf algebra is a bialgebra with a unit and an antipode, satisfying some

compatibility conditions. I refer for example to [K] for an exposition of Hopf
algebras and quantum groups.

4.2. Some algebras associated to a compact group. We shall investigate
in more details the notions above in the case of the group algebra of a compact
group, which we assume for simplicity to be separable. Recall that every rep-
resentation of a compact group can be made unitary, and can be reduced to an
orthogonal direct sum of irreducible representations. The right regular representa-
tion of a compact group G is the representation of G on L2(G,m) (where m is a
Haar measure on G) by right translations ρgf(h) = f(hg−1) and the left regular
representation acts by left translations λgf(h) = f(gh). A fundamental theorem is
the Peter-Weyl theorem. It states that every irreducible representation of G arises
in the decomposition of the left (or right) regular representation, actually one has
an orthogonal direct sum

L2(G) = ⊕χ∈ĜEχ
where Ĝ is the (countable) set of equivalence classes of irreducible representations

of G, and for χ ∈ Ĝ, Eχ is the space of coefficients of the representation i.e. the
vector space generated by functions on G of the form

f(g) = 〈χ(g)u, v〉
where u, v are vectors in the representation space of χ (〈., .〉 being an invariant
hermitian product on the space). The space Eχ is finite dimensional, its dimension
being dim(χ)2, and it is an algebra for the convolution product on G, isomorphic to
the matrix algebra Mn(C) with n = dim(χ). We shall denote this space Mχ when
we want to emphasize its algebra structure.

We shall describe several algebras associated to G. The first one is the con-
volution algebra A0(G) generated by the coefficients of the finite dimensional rep-
resentations. As a vector space it is the algebraic direct sum A0(G) = ⊕χMχ ∼
⊕χMdim(χ)(C). There are larger algebras such as L1(G) the space of integrable
functions (with respect to the Haar measure on G), and C∗(G) the C∗ algebra
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generated by L1(G). This algebra consists of sequences (mχ;χ ∈ Ĝ) such that
mχ ∈Mχ; |mχ| → 0 as χ→ ∞.

The multiplier algebra of C∗(G) coincides with the von Neumann algebra A(G),
which is generated (topologically) by the left translation operators λg; g ∈ G, it

consists of sequences (mχ;χ ∈ Ĝ) such that supχ |mχ| <∞. In both cases, the norm
in these algebras is supχ |mχ|. Note that the left and right translation operators λg
and ρg are unitary, and the right translation operators generate the commutant of
A(G).

When the group G is abelian, there is a natural isomorphism, given by Fourier
transform, between the algebra A(G) and L∞(Ĝ) where here Ĝ is the group of
characters of G (this is consistent with our earlier notation since then all irreducible
representations of G are one dimensional and are thus characters). This group of
characters is a discrete abelian group, and its Haar measure is the counting measure.

In the general case, the algebra L∞(Ĝ) is isomorphic with the center of A(G),

since a bounded function on Ĝ can be identified with a sequence (mχ)χ∈Ĝ of scalar
operators.

Any closed subgroup of G generates a von Neumann subalgebra A(H) fur-
thermore the coproduct ∆ restricts to this subalgebra and defines a coproduct
∆ : A(H) → A(H) ⊗ A(H). If the subgroup is abelian, then this subalgebra is

commutative and is isomorphic to the algebra L∞(Ĥ),

Finally we shall also use the algebra Â(G) =
∏

χMχ which consists in un-

bounded operators on L2(G), with common dense domain ⊕χEχ (algebraic direct
sum), affiliated with the von Neumann algebra A(G). One has natural inclusions

A0(G) ⊂ C∗(G) ⊂M(C∗(G)) = A(G) ⊂ Â(G)

The algebra Â(G) ⊗ Â(G) is an algebra of operators on the algebraic direct sum

⊕χ,χ′Eχ⊗Eχ′ and we denote by Â(G)⊗̂Â(G) its completion for simple convergence
on ⊕χ,χ′Eχ ⊗ Eχ′ . One has

Â(G) ⊗ Â(G) =
∏

χ

Mχ ⊗
∏

χ

Mχ ⊂ Â(G)⊗̂Â(G) ∼
∏

χ,χ′

Mχ ⊗Mχ′

The ∗ algebra structure extends obviously to Â(G), and an element is positive if
and only if its components are positive.

4.3. The coproduct. The coproduct formula ∆ : λg → λg ⊗ λg extends
by linearity and continuity to the von Neumann algebra A(G) if we use the von
Neumann algebra tensor product. It defines a structure of cocommutative von
Neumann bialgebra on A(G). One can also define an extension of the coproduct

∆̂ : Â(G) → Â(G)⊗̂Â(G).

Indeed it is easy to check that for any χ ∈ Ĝ, and a ∈ Mχ, the operator ∆(a)
is nonzero on the space Eχ′ ⊗ Eχ′′ if and only if χ has a non zero multiplicity
in the decomposition of the tensor product representation Eχ′ ⊗ Eχ′′ . It follows
that for any sequence (aχ)χ∈Ĝ ∈ ∏

χ∈ĜMχ the sum
∑

χ∈Ĝ ∆(aχ) is a finite sum

in each component Eχ ⊗ Eχ′ therefore it defines an element in Â(G)⊗̂Â(G) ∼
∏

χ,χ′ Mχ ⊗Mχ′ .
One can define the convolution of two finite weights µ and ν by the formula

µ ∗ ν = (µ⊗ ν) ◦ ∆
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since the coproduct is cocommutative and coassociative, one checks that this is an
associative and commutative operation.

4.4. The case of Lie groups. For compact Lie groups there is another alge-
bra of interest, which is the envelopping algebra of the Lie algebra. Recall that the
Lie algebra of a Lie group is composed of right invariant vector fields on the group.
As such it acts on the L2 space as a family of unbounded operators. Therefore

the Lie algebra is a subspace of the ”big” algebra Â(G), and the algebra generated
by this subspace is naturally isomorphic to the envelopping Lie algebra (for simply
connected groups). The elements of the Lie algebra have the following behaviour

with respect to the extended coproduct on Â(G)

∆(X) = X ⊗ I + I ⊗X

This can be seen by taking derivatives with respect to s in the equation

∆(esX) = esX ⊗ esX

where esX ; s ∈ R is the one parameter subgroup generated by X .

4.5. States and weights. A normal state ν on A(G) is determined by its
value on the generators λg, thus by the function φν(g) = ν(λg). It is a classical
result that a function φ on G corresponds to a state on C∗(G), and to a normal
state on A(G), if and only if it is a continuous positive definite function on the
group, satisfying φ(e) = 1.

Every normal weight on A(G) is given by a sequence of weights (νχ)χ∈Ĝ on

each of the subalgebras Mχ, therefore for a weight ν on A(G) there exists a se-
quence of positive elements fχ ∈ Mχ such that νχ(a) = Tr(afχ) for all a ∈ Mχ.
Conversely any such sequence fχ defines a normal weight, thus normal weights on

A(G) correspond to positive elements in Â(G).

5. Random walk on the dual of SU(2)

5.1. The dual of SU(2) as a noncommutative space. We shall now inter-
pret the process constructed in section 3 as a random walk on a noncommutative
space. For this we consider the group SU(2) of unitary 2 × 2 matrices with deter-
minant 1. It is well known that the irreducible representations of this group are
finite dimensional, moreover, for each integer n ≥ 0 there exists, up to equivalence,
exactly one irreducible representation of dimension n, therefore one has

A(SU(2)) = ⊕∞
n=1Mn(C)

as a von Neumann algebra direct sum and similarly the C∗ algebra of SU(2) can
be identified with the algebra of sequences (Mn)n≥1 where Mn is an n× n matrix
and one has ‖Mn‖ → 0 as n → ∞. We shall interpret this C∗-algebra as the
space of ”functions” vanishing at infinity on some noncommutative space. The
associated von Neumann algebra corresponds to the space of ”bounded functions”
on our noncommutative space. In order to get a better picture of this space it
is desirable to have a geometric understanding of its structure. For this we first
note that this space has a continuous group of symmetries, since the group SU(2)
acts on the algebra by inner automorphisms. Since the elements ±I act trivially,
this is really an action of the quotient SU(2)/{±I} which is isomorphic with the
group SO(3), therefore this space has a three dimensional rotational symmetry. We
can understand this symmetry by looking at some special elements in the larger
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algebra Â(SU(2)), which correspond to ”unbounded functions”. Let us consider
the self-adjoint elements corresponding to the Pauli matrices, viewed as elements
of the Lie algebra of SU(2) (or rather the complexified Lie algebra). These define
unbounded operators on L2(SU(2)), which we shall denote X,Y, Z, and which

lie in Â(SU(2)). A good way to think about these three functions is as three
”coordinates” on our space, corresponding to three orthogonal directions. Each of
these elements has a spectrum which is exactly the set of integers (which you can
view as the group dual to the one parameter group generated by one of these Lie
algebra elements). Moreover this is true also of any linear combination xX+yY+zZ
with x2 + y2 + z2 = 1. This means that if you are in this space and try to measure
your position, you can measure, as in quantum mechanics, one coordinate in some
direction (x, y, z) using the operator xX + yY + zZ, and you will always find an
integer. Thus the space has some discrete feature, in that you always get integer
numbers for your coordinates, but also a continuous rotational symmetry which
comes from the action of SU(2) by automorphisms of the algebra. This is obviously
impossible to obtain in a classical space. Of course since the operators in different
directions do not commute, you cannot measure your position in different directions
of space simultaneously. What you can do nevertheless is measure simultaneoulsy
one coordinate in space, and your distance to the origin. This last measurement is
done using the operator D =

√
I +X2 + Y 2 + Z2 − I which is in the center of the

algebra Â(SU(2)), and therefore can be measured simultaneously with any other
operator. Its eigenvalues are the nonnegative integers 0, 1, 2 . . . , and its spectral
projections are the identity elements of the algebras Mn(C), more precisely, one

has in Â(SU(2))

D =
∞
∑

n=1

(n− 1)IMn(C)

We thus see that the subalgebra Mn(C) is a kind of ”noncommutative sphere of
radius n − 1”, and moreover by looking at the eigenvalues of the operators xX +
yY + zZ in the corresponding representation, we see that on any ”radius” of this
sphere, corresponding to a direction of space, the coordinate on this radius can only
take the n values n− 1, n− 3, n− 5, . . . ,−n+ 1.

Noncommutative space underlying A(SU(2))
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If we rescale the noncommutative sphere of large radius to have radius 1, it looks
more and more like a classical sphere, see e.g. [Rie] for a precise statement.

5.2. Construction of the random walk. Let ω be a state on M2(C), which
we can also consider as a state on A(SU(2)) by the projection A(SU(2)) →M2(C).
Let us consider the infinite tensor product algebra, with respect to the product state
ν = ω⊗∞ on N = ⊗∞

1 A(SU(2))).
Let T : N → N be defined by ∆⊗ s where s : A(SU(2))[2,∞[ → A(SU(2))[3,∞[

is the obvious shift isomorphism. Let jn : A(SU(2)) → N be the morphisms
defined by by jn = T n ◦ i where i(a) = a ⊗ I∞ is the GNS representation of
A(SU(2)) associated with ω, acting on the first factor. Note that one has actually
N = ⊗∞

1 M2(C) and i(a) = ρ2(a) ⊗ I∞ where ρ2 is a two dimensional irreducible

representation. The morphisms jn can be extended to the large algebra Â(SU(2))
and for V in the Lie algebra, using the formula for the coproduct one checks that

jn(V ) =

n
∑

i=1

I⊗(i−1) ⊗ V ⊗ I⊗∞

Thus the quantum Bernoulli random walk is obtained by taking the operators
(jn(X), jn(Y ), jn(Z)) where X,Y, Z are the Lie algebra elements corresponding to
the Pauli matrices. For n ≥ 0, we let Nn be the algebra generated by the first n
factors in the tensor product. There exists a conditional expectation ν(.|Nn) with
respect to the state ν onto such a subalgebra, it is given simply by I ⊗ ω∞ on the
factorization N = A(SU(2))⊗n ⊗A(SU(2))⊗[n+1,∞[.

The family of morphisms (jn)n≥1 form a noncommutative process wih values
in the dual of SU(2). The following proposition is left to the reader, as an exercise
in manipulation of coproducts.

Proposition 5.1. The family of morphisms jn;n ≥ 1, together with the family
of algebras N ,Nn;n ≥ 1, and the conditional expectations ν(.|Nn), form a dilation
of the completely positive map A(SU(2)) → A(SU(2)) given by Φω = (I ⊗ ω) ◦∆.

Let us now consider the three one-parameter subgroups generated by the Pauli
matrices, they consist respectively of the matrices

(

cos θ i sin θ
i sin θ cos θ

) (

cos θ sin θ
− sin θ cos θ

) (

eiθ 0
0 e−iθ

)

θ ∈ [0, 2π[

Each of these subgroups generates a commutative von Neumann subalgebra of
A(SU(2)), which is isomorphic with the group von Neumann algebra of the group
U(1) of complex numbers of modulus 1. Such a von Neumann algebra is isomorphic,
by Pontryagin duality, to the algebra of bounded functions on the dual group,
therefore the restriction of the dilation to this subalgebra provides a random walk
on this dual group, which is isomorphic to Z. Thus we recover, from the abstract
considerations on duals of compact groups, our concrete Bernoulli random walks.
In terms of our noncommutative space, we can observe a particle undergoing this
random walk along any fixed direction of space, and what we see is a Bernoulli
random walk (recall that the coordinate in some fixed direction of space can only
take integer values).

We now turn to the spin process which can be interpreted in terms of the
restriction of the dilation (jn)n≥1 to the center of the group algebra A(G). This

center consists of operators of the form (mχ;χ ∈ Ĝ) where each mχ is a scalar
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operator inMχ, it is a commutative algebra, isomorphic with the algebra of bounded

functions on Ĝ (recall that we have assumed that Ĝ is countable). Equivalently it
is the algebra generated by the operator D i.e. the algebra of operators of the form
f(D) where f is a bounded complex function on the nonnegative integers. It is also
easy to compute the restriction of the completely positive map Φω to this center.
It is given by the Clebsch-Gordan formula which computes the decomposition into
irreducible of a tensor product of representations of the group SU(2). What we
need is the formula (where ρn is the n-dimensional irreducible representation)

ρ2 ⊗ ρn = ρn−1 ⊕ ρn+1

which tells us that the Markov chain can jump from n to either n − 1 to n + 1,
furthermore the transition probabilities are proportional to the dimensions of the
targets, since we are in the trace state. We see that the restriction of jn to this
algebra thus corresponds to the spin process.

Finally there are other commutative algebras which are invariant under the
completely positive map. They are generated by the center of A(SU(2)) and by
a one parameter subgroup. Each such algebra is a maximal abelian subalgebra
of A(SU(2)), and its spectrum can be identified with the set of pairs (m,n) of
integers such that n ≥ 1 and m ∈ {n− 1, n− 3, . . .− n+ 1}. One can compute the
associated Markov semigroup, using the Clebsch Gordan formulas for products of
coefficient functions of the group SU(2). However the images of such an algebra by
the morphisms (jn)n≥1 do not commute. Thus in this way we get a noncommutative
dilation of a purely commutative semigroup. We will come back to this Markov
chain when we study Pitman’s theorem and quantum groups.

6. Random walks on duals of compact groups

It is easy to generalize the construction of the preceding section by replacing
the group SU(2) by an arbitrary compact group G. We will do a construction
parallel to the usual construction of a random walk on a group. Let φ0 and φ
be continuous positive definite functions on G, with φ0(e) = φ(e) = 1, thus these
functions correspond to normal states ν0 and ν on A(G). The state ν0 will play
the role of initial condition of our Markov chain, whereas the state ν represents the
distribution of the increments. To the state ν is associated a completely positive
map

Φν : A(G) → A(G) Φν = (I ⊗ ν) ◦ ∆.

The completely positive map generates a semigroup Φnν ;n ≥ 1. We now build the
infinite tensor product N = A(G)∞ with respect to the state ν0⊗ν⊗∞, and obtain
a noncommutative probability space (N , ω). Let T : N → N defined by ∆ ⊗ s
where s : A(G)[1,∞[ → A(G)[2,∞[ is the obvious isomorphism. Let jn : A(G) → N
be the morphisms defined by induction jn = T n ◦ i where i(a) = a ⊗ I∞ is the
inclusion of A(G) into the first factor (strictly speaking this is an inclusion only if
the state ν0 is faithful).

Let us translate the above construction in the case of an abelian group, in terms
of the dual group Ĝ. The states ν and ν0 correspond to probability measures on
Ĝ, the probability space is now the product of an infinite number of copies of Ĝ,
with the product probability ν0 ⊗ ν⊗∞, and the maps jn correspond to functions
Xn : Ĝ∞ → G given by Xn(g0, g1, . . . , gk, . . .) = g0g1 . . . gn−1. We thus recover the
usual construction of a random walk.
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For n ≥ 0, we let Nn be the algebra generated by the first n+ 1 factors in the
tensor product. There exists a conditional expectation ω(.|Nn) with respect to the
state ω onto such a subalgebra, it is given simply by I ⊗ ν∞ on the factorization
N = A(G)⊗(n+1) ⊗A(G)⊗∞.

Proposition 6.1. The morphisms (jn)n≥0, together with the von Neumann
algebras N ,Nn, n ≥ 0 and the state ω, form a dilation of the completely positive
semigroup (Φnν )n≥1, with initial distribution ν0.

The proof of this proposition follows exactly the case of SU(2) treated in the
preceding section.

Let H be a closed commutative subgroup of G, then its dual group Ĥ is a
countable discrete abelian group. The von Neumann subalgebra A(H) generated

by H in A(G) is isomorphic to L∞(Ĥ), and the restriction of the positive definite

function φ to H is the Fourier transform of a probability measure µ on Ĥ. The
coproduct ∆ restricts to a coproduct on the subalgebra generated by H , thus the
images of A(H) by the morphisms jn generate commuting subalgebras of N . These

restrictions thus give a random walk on the dual group Ĥ, whose independent
increments are distributed according to µ.

We now consider another commutative algebra, namely the center Z(G) of

A(G). Recall that this center is isomorphic with the space L∞(Ĝ) of bounded
functions on the set of equivalence classes of irreducible representations of G. As
a von Neumann algebra of operators on L2(G), it is generated by the convolution
operators by integrable central functions (recall that a function f on G is central
if it satisfies f(ghg−1) = f(h) for all h, g ∈ G).

Proposition 6.2. The algebras jn(Z(G));n ≥ 1 commute.

Proof. Let a, b ∈ Z(G) and let k ≤ l we have to prove that jk(a) and jl(b)
commute. Let a′ = i(a), b′ = i(b), and note that a′ and b′ belong to the center of
N . One has

jk(a)jl(b) = T k(a′)T k(T l−k(b′))
= T k(a′T l−k(b′))
= T k(T l−k(b′)a′)
= T l(b′)T k(a′)
= jl(b)jk(a)

�

Furthermore one has.

Proposition 6.3. If the function φ is central then Φν(Z(G)) ⊂ Z(G).

Proof. Indeed if ψ is central function, belonging to A0(G), then Φν(ψ) = φψ
is a central function on the group, and thus defines an element of Z(G). �

We deduce from the preceding propositions that, in the case when the incre-
ments correspond to a central state, the restriction of the dilation (jn)n≥0 to the

center of the algebra A(G) defines a Markov process on Ĝ, whose transition opera-
tor is given by the restriction of Φν to the center Z(G). We shall now give a more
concrete form of the transition probabilites of this Markov chain.

Proposition 6.4. For χ an irreducible character of G, let

φχ =
∑

χ′∈Ĝ

hφ(χ
′, χ)χ′
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be the expansion of the positive definite central function φχ into a combination
characters, then the probability transitions of the Markov chain obtained from the
restriction of (jn)n≥1 to the center are given by

pφ(χ
′, χ) =

dim(χ)

dim(χ′)
hφ(χ

′, χ)

Proof. For χ ∈ Ĝ, the convolution operator associated with the function
dim(χ)χ is the minimal projection of Z(G) associated with χ. In other words

it corresponds to the indicator function 1χ in the isomorphism of L∞(Ĝ) with
Z(G). The transition operator for the restriction of the dilation to the center is
the restriction to this center of Φω. On the other hand, the transition probabilities
pφ(χ, χ

′) are related to these indicator functions by Φω(1χ′) =
∑

χ pφ(χ
′, χ)1χ. The

conclusion follows immediately. �

7. The case of SU(n)

7.1. Some facts about the group SU(n). We shall investigate the quantum
random walk defined in the preceding section when the group G is the group SU(n)
of unitary matrices with determinant 1. First we recall some basic facts about this
group and its representations. Let T ⊂ SU(n) be the subgroup of diagonal matrices,
which is a maximal torus. The group of characters of T is an n − 1 dimensional
lattice, generated by the elements (the notation e is here to suggest the exponential
function)

e(ei)(







u1 0
. . .

0 un






) = uj

These elements satisfy the relation (written in additive notation) e1+e2+ . . .+en =
0, which corresponds to the relation e(e1)e(e2) . . . e(en) = 1 for the characters. We
denote by P this group, and by P+ the subset of positive weights, i.e.

P+ = {m1e1 + . . .+mn−1en−1|m1 ≥ m2 ≥ . . . ≥ mn−1}

We shall also need the set

P++ = {m1e1 + . . .+mn−1en−1|m1 > m2 > . . . > mn−1}

and note that the two sets are in bijection by

(7.1) P++ = P+ + ρ

where ρ = (n− 1)e1 + (n− 2)e2 + . . .+ en−1 is the half sum of positive roots. The
symmetric group acts on this character group by permutation of the ei.

Below is a picture of P and P+ for the group SU(3). Thus P consists of
the points in a triangular lattice in the plane, and P+ is the intersection of this
triangular lattice with a cone, fundamental domain for the action of the symmetric
group S3. The subset P++ consists in points of P+ which are in the interior of the
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cone.
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Recall from the representation theory of the group SU(n) (see e.g. [BtD],
[GW], or [Z]) that the equivalence classes of irreducible representations of SU(n)
are in one to one correspondence with the elements of P+, which are called ”highest
weights”. For each x ∈ P let e(x) be the associated character of T, then the
character of the representation with highest weight x ∈ P+ given, for u ∈ T, by
Weyl’s character formula

(7.2) χx(u) =

∑

σ∈Sn
ǫ(σ)e(σ(x + ρ))(u)

∑

σ∈Sn
ǫ(σ)e(σ(ρ))(u)

In particular the defining representation of SU(n) has character e(e1) + . . .+ e(en)
corresponding to the highest weight e1. The normalized positive definite function
on SU(n) corresponding to this character is φ(g) = 1

nTr(g). We shall investigate
the quantum random walk associated with this positive definite function.

7.2. Two classical Markov chains. We shall obtain two classical Markov
chains by restricting the Markov chain associated with φ to suitable subalgebras
of C∗(SU(n)). The first subalgebra is that generated by the maximal torus T.
This algebra is isomorphic to the algebra of functions vanishing at infinity on the
dual group P. It is easy to see that the restriction to the torus of the quantum
random walk (jn)n≥0, constructed using φ, is a random walk on the lattice P with
increments distributed as 1

n (δe1 + . . . + δen). Its one step transition probabilities
are given by

p1(x, y) = 1
n if y ∈ {x+ e1, . . . , x+ en}

p1(x, y) = 0 if not

We give the picture for the case of the group SU(3).
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1/3

1/3

1/3

The random walk on the dual of the maximal torus for SU(3).

The second subalgebra is the center of C∗(SU(n)). By the preceding section,
it can be identified with the space of functions vanishing at infinity on P+. We
shall rather use the identification of the set of irreducible representations with P++

given by (7.1). As we saw in section 6 the restriction of the dilation (jn)n≥0 gives
a classical Markov chain on the spectrum of the center, therefore we obtain in this
way a Markov chain on P++, the generator of the Markov chain being given by the
restriction of the generator of the quantum Markov chain on A(SU(2)).

We shall now derive a relation between these two Markov chains (the one ob-
tained from the maximal torus, and the one from the center). The set of highest
weights, P++ is the intersection of P with the Weyl chamber, which is the cone

C = {x1e1 + . . .+ xn−1en−1|x1 > x2 > . . . > xn−1}
We consider now the random walk on P killed at the exit of this cone. Thus the
transition probabilites of this killed random walk are given by

p0(x, y) = 1
n if y ∈ P++ ∩ {x+ e1, . . . , x+ en}

p0(x, y) = 0 if not.

The sum
∑

y p
0(x, y) is < 1 for points near the boundary, corresponding to the fact

that the random walk has a nonzero probability of being killed.
Let x ∈ P++ and consider the irreducible representation ξx of SU(n), with

highest weight x − ρ. We can use Weyl’s character formula (7.2) for decomposing
the representation ξx ⊗ ξn (where ξn is the defining representation of SU(n)).

We remark that 1
n

∑n
j=1 e(ej) = 1

n!

∑

σ∈Sn
e(σ(e1)). One has

χnχx−ρ = 1
n (e(e1) + . . .+ e(en))

P

σ∈Sn
ǫ(σ)e(σ(x))

P

σ∈Sn
ǫ(σ)e(σ(ρ))

=
P

τ∈Sn

P

σ∈Sn
ǫ(σ)e(σ(x)+τ(e1))(u)

n!
P

σ∈Sn
ǫ(σ)e(σ(ρ))

= 1
n

Pn
j=1

P

σ∈Sn
ǫ(σ)e(σ(x+ej ))

P

σ∈Sn
ǫ(σ)e(σ(ρ))

= 1
n

∑

y∈{x+e1,x+e2,...,x+en}∩P++
χy−ρ
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since if y = x+ ej belongs to P+ \P++ then it is fixed by some reflexion in Sn and
thus the sum

∑

σ∈Sn
ǫ(σ)e(σ(x + ej)) vanishes.

For x ∈ P++, let us denote h(x) the dimension of the representation with
highest weight x−ρ. We conclude from the preceding computation and Proposition
6.4, that the transition probabilities for the Markov chain on P++ are

(7.3) q(x, y) =
h(y)

h(x)
p0(x, y) x, y,∈ P++

Since the transition operator is unit preserving, it follows in particular that the
function h is a positive harmonic function with respect to the transition kernel p0,
i.e. satisfies

h(x) =
∑

y

h(y)p0(x, y) for all x ∈ P++

.
Again we draw the picture in the case of SU(3).
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c

h(a)/3h(x)

h(b)/3h(x)

h(c)/3h(x)

Let us recall that, given transition (sub)probabilities p(x, y) for a Markov chain,
and a positive harmonic function h for p, i.e. a function such that

h(x) =
∑

y

h(y)p(x, y) for all x

one calls the Markov chain with transition probabilities h(y)
h(x)p(x, y) the Doob con-

ditioning, or h-transform, of the Markov chain with transition probabilities p.
We can summarize the preceding discussion in the following proposition.

Proposition 7.1. The Markov chain obtained by restriction to the center is
related to the random walk on the dual of the maximal torus by a killing at the exit
of the Weyl chamber followed by a Doob conditioning using the dimension function
on the set of highest weights.

For more information on Doob’s conditioning, I refer to the books by Kemeny,
Knapp and Snell [KKS], or Revuz [R].

One could ask whether this relation, between the Markov chains on the dual
of the torus and on the center, holds for more general groups and positive definite
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functions. It turns out that the fundamental concept in this direction is that of a
minuscule weight, see [B3] for more details.

8. Choquet-Deny theorem for duals of compact groups

8.1. The Choquet-Deny theorem in an abelian group. As we have seen
in the preceding section, the fact that the dimension function is a positive har-
monic function on the Weyl chamber plays an important role in understanding the
quantum random walk on the dual of SU(n). A natural question arises, is this pos-
itive harmonic function unique? We shall answer this question, which is purely a
question of ”classical” potential theory using the theory of quantum random walks.
Actually we shall do this by extending a well known result of Choquet and Deny
[CD] on harmonic measures for locally compact abelian goups. The Choquet-Deny
theorem describes completely the solutions of the convolution equation

(8.1) µ ∗ φ = φ

on a locally compact abelian group G, where µ is a positive finite measure, and
φ is an unknown positive measure. One assumes that the subgroup generated by
the support of µ is the whole group. In order to state the Choquet-Deny theorem,
one needs to define the exponentials on the group G. These are the continuous
functions f on G, with values in ]0,+∞[, which are multiplicative, i.e. satisfy

f(gh) = f(g)f(h)

for all g, h ∈ G. An exponential e : G →]0,+∞[ is called µ-harmonic if one has
∫

G e(−x)µ(dx) = 1. The set of µ-harmonic exponentials is a Borel subset of the
set of all continuous functions on G, which we denote by Eµ. Let φ be a positive
measure on G of the form φ(dx) = e(x)dx where dx is the Haar measure on G and
e is a µ-harmonic exponential, then one has for all positive measurable functions f

∫

G f(x)φ ∗ µ(dx) =
∫

G

∫

G f(x+ y)φ(dx)µ(dy)
=

∫

G

∫

G f(x+ y)e(x)dxµ(dy)
=

∫

G

∫

G
f(x)e(x − y)dxµ(dy)

=
∫

G f(x)e(x)dx
∫

G e(−y)µ(dy)
=

∫

G
f(x)φ(dx)

therefore the measure φ is µ-harmonic. i.e. satisfies the equation (8.1). The
Choquet-Deny theorem states that every solution is a convex combination of solu-
tions of this kind.

Theorem 8.1 (Choquet-Deny). Assume that the subgroup generated by the
support of the measure µ is G, then every positive measure φ, solution of the con-
volution equation (8.1), is absolutely continuous with respect ot the Haar mesure
on G, and its density has a unique representation as an integral

dφ(x)

dx
=

∫

Eµ

e(x)dνφ(e)

where νφ is some finite positive measure on Eµ.
This result contains in particular the determination of all positive harmonic

functions for the transition operator associated with the measure µ, indeed if h is
such a positive µ-harmonic function, then the measure h(−x)dx is a µ-harmonic
measure.
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Note that a locally compact abelian group corresponds to a commutative and
cocommutative Hopf C∗-algebra. What we shall do next is to extend this theorem
to (a class of) cocommutative Hopf C∗-algebras. This will allow us to answer the
question about the uniqueness of the positive harmonic function. Before we state
our analogue of the Choquet-Deny theorem on the dual of a compact group, we
will first clarify some points about states and weights.

8.2. Some further properties of duals of compact groups. Let G be a
compact group and A(G) be its von Neumann algebra. This von Neumann algebra
has a structure of cocommutative Hopf-von Neumann algebra for the coproduct ∆,
counit ε and antipode i given respectively by continuous linear extension of

∆(λg) = λg ⊗ λg ε(λg) = δe,g i(λg) = λg−1 .

We have seen in section 4.3 that the convolution of two finite normal weights µ and
ν on A(G) is defined by the formula µ ∗ ν = (µ ⊗ ν) ◦ ∆. Assume now that µ is
a positive finite weight and φ is positive, then we can write φ as a sum of finite
weights φ =

∑

χ φχ with respect to the restrictions of φ to the subalgebras Mχ.

The sum
∑

χ ν ∗ φχ is then a sum of positive finite weights and thus it defines a

(not necessarily normal) weight on A(G). We can therefore consider the equation
(8.1) where this time µ and φ are positive normal weights, with µ finite.

Next we define the notion of exponential. The following definition is a straigh-
forward extension of the definition in the case of abelian groups.

Definition 8.2. A group-like element is a non zero element f of Â(G), such
that

∆(f) = f ⊗ f.

If this element is positive, then we call it an exponential.
If µ is a finite weight, f is an exponential and µ(i(f)) = 1 then we call f a

µ-harmonic exponential.

Let f, g, h be positive elements in Â(G) then one has the identity

(8.2) tr(f ⊗ g∆(h)) = tr(i(h) ⊗ g∆(i(f)))

which is easily checked on coefficient functions. Let g ∈ Â(G) be associated to µ,
i.e. µ(.) = tr(g.), then it follows from 8.2 that for all h

φ ∗ µ(h) = tr(f ⊗ g∆(h))
= tr(i(h) ⊗ g∆(i(f)))
= tr(i(h)i(f))tr(gi(f))
= φ(h)

Thus if f is a µ-harmonic exponential, and φ is the weight associated with f ,
then φ satisfies the equation (8.1).

8.3. The analogue of the Choquet-Deny theorem. We shall assume that
the state ν satisfies a non degeneracy condition which is the analogue, in the non
commutative setting, of the requirement that the support of the measure generates
the whole group. This condition states that for every finite weight ρ on A(G) which

is supported by some algebra Mχ for χ ∈ Ĝ, there exists an integer n ≥ 1 and a
constant c > 0 such that cν∗n ≥ ρ.

In this case, one has
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Theorem 8.3. Let φ be a ν-harmonic weight, then there exists a unique finite
positive measure on the set of ν-harmonic exponentials such that

φ =

∫

Eµ

e dmφ(e)

Sketch of proof. We let Sν be the convex cone of normal weights satisfying

φ ∗ ν ≤ φ

This cone is a closed subset of Â, and we can use Choquet’s integral representation
theorem to conclude that any element of this cone can be written as the barycenter
of a measure supported on the set of its extremal rays. Now one can analyze the
extremal rays of this set, and see that such an extremal ray consists in multiples of
an exponential. The uniqueness argument comes from the existence of an algebra
of functions on the cone, which separates points, see [B4] for details.

8.4. Examples. For a finite group, the set of exponentials is reduced to the
identity.

If the state ν is tracial, then there exists only one ν-harmonic exponential,
namely the identity. In the case of the group SU(n), the exponentials are in one
to one correspondence with the positive elements in SL(n,C).

From these results we deduce that the positive harmonic function h of Proposi-
tion 7.1 was unique. Indeed in order to prove that a function h is the unique (up to
a multiplicative constant) positive harmonic function for a transition kernel p, it is
enough to check that all the positive harmonic functions for the relativized kernel
h(y)
h(x)p(x, y) are constant, which is what the Choquet-Deny theorem tells us.

9. The Martin compactification of the dual of SU(2)

In the preceding section we have seen that the classical Choquet-Deny theo-
rem about solutions of convolution equations has an analogue in duals of compact
groups. This allows one to give an explicit description of all µ-harmonic posi-
tive functions for a finite positive measure µ on a commutative group. By the
Choquet-Deny theorem the positive µ-harmonic functions admit a unique integral
representation in terms of minimal µ-harmonic functions, and these minimal har-
monic functions can be identified with exponentials. The next natural question in
this line of ideas is to describe the Martin compactification associated to a random
walk with values in Zn. This Martin compactification provides a way to attach a
boundary to the space Zn in order to obtain a compact space, where the boundary
is naturally identified with the set of minimal µ-harmonic functions. The Martin
compactification of Zn was computed by Ney and Spitzer in a classical paper [NS],
where they showed that it consists in adding a sphere at infinity, and identifying
this sphere with the set of minimal harmonic functions with the help of the Gauss
map. In this section we will describe the Martin compactification of some quantum
random walks with values in the dual of SU(2). We will first recall some basic facts
about classical Martin boundaries, then describe Ney and Spitzer’s theorem, before
going to the case of the dual of SU(2).

9.1. The Martin compactification for Markov chains. Consider a Markov
chain on a countable state space E. The Markov chain has transition subprobabili-
ties p(x, y), x, y ∈ E, i.e. we have

∑

y p(x, y) ≤ 1, so that the kernel is submarkovian
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and the process may die in a finite time. There is an associated transition operator
given by

Pf(x) =
∑

y∈E
p(x, y)f(y)

and the iterated operator is given by n-step transition probabilities

Pnf(x) =
∑

E

pn(x, y)f(y)

We assume that the associated Markov chain is transient, so that the potential

U =

∞
∑

n=0

Pn

is finite, i.e. the function

u(x, y) =

∞
∑

n=0

pn(x, y) <∞

Let us choose an initial distribution r(dx) such that the function rU(y) =
∑

E u(x, y)r(dx)
is everywhere > 0. The Martin kernel is defined by

k(x, y) =
u(x, y)

rU(y)

It follows from the Harnack inequalities that the functions k(x, .) form a uniformly
continuous family on E. The Martin compactification of the Markov chain is the
smallest compact topological space Ēu, which contains E as a dense subset, and
such that these functions extend continuously to the boundary ∂Eu = Ēu \E. This
space exists because the functions k(x, .) separate the points of E and because of
the uniform continuity. For any ξ ∈ ∂Eu the function x 7→ k(x, ξ) is a p-harmonic
function. Recall that a positive p-harmonic function f on E is called minimal if for
every positive p-harmonic function g satisfying g ≤ Cf for some C > 0, one has
actually g = cf for some constant c. One can prove that any minimal p-harmonic
function f , which is r-integrable, is a multiple of k(., ξ) for some ξ ∈ ∂Eu. The
subset ∂Em of ξ ∈ ∂Eu such that k(., ξ) is minimal is a Borel subset, and one
can prove that any positive p-harmonic function f , which is r-integrable, admits a
representation

f =

∫

∂Em

k(., ξ)dmf (ξ)

with a unique positive measure mf .

9.2. The Martin compactification of Zd. When the Markov chain is a ran-
dom walk on Z

d, with increments distributed as µ, a (sub)probability measure on
Zd, we have seen that every positive µ-harmonic function admits an integral repre-
sentation in terms of exponentials. When the increments of the random walk are
integrable, Ney and Spitzer have determined explicitly the Martin compactification
of Zd, which we shall now describe. Let φ : Rd → [0,+∞] be the function

φ(x) =
∑

y∈Zd

e〈x,y〉µ(dy)

We assume that it is finite in a neighbourhood of the set

Eµ = {x|φ(x) = 1}
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Then the set Eµ is the boundary of the convex set {x|φ(x) ≤ 1} and it is either
reduced to a point or homeomorphic to a sphere. In the latter case the homeomor-
phism can be expressed thanks to the Gauss map as

∇φ
‖∇φ‖

Since φ is convex this is a homeomorphism from Eµ onto the unit sphere. Ney
and Spitzer proved that the Martin compactification is homeomorphic to the usual
compactification of Zd by a sphere at infinity, where the identification between the
sphere and the set of minimal µ-harmonic functions is provided by the map above.

9.3. Noncommutative compactifications. Before we investigate the prob-
lem of finding an analogue of the Ney-Spitzer theorem for the dual of SU(2) let
us translate in the noncommutative language the notion of a compactification of a
topological space. So let X be a topological space, and X̄ a compact space such
that X ⊂ X̄ is a dense open subset, and ∂X̄ = X̄ \X is the boundary, then C(X̄) is
can be identified with a subalgebra of Cb(X), the algebra of all bounded continuous
functions on X , and one has an exact sequence

0 → C0(X) → C(X̄) → C(∂X) → 0

where the first map is the continuous extension, to X̄ , by 0 on the boundary, of
a function on X , and the second map is the restriction to a closed subset. A
compactification of C0(X) is thus given by a certain commutative C∗-subalgebra
of the multiplier algebra of C0(X), containing C0(X). In the case of the Martin
compactification this subalgebra is just the algebra generated by C0(X) and by
the functions y 7→ k(x, y). The vector space generated by functions of the form
y 7→ k(x, y) can be identified with the image of the Martin kernel, considered as
an integral operator f 7→ ∑

x∈E f(x)k(x, y). It is this interpretation of the Martin
kernel that has a natural noncommutative analogue.

9.4. The Martin kernel for the quantum random walk. We consider a
central quantum random walk, therefore we have a positive definite central function
φ on SU(2) such that φ(e) ≤ 1, and the associated state ν on A(SU(2)). We have
seen that it has an associated transition kernel given by the completely positive
map Φν = (I ⊗ ν) ◦ ∆. This map acts as λg 7→ φ(g)λg on the generators λg of
the von Neumann algebra A(SU(2)). We know that if φ(e) = 1 then there exists
only one φ-harmonic weight, namely the one given by the function 1. In this case
we expect that the Martin boundary will be given by a one point compactification,
which consists just in adding a unit to the algebra, so in order to avoid this case,
we shall assume here that φ(e) < 1.

We can consider the associated potential which is equal to U =
∑∞
n=0 Φnν , and

which acts by multiplication by the function
∑∞

n=0 φ
n = 1

1−φ . We shall consider

the action of the potential on the space of coefficients i.e. the direct sum ⊕χMχ

where each element of this space can be identified with a polynomial function on
SU(2) acting by convolution, i.e. by the operator

∫

SU(2) p(g)λgdg. Then the Martin

kernel will be defined, by analogy with the case of classical Markov chains, by

p 7→
∫

SU(2)
p(g)

1−φ(g)λgdg
∫

SU(2)
1

1−φ(g)λgdg
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Note that the operator
∫

SU(2)
1

1−λφ(g)λgdg lies in the center of A(SU(2)), therefore

there is no ambiguity in the quotient of the preceding formula.

9.5. Pseudodifferential operators of order zero and the Martin com-

pactification. In order to find the Martin compactification of the quantum random
walk, we shall identify the C∗-algebra generated by C∗(SU(2)) and by the image
of the Martin kernel, and show that it gives rise to a three terms exact sequence.
We will first exhibit a certain exact sequence

(9.1) 0 → C∗(SU(2)) → M → C(S2) → 0

where M is our sought for Martin compactification, and C(S2) is the algebra of
continuous functions on the two dimensional sphere S2. For this we consider the

three operators in Â(SU(2)) associated with Pauli matrices, which we call X,Y, Z,
and the Casimir operator C = X2 + Y 2 + Z2 + I which acts by (n + 1)2 on the
space of coefficients of the n-dimensional representation of SU(2), and build three
operators

x = XC−1/2, y = Y C−1/2, z = ZC−1/2

Clearly these operators are self-adjoint and bounded. Using the commutation re-
lations (3.1) one can see that [x, y], [x, z], [y, z] and x2 + y2 + z2 − I are compact
operators on L2(SU(2)). It follows that there exists a map from the algebra gener-
ated by x, y, z to the algebra of polynomial function on the sphere, sending x, y, z
to the three coordinate functions, and this map vanishes on the compact operators.
Actually this map extends by continuity to the C∗ algebra generated by x, y and
z and yields the exact sequence (9.1). One can interpret also the algebra M as
the algebra of right invariant pseudo differential operators of order zero on SU(2),
then the map M → C(S2) of (9.1) is the principal symbol map (see [B5]). Once
we have introduced the exact sequence above, we can state the theorem which is
the analogue, for central states on the dual of SU(2), of the Ney-Spitzer theorem.

Theorem 9.1. The C∗ algebra generated by the image of the Martin kernel is
the algebra M. The Martin kernel yields a section K : C(S2) → M.

The proof of the theorem relies on a detailed analysis of the Clebsch-Gordan
formulas, see [B5].

Recently the problem of the Martin or Poisson boundary have been considered
for quantum groups, see [Col], [I], [INT].

10. Central limit theorems for the Bernoulli random walk

Just as in the classical case there exists central limit theorems for the Bernoulli
random walk, however the noncommutativity here plays an important role, and
according to whether the state we chose is central or not the limit is quite different.

10.1. The case of a central state. We consider the triple of processes
(Xn, Yn, Zn)n≥1 constructed in section (3.1). We use the tracial state to contruct
the product, M2(C)⊗∞ which is thus endowed with the tracial state σ = (1

2Tr)
⊗∞.

We renormalize the three processes according to

X
(λ)
t =

X[λt]√
λ
, Y

(λ)
t =

Y[λt]√
λ
, Z

(λ)
t =

Z[λt]√
λ
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where [x] is the integer part of x. This triple of processes converges when λ→ ∞,
in the sense of moments, towards a three dimensional Bownian motion. Indeed one
has

Theorem 10.1. Let (Xt, Yt, Zt)t≥0 be a three dimensional Brownian motion,
then for any polynomial in 3n noncommuting indeterminates P , and all times
t1, . . . , tn, one has

limλ→∞ σ(P (X
(λ)
t1 , Y

(λ)
t1 , Z

(λ)
t1 , . . . , X

(λ)
tn , Y

(λ)
tn , Z

(λ)
tn )) =

E[P (Xt1 , Yt1 , Zt1 , . . . , Xtn , Ytn , Ztn)]

Let us sketch the proof of this result. It is enough to prove the result for

monomials. First we see that for any real coefficients x, y, z the process xX
(λ)
t +

yY
(λ)
t +zZ

(λ)
t converges towards real Brownian motion. By polarization this implies

that for any monomial in X,Y, Z the sum over all monomials with the same total
partial degrees in X,Y, Z converges towards the required limit. Consider two mono-

mials of the form M1X
(λ)
t Y

(λ)
s M2 and M1Y

(λ)
s X

(λ)
t M2, their difference is, thanks

to the commutation relations, M1Z
(λ)
s∧tM2/

√
λ. This is a monomial of smaller de-

gree, with a factor 1/
√
λ. We conclude, by induction on degrees of monomials,

that the difference betwen the expectations of the two monomials M1X
(λ)
t Y

(λ)
s M2

and M1Y
(λ)
s X

(λ)
t M2 converges to 0 as λ → ∞. It follows that the expectations

of all monomials with the same partial degrees in variables converge to the same
limit. �

We observe that the spin process, normalized by S[λt]/
√
λ converges in distri-

bution to a three dimensional Bessel process as λ→ ∞.

10.2. The case of a pure state. Now we consider the quantum Bernoulli
random walk with the pure state given by the vector e0. We shall consider the
convergence of the moments of the triple of processes

(X
(λ)
t , Y

(λ)
t , Z

(λ)
t ) = (

X[λt]√
λ
,
Y[λt]√
λ
,
Z[λt]

λ
); t ≥ 0.

We shall prove that there exists operators (Xt, Yt, Zt)t≥0 on some Hilbert space H
with a vector Ω ∈ H , such that for every polynomial in noncommuting indetermi-
nates P (Xt1 , Yt1 , Zt1 , . . . , Xtn , Ytn , Ztn) one has

limn→∞〈P (X
(λ)
t1 , Y

(λ)
t1 , Z

(λ)
t1 , . . . , X

(λ)
tn , Y

(λ)
tn , Z

(λ)
tn )e∞0 , e

∞
0 〉) =

〈P (Xt1 , Yt1 , Zt1 , . . . , Xtn , Ytn , Ztn)Ω,Ω〉
For this we shall first investigate the case where n = 1, t1 = 1, thus we have
just three operators (Xn√

n
, Yn√

n
, Zn

n ) and let n→ ∞. Let H be a Hilbert space with a

countable orthonormal basis ε0, . . . , εn, . . ., and let us define operators, with domain
the algebraic sum ⊕ni=0Cεi, by the formula

(10.1)
a+(εi) =

√
j + 1 εj+1

a−(εj) =
√
j εi−1
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Theorem 10.2. For any polynomial in three noncommutative indeterminates
one has

lim
n→∞

〈P ((
Xn√
n
,
Yn√
n
,
Zn
n

)e⊗n0 , e⊗n0 〉 = 〈P (a+ + a−,
1

i
(a+ − a−), I)ε0, ε0〉

The proof is immediate by inspection of the formula (3.2) and comparison with
(10.1). �

Observe that one has the adjointness relations

〈a+u, v〉 = 〈u, a−v〉
for all u, v in the domain. It follows that the operators a+ +a− and 1

i (a
+ −a−) are

unbounded symmetric operators on H , and thus are closable. We will see below
that they have self-adjoint extensions. They satisfy the commutation relation

[a+, a−] = −I
on their common domain, spanned by the vectors εi.

The operators a+, a− thus obtained are well known under the name of creation
and annihilation operators for the quantum harmonic oscillator. One can give
a natural model for these operators using a gaussian random variable. For this,
remark that the distribution of the operator a+ + a− is gaussian. This follows
easily from the fact that each Xn follows a standard binomial distribution, and
the convergence of this binomial distribution to the gaussian distribution, by the
de Moivre-Laplace theorem. This property of the operator a+ + a−, and the fact
that ε0 is a cyclic vector for a+ + a−, i.e. the vectors (a+ + a−)nε0 span a dense
subspace of H , allows us to identify the space H in a natural way with the L2 space
of a gaussian random variable. The vectors εn can be obtained from the vectors
(a+ + a−)n by the Gram-Schmidt orthogonalization procedure. It is well known
that, for a gaussian variable X , the polynomials obtained by the Gram-Schmidt
orthonormalization process from the sequence Xn are the Hermite polynomials.
Thus when we identify the space H with the L2 space of the gaussian measure
on R the vectors εn become identified with the Hermite polynomials. Then the
operator a− is identified with d

dx and the operator a+ with x− d
dx .

The product a+a− has eigenvalues 0, 1, 2, . . . corresponding to the the respective
eigenvectors ε0, ε1, . . .. It is known as the number operator in quantum field theory.

We will in the next section systematize the construction above and show how to
deduce the limit of the renormalized quantum random walk to a quantum Brownian
motion.

10.3. Fock spaces. Let H be a complex Hilbert space. For each integer n
the symmetric group Sn acts on H⊗n by permutation of the factors in the tensor
product.

Definition 10.3. We denote H◦n the subspace of H⊗n formed by vectors
invariant under the action of Sn.

If h1, . . . , hn ∈ H then we let

h1 ◦ . . . ◦ hn =
1√
n!

∑

σ∈Sn

hσ(1) ⊗ . . .⊗ hσ(n)
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which is a multiple of the orthogonal projection of h1 ⊗ . . .⊗ hn on H◦n. One has

〈h1 . . . ◦ hn, h′1 ◦ . . . ◦ h′n〉 =
∑

σ∈Sn

n
∏

i=1

〈hi, h′σ(i)〉

The Fock space built on H is the Hilbert space direct sum

Γ(H) = ⊕∞
n=0H

◦n

where H◦0 is a one dimensional Hilbert space spanned by a unit vector Ω, called the
vacuum vector of the Fock space. The algebraic direct sum ⊕∞

alg,n=0H
◦n, denoted

by Γ0(H), is a dense subspace of Γ(H).

For every h ∈ H we define the exponential vector associated with h by

ξ(h) =
∞
∑

n=0

h◦n

n!

one has

〈ξ(h), ξ(h′)〉 = e〈h,k〉

furthermore the vectors ξ(h);h ∈ H form a linearly free subset, generating alge-
braically a dense subspace of Γ(H).

If the space H is written as the orthogonal direct sum of two Hilbert subspaces
H = H1 ⊕H2, then there is a canonical isomorphism

(10.2) Γ(H) ∼ Γ(H1) ⊗ Γ(H2)

which can be obtained, for example, by identifying the exponential vector ξ(v1 +
v2) ∈ Γ(H), where v1 ∈ H1 and v2 ∈ H2, with the vector ξ(v1) ⊗ ξ(v2) ∈ Γ(H1) ⊗
Γ(H2).

Let h ∈ H , we define two operators on the domain Γ0(H) by

a+
h (h1 ◦ . . . ◦ hn) = h ◦ h1 ◦ . . . ◦ hn
a−h (h1 ◦ . . . ◦ hn) =

∑n
i=1〈hi, h〉h1 ◦ . . . ◦ ĥi ◦ . . . ◦ hn

Operators of the form a+
h are called creation operators while the a−h are called

annihilation operators. When H is one dimensional, generated by a unit vector u
there is a natural identification of Γ(H) with the Hilbert space of the preceding

section where the vector u◦n is identified with
√
n!ǫn. Then the operators a+

u and
a−u coincide with a+ and a−.

Another operator of interest on Γ(H) is the number operator Λ which has
eigenvalue n on the subspace H◦n. If (ei)i∈I is an orthonormal basis in H , then
the number operator Λ has the expansion

Λ =
∑

i

a+
e1a

−
ei
.

One can see that the creation and annihilation operators satisfy the adjoint
relation

〈a+
h u, v〉 = 〈u, a−h v〉 h, u, v ∈ Γ0(H)

as well as the commutation relation

[a+
h , a

−
k ] = −〈h, k〉I
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on the domain Γ0(H). In particular they are closable, and it is easy to see that the
exponential vectors belong to the domain of their closure, with

(10.3) a+
h ξ(h

′) =
d

dt
ξ(h′ + th)t=0 a−h ξ(h

′) = 〈h′, h〉ξ(h)

We shall see that the real part of the creation operator Ph = a+
h + a−h has a self-

adjoint extension, as well as its imaginray part Qh. For this we consider the fol-
lowing Weyl operators, given on the vector space generated by exponential vectors
by the formula

Wuξ(h) = ξ(h+ u)e−〈h,u〉− 1
2 〈u,u〉

It is easy to check that

(10.4) 〈Wuξ(h),Wuξ(h
′)〉 = 〈ξ(h), ξ(h′)〉

for all u, v, h, h′ ∈ H , therefore the operators Wu extend to unitary operators on
Γ(H), furthermore

(10.5) WuWv = Wu+ve
−iℑ〈u,v〉

and for any u ∈ H the operators (Witu; t ∈ R) form a one parameter group of
unitary operators, whose generator is given by Pu on exponential vectors. Similarly,
the operators (Wtu; t ∈ R) form a one parameter group of unitary operators, whose
generator is given by Qu, and more generally for θ ∈ [0, 2π[ the vectors (Weiθtu; t ∈
R) form a one parameter group of unitary operators, whose generator is given by
cos θQu + sin θPu.

It follows from Stone’s theorem that Pu, Qu, and all their linear combinations,
have a self adjoint extension. These operators satisfy the commutation relation

[Pu, Qv] = −2iℜ〈u, v〉.
We observe that if H splits as an orthogonal direct sum H = H1 ⊕H2 and u ∈ H1,
then the operator Wu admits a decomposition Wu = Wu ⊗ I in the decomposition
(10.2).

Let nowK ⊂ H be a real Hilbert subspace such that ℑ〈u, v〉 = 0 for all u, v ∈ K
(if K is maximal, it is called a Lagrangian subspace), then by (10.5) the unitary
operators Wiu;u ∈ K form a commutative family, and the generators Pu, u ∈ K of
the one parameter subgroups (Witu; t ∈ R) form a commuting family of self-adjoint
operators with common dense domain Γ0(H). We can therefore investigate the
joint distribution of these operators.

Proposition 10.4. The operators Pu, for u ∈ K form a gaussian family with
covariance 〈Pu, Pv〉 = 〈u, v〉.

The operatorsQu, for u ∈ K form a gaussian family with covariance 〈Qu, Qv〉 =
〈u, v〉.

For the proof it is enough to prove that any linear combination of these oper-
ators has a gaussian distribution with the right variance, i.e. that Pu is a gaussian
with variance 〈u, u〉. For this one computes the Fourier tranform

〈eiPuΩ,Ω〉 = 〈eiPuξ(0), ξ(0)〉 = 〈ξ(u)e− 1
2 〈u,u〉, ξ(0)〉 = e−

1
2 〈u,u〉

The proof for the operators Qu is similar. �

We let now H = L2(R+), and take as Lagrangian subspace the subspace of
real valued functions. Then the family (Pt := P1[0,t]

; t ≥ 0) has the covariance
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〈Pt, Ps〉 = s ∧ t, and thus has the distribution of a real brownian motion. The
same is true of the operators Qt := 1

i (a
+
1[0,t]

− a−1[0,t]
) which form another Brownian

motion satisfying the commutation relations

[Pt, Qt] = 2it

We shall call the pair (Pt, Qt)t≥0 of continuous time processes a non commutative
brownian motion.

We can now state the limit result we had in view in the beginning of this
section.

Theorem 10.5. For any polynomial P in noncommuting variables, one has

limλ→∞〈(P (X
(λ)
t1 , Y

(λ)
t1 , Z

(λ)
t1 , . . . , X

(λ)
tn , Y

(λ)
tn , Z

(λ)
tn )e∞0 , e

∞
0 〉) =

〈P (Pt1 , Qt1 , t1.I, . . . , Ptn , Qtn , tn.I))Ω,Ω〉]
The proof is an elaboration of the proof we gave for one time.
We shall see in the next section that, again, one can interpret this pair of

processes as a noncommutative Markov process with values in a non commutative
space.

The noncommutative Brownian motion is the basis of a theory of noncommuta-
tive stochastic integration which has been developped by Hudson and Parthasarathy,
see e.g. [Pa].

11. The Heisenberg group and the noncommutative brownian motion

The Heisenberg group is the set H = C × R endowed with the group law

(z, w) ⋆ (z′, w′) = (z + z′, w + w′ + ℑ(zz̄′))

This is a nilpotent group, its center being {0} × R, and the Lebesgue measure on
C × R is a left and right Haar measure for this group.

The Weyl operators defined in the preceding section on a Fock space Γ(C)
define unitary representations of the group H, by setting, for τ ∈ R

∗,

ρτ (z, w) = Wzτ1/2eiτw

if τ > 0 and

ρτ (z, w) = Wz̄|τ |1/2eiτw

if τ < 0.

Another family of representations is given by the one dimensional characters

ρξ(z, w) = eiℜ(zξ̄)

for ξ ∈ C.
All these representations are irreducible, are non equivalent and they exhaust

the family of equivalence classes of irreducible representations of H.
We consider the C∗ algebra of H, which is the C∗-algebra generated by the

convolution algebra L1(H) on L2(H). This algebra is a sub C∗-algebra ofB(L2(H)).
Let us denote z = q + ip then the Lie algebra of H is composed of the vector fields

∂

∂w
;

∂

∂q
+ p

∂

∂w
;

∂

∂p
− q

∂

∂w
.
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We shall denote by iT, iQ, iP the unbounded operators on L2(H), affiliated to
C∗(H), which correspond to these vector fields. Thus P,Q, T are unbounded self-
adjoint operators, which satisfy the commutation relation

[P,Q] = −2iT.

As in the case of SU(2) one can give a heuristic description of the noncommu-
tative space dual to H using the generators of the Lie algebra of H, which define
three noncommuting unbounded self-adjoint operators P,Q, T . We think of these
operators as coordinate functions on this dual space, satisfying the commutation
relations

[P,Q] = −2iT [P, T ] = [Q, T ] = 0.

Since the coordinate T belongs to the center, it allows to decompose the space into
slices according to the values of this coordinate. When T = 0, the coordinates P and
Q commute, and the corresponding slice is a usual plane, with two real coordinates.
This corresponds to the one dimensional representations of the group. When T = τ
a non zero real number, the two coordinates P,Q generate a von Neumann algebra
isomorphic to B(H), and corresponding to the irreducible representation sending
T to τI. Note that in this representation the operator P 2 + Q2 has a discrete
spectrum 2|τ |, 6|τ |, 10|τ |, . . ..

The plane T=0

T

T=t

[P,Q]=it
The "quantum plane"

The dual of the Heisenberg group

Let us consider, for t ≥ 0, the functions on H

ϕ±
t (z, w) = 〈ρ±t(z, w)Ω,Ω〉 = e±itw− 1

2 tzz̄ .

By construction, these functions are positive definite functions on H, and form
two multiplicative semigroups. To these functions correspond convolution semi-
groups of states, and semigroups of completely positive maps. The semigroup of
noncommutative brownian motion on the dual of H is the associated semigroup
of completely positive maps on C∗(H). Recall that this semigroup is obtained by
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composing the coproduct ∆ : C∗(H) →M(C∗(H))⊗M(C∗(H)) (recall that M(A)
is the multiplier algebra of A) with the state associated with the function. Thus

Φ±
t = (νϕ±

t
⊗ I) ◦ ∆

or equivalently
Φ±
t (λg) = ϕ±

t (g)λg for g ∈ H.
Let ν be a state on C∗(H), and ρν : C∗(H) → B(Hν) be the associated GNS

representation. We consider the two families of homomorphisms

j±t : C∗(H) → B(Hν ⊗ Γ(L2(R+)))
j±t (z, w) = ρν(z, w) ⊗Wz1[0,t]

e±itw

We shall prove that these homomorphisms constitute dilations of some completely
positive convolution semigroups on C∗(H). For each time t ≥ 0 we have a direct sum
decomposition L2(R+) = L2([0, t])⊕L2([t,+∞[) and a corresponding factorization

Γ(L2(R+)) = Γ(L2([0, t])) ⊗ Γ(L2([t,+∞[))

Accordingly for each t > 0 there are subalgebras

Wt = B(Γ(L2([0, t]))) ⊗ I ⊂ B(Γ(L2(R+)))

and linear maps

Et := Id⊗ 〈.Ω[t,Ω[t〉 : B(Γ(L2(R+))) →Wt

where Ω[t is the vacuum vector of the space Γ(L2([0, t])).

Lemma 11.1. For each t ≥ 0 the map Et is a conditional expectation with
respect to the state 〈.Ω,Ω〉.

Indeed if a ∈ B(L2(R+)) has a decomposition a = at] ⊗ a[t then one has

Et(a) = at] ⊗ 〈a[tΩ[t,Ω[t〉
and for b, c ∈ B(L2([0, t]))

〈bacE(u), E(v)〉 = 〈bEt(a)cE(u1[0,t]), E(v11[0,t])〉〈a[tE(u1[t,+∞[), E(v1[t,+∞[)〉
= 〈bEt(a)cE(u), E(v)〉

One checks easily that the homomorphism j±t sends C∗(H) to Wt, furthermore we
have

Proposition 11.2. The maps (j±t , Et,Wt) form a dilation of the completely
positive semigroup Φ±

t , with initial distribution ν.

Proof. This is a bookkeeping exercise using the definition of the Weyl opera-
tors, one has to check that, for t, s ≥ 0 and u, v ∈ L2(R+), one has

〈j±t+s(z, w)E(u1[0,t]), E(v1[0,t])〉 = e±isw− 1
2 s|z|

2〈j±t (z, w)E(u1[0,t]), E(v1[0,t])〉
�

For every one parameter subgroup of H, there is a completely positive semi-
group given by restriction of (Φ±

t )t≥0. For subgroups of the form (xz, 0);u ∈ R,
with z ∈ C∗ isomorphic to R, one sees that the semigroup is that of Brownian
motion on the dual group. Thus we recover the Brownian motions (Pt, Qt) of the
preceding section by looking at jt(P ) and jt(Q).

The restriction to the center (0, w);w ∈ R gives a semigroup of uniform trans-
lation on the real line.
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11.1. The quantum Bessel process. Bessel processes are radial parts of
Brownian motions. Here we shall exploit the action of the unitary group U(1) on
the Heisenberg group in order to find an abelian algebra which is left invariant by
the semigroup and study the Markov process associated with the restriction of Φ±

t

to this subalgebra. Let eiθ be a complex number with modulus 1, then there exists
an automorphism aθ of the Heisenberg group defined by

aθ(z, w) = (eiθz, w)

and this automorphism extends to an automorphism of the C∗ algebra.

Proposition 11.3. The subalgebra of C∗(H) composed of elements invariant
under the above action of U(1) is an a abelian C∗ algebra.

The characters of this abelian C∗-algebra have been computed by A. Koranyi,
they are given by the formula

χ(f) =

∫

H
ω(g)f(g)dg

for f ∈ L1(H), invariant under the action of U(1), where ω belongs to the set of
functions

{ωτ,m|τ ∈ R
∗,m ∈ N} ∪ {ωµ|µ ∈ R+}

with
ωτ,m(z, w) = meiτw− 1

2 |τ ||z|
2

Lm(|τ ||z|2)
ωµ(z, w) = j0(µ|z|2)

Here Lm are the Laguerre polynomials defined by the generating series

∞
∑

m=0

Lm(x)tm =
e−

xt
1−t

1 − t

and j0 is the usual Bessel function.
The spectrum of the algebra C∗

R(H) can be identified with a closed subset of
R2, which consists in the union of the halflines {(x, kx);x > 0} for k ∈ N, the
halflines (x, kx);x < 0 for k ∈ N

∗, and the halfline (0, y); y ≥ 0.
It is the spectrum of the unbounded operator 1

2 (P 2 +Q2−T ), and this algebra
is the algebra of functions of this operator.

The picture gives a ’fan” consisting of a union of halflines originating form 0
as depicted below.
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The Heisenberg fan

We shall call noncommutatif Bessel semigroup the restriction of Φ±
t to the

abelian subalgebra C∗
R(H). In order to compute this semigroup we need, for each

character ω to decompose the functions ωϕt into an integral of characters. The
result is given by the following.

Proposition 11.4. The noncommutative Bessel semigroup Φ+
t is given by the

following kernel.
If x = (σ,−kσ) with σ < 0 and τ = σ + t then

qt(x, dy) =

∞
∑

l=k

(l − 1)!

(k − 1)!(l − k)!
(1 − τ

σ
)l−k(

τ

σ
)kδ(τ,−lτ)(dy)

If x = (σ,−kσ) with σ < 0 and 0 = σ + t, (y = 0, r) then

qt(x, dy) =
( rt )

k−1

(k − 1)!
e−

r
t δ0 ⊗ dr

If x = (σ,−kσ) with σ < 0 and τ = σ+ > 0 then

qt(x, dy) =

∞
∑

l=0

(l + k − 1)!

(k − 1)!l!
(1 − τ

t
)l+k(

τ

t
)kδ(τ,lτ)(dy)

If x = (0, r) then

qt(x, dy) =
( rt )

k−1

l!
e−

t
lt δt,lt(dy)

If x = (σ, kσ) with σ > 0 and τ = σ + t

qt(x, dy) =

l=k
∑

l=0

(l − 1)!

(k − 1)!(l − k)!
(1 − σ

τ
)k−l(

σ

τ
)lδ(τ,lτ)(dy)

The computations can be found in [B6].

A typical trajectory of the process is depicted in the above picture. It starts from a
point (σ,−σ) with σ < 0. During the whole process the first coordinates follows a
uniform translation to the right. The trajectory starts on the line y = −x, and with
an intensity dt

−σ+t , then jumps to the line (y = −2x), which it follows before jumping

to the next line (y = −3x) with an intensity 2dt
−σ+t , and so on, until it reaches after
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infinitely many jumps the line x = 0, then the process on the right half plane does
the jumps from the line (y = kx) to (y = (k − 1)x), until it finally reaches the line
y = 0 where it stays forever. One can actually construct this process from a birth
and death process known as the Yule process, and the embedding of this process
into the Heisenberg fan yields a construction of the space-time boundary of this
process, see [B6].

12. Dilations for non compact groups

12.1. The general case. We shall now extend the preceding construction to
the case of arbitrary locally compact groups. Let G be a locally compact group,
with right Haar measure m, and consider its convolution algebra L1(G). We endow
this algebra with the norm ‖f‖ = sup ‖ρ(f)‖ where the supremum is over all unitary
representations ρ of the group G, extended to the algebra L1(G). This yields the
full C∗-algebra of G, denoted C∗(G). When the group G is amenable, for example if
G is compact or for the Heisenberg group which we have met before, this coincides
with the completion of the action of the group on L2(G), which is called the reduced
C∗-algebra of G. When the group is nonamenable, C∗

r (G) is strictly smaller than
C∗(G). A continuous positive definite function on G, such that ϕ(e) = 1 defines
a state as well as a completely positive contraction on C∗(G), whose restriction
to L1(G) is given by f 7→ fϕ. Let now ψ be a continuous, conditionally negative
definite function on G, with ψ(e) = 0. Recall that this means that for all t ≥ 0 the
function e−tψ is a positive definite function on G, or equivalently, by Schönberg’s
theorem, that for all z1, . . . , zn ∈ C with

∑

i zi = 0, and g1, . . . , gn ∈ G one has
∑

ij

ziz̄jψ(g−1
j gi) ≤ 0.

There is an associated semigroup of completely positive contractions on C∗(G).
We shall now, following Parthasarathy and Schmidt [PS], construct a dilation of
this semigroup. Let ν be a state on C∗(G) which will be the initial state. The
GNS construction yields a unitary representation π of G on a Hilbert space Hπ,
and η ∈ Hπ such that ν(x) = 〈π(x)η, η〉 for x ∈ C∗(G). A variant of the GNS
construction associates to the function ψ a unitary representation of G in a Hilbert
space Hψ, and a cocycle v : G→ Hψ for this representation. Thus v is a continuous
function which satisfies

v(gh) = gv(h) + v(g)

and

(12.1) 〈v(g), v(h)〉 = −ψ(h−1g) + ψ(g) + ψ(h−1) − ψ(e)

for all g, h ∈ G. Conversely, any function ψ satisfying the above equation for some
representation and cocycle v is conditionally negative definite. Indeed one has

∑

ij

ziz̄jψ(g−1
j gi) = −‖

∑

j

zjv(gj)‖2 ≤ 0

if
∑

j zj = 0.

Let Γ = Γ(L2(R+)⊗Hψ), and let W = B(Hπ ⊗Γ) ∼ B(Hπ)⊗B(Γ). Let ω be
the pure state on W associated with the vector η⊗Ω. One can define the subalgebras
Wt = B(Hπ ⊗ Γt) ⊗ Id associated with the orthogonal decomposition L2(R+) ⊗
Hψ = (L2([0, t]) ⊗ Hψ) ⊕ (L2([t,+∞[) ⊗ Hψ), and the conditional expectations
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Et : W → Wt with respect to the state ω. One defines a unitary representation of
G on exponential vectors by

V t(g)(E(u)) = etψ(g)+〈1[0,t]⊗vt(g),u〉E(U t(g)(u) + 1[0,t] ⊗ vt(g))

One thus gets a representation of G on Hπ ⊗ Γ by taking the tensor product of V t

with the representation π, and this yields a family of morphisms jt : C∗(G) → W .

Proposition 12.1. The family (jt,W ,Wt, Et, ω) forms a dilation of the com-
pletely positive semigroup, with initial distribution ν.

The proof is a bookkeeping exercise. This construction has been extended by
Schürmann to a class of bialgebras, see [Sc], allowing him in particular to give a
nice construction of the Azéma martingales.

12.2. Free groups. Let now Fn be a free group on n generators g1, . . . , gn.
Each element of Fn can be written in a unique way as a reduced wordw = gε1i1 . . . g

εk
ik

,
where one has εj = ±1 for all j and i1 6= i2 6= i3 . . . ik−1 6= ik. For such an element
one defines its length l(w) = k. This is the smallest integer k such that w can be
expressed as a product of k elements in the set {g1, g−1

1 , g2, . . . , gn, g
−1
n }.

Proposition 12.2. (Haagerup [H]) The function l is conditionally negative
definite on Fn.

Proof. Consider the Cayley graph of Fn built on the generators. Thus this
graph has as vertices the elements of Fn and its edges are the pairs {g, h} such that
h−1g is a generator or the inverse of a generator. This Cayley graph is a regular
tree in which each vertex has 2n neighbours. For any g ∈ Fn one can consider
the unique shortest path in the graph between Id and g. Let En be the set of
edges of the Cayley graph, endowed with the counting measure, then one defines
v(g) ∈ L2(En) to be the indicator function of this shortest path from Id to g in
the Cayley graph. Thus v(g)(e) = 1 if and only if the edge e is on the shortest
path from Id to g. One can easily check, using the properties of trees that for any
h, h ∈ Fn one has

l(g) + l(h) − l(h−1g) = 2〈v(g), v(h)〉L2(Fn)

indeed this scalar product counts the number of common edges in the shortest
paths from Id to g and h. This implies, by (12.1) that l is conditionally negative
definite. �

It follows from the previous proposition that there exists, on the full C∗ algebra
of Fn, a semigroup of unit preserving completely positive maps, given by the formula

Φt(λg) = e−tl(g)λg

The theory of the previous section allows us to construct a dilation of this semi-
group. As before we shall be interested in the restriction of this completely positive
semigroup to commutative subalgebras. The first one will be the subalgebra of the
subgroup generated by one of the generators. Let gi be this generator, then this
subgroup is isomorphic to Z by k 7→ gki , therefore its dual is isomorphic to the
group of complex numbers of modulus 1. The restriction gives us a Markov semi-
group on the group of complex numbers of modulus 1. This semigroup is easy to
characterize, it sends the function eikθ on the unit circle to the function e−|k|+ikθ.
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In other words this is the integral operator on the unit circle given by the Poisson
kernel

Pt(θ, θ
′) =

1 − e−2t

1 − 2e−t cos(θ − θ′) + e−2t
.

This is a convolution semigroup, as expected.

The other commutative algebra of interest is the algebra R(Fn) consisting of
radial elements. It is generated by the elements χl =

∑

l(g)=l λg for l = 0, 1, . . ., and

it is immediate that the completely positive semigroup associated with the length
function leaves this algebra invariant. Actually one has Φt(χl) = e−tlχl. These
elements satisfy the relations

χ0 = I
χ2

1 = χ2 + 2nχ0

χlχl = χl+1 + (2n− 1)χl−1 l ≥ 2

From this we conclude that R(Fn) is the commutative von Neumann algebra gen-
erated by the self-adjoint element χ1, and its spectrum is the spectrum of χ1. In
order to compute the norm of χl we need just to consider the trivial representation
of Fn in which all gi are mapped to the identity, and we get ‖χl‖ = 2n(2n− 1)l−1

for l ≥ 1, the number of elements of length l in Fn. Any character ϕ : R(Fn) → C

is determined by its values on χ1, For such a character ϕ, with ϕ(χ1) = x, one has

ϕ(χ0) = 1; ϕ(χ2) = x2 − 2n; ϕ(χl+1) = xϕ(χl) − (2n− 1)ϕ(χl−1) for l ≥ 2

from which one infers that

(12.2) ϕ(χl) =
λl+1

1 − λl+1
2

λ1 − λ2
− λl−1

1 − λl−1
2

λ1 − λ2
for l ≥ 1

where λ1, λ2 are the two roots of the equation λ2 − xλ + 2n− 1 = 0.
We verify that the character ϕx defined by the formula above is real and

bounded if and only if x ∈ [−2n, 2n]. The spectrum of the algebra R(Fn) thus
coincides with the interval [−2n, 2n], and the element χl corresponds to a polyno-
mial function Pl(χ1) = χl, where the polynomials are determined by the recursion

P0 = 1, P1(x) = x, xPl(x) = Pl+1(x) + (2n− 1)Pl−1.

This three term recursion relation is characteristic of a sequence of orthogonal
polynomials. The orthogonalizing measure is the distribution of χ1 in the noncom-
mutative probability space (A(Fn), δe) where δe is the pure state, in the left regular
representation of Fn, corresponding to the identity. Thus δe(λg) = 1 if g = e and
δe(λg) = 0 if not. This measure is known as the Kesten measure (see [Ke]) and has
the density

dmn(x) =
2n

2n− 1
4π

√

4(2n− 1) − x2

4n2 − x2

on the interval [−2
√

2n− 1, 2
√

2n− 1]. The discrepancy between the interval [−2n, 2n]
which is the spectrum of χ1 and the support of the measure mn comes from the fact
that Fn is a nonamenable group and therefore some of its unitary representations
are not weakly contained in the regular representation.

The semigroup of the restriction of (Φt)t≥0 to the subalgebra R(Fn) sends the
polynomial function Pl(x) on the interval [−2n, 2n] to the function e−tlPl(x). We
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can compute the transition probabilities pt(x, dy) by finding the integral represen-
tation

e−tlPl(x) =

∫

[−2n,2n]

pt(x, dy)Pl(y)

for each x ∈ [−2n, 2n].
If x belongs to the support of the Kesten measure, then since the polynomials

Pl; l ≥ 0 form an orthogonal basis of the L2 space of the Kesten measure, and
‖Pl‖2

2 = 2n(2n− 1)l one obtains pt through the orthogonal expansion

pt(x, dy) = e−tdmn(y) +
∞
∑

l=1

e−tl
1

2n(2n− 1)l−1
Pl(x)Pl(y)dmn(y)

When x is outside this support, then by (12.2) the sequence Pl(x) is unbounded

and has exponential growth of rate ξ =
x+

√
x2−4(2n−1)

2 and the character value

e−tlPl(x) has the asymptotic behaviour e−tlξl as l → ∞, and if e−tξ > 2
√

2n− 1,
then let x(t) = e−tξ + (2n− 1)et/ξ. The function e−tlPl(x) can be written as is a
linear combination of Pl(x(t)), which picks up the dominant term as l → ∞ and
the Pl(y) for y in the interval [−2

√
2n− 1, 2

√
2n− 1]. More precisely the quantity

Qtl(x) = e−tlPl(x) −
e−tξ − (2n− 1)et/ξ

e−tξ − et/ξ

ξ − (2n− 1)/ξ

ξ − 1/ξ
Pl(x(t))

decreases exponentially as l → ∞, and thus one has

pt(x, dy) = ctδx(t) +

∞
∑

l=1

e−tl
1

2n(2n− 1)l−1
(Pl(x) − ctPl(x(t)))Pl(y)dmn(y)

with ct = e−tξ−(2n−1)et/ξ
e−tξ−et/ξ

ξ−(2n−1)/ξ
ξ−1/ξ . If ξ(t) < 2

√
2n− 1 then there is a similar

decomposition, but the term ct is 0.
Thus the process starting form a point x ∈ [−2n, 2n] \ [−2

√
2n− 1, 2

√
2n− 1]

performs a translation towards the central interval, and at some point jumps
into it, and after that performs a certain pure jump process inside the interval
[−2

√
2n− 1, 2

√
2n− 1] where it remains forever.

13. Pitman’s theorem and the quantum group SUq(2)

13.1. Pitman’s theorem. Let (Bt)t≥0 be a real Brownian motion, with B0 =
0, and let

St = sup
0≤s≤t

Bs

then Pitman’s theorem states that the stochastic process

Rt = 2St −Bt; t ≥ 0

is a three dimensional Bessel process, i.e. is distributed as the norm of a three
dimensional Brownian motion. There is a discrete version of Pitman’s theorem,
actually it is this discrete version that Pitman proved in his original paper [Pi].
We start from a symmetric Bernoulli random walk Xn = x1 + . . . + xn where the
xi are i.i.d. with P (xi) = ±1 = 1/2, and build the processes Sn = max1≤k≤nXk,
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and Tn = 2Sn −Xn. Pitman proved in [Pi] that (Tn)n≥0 is a Markov chain on the
nonegative integers, with probability transitions

p(k, k + 1) =
k + 2

2(k + 1)
p(k, k − 1) =

k

2(k + 1)

and the theorem about Brownian motion can be obtained by taking the usual
approximation of Brownian motion by random walks. We see that this Markov
chain is, up to a shift of 1 in the variable, exactly the one that we obtained in
Theorem 3.2 when considering the spin process. This is not a coincidence as we shall
see, actually we will understand this connection by introducing quantum groups in
the picture. Before that, let us give the proof of Pitman’s theorem We consider
the stochastic process ((Sn, Xn);n ≥ 1), with values in {(s, k) ∈ N × Z | s ≥ k}.
It is easy to see that this stochastic process is a Markov chain, with transition
probabilities

p((s, k), (s, k + 1)) = 1
2 , p((s, k), (s, k − 1)) = 1

2 for s > k

p((s, s), (s+ 1, s+ 1)) = 1
2 , p((s, s), (s, s− 1)) = 1

2

from which we can deduce the probability transitions of the Markov chain ((Tn, Xn);n ≥
1), with values in {(t, k) ∈ N∗ × Z | k ∈ (−t,−t+ 2, . . . , t− 2, t)},

p((t, k), (t− 1, k + 1)) = 1
2 , p((t, k), (t+ 1, k − 1)) = 1

2 if t > k(13.1)

p((t, t), (t + 1, t+ 1)) = 1
2 , p((t, t), (t+ 1, t− 1)) = 1

2

The transition probabilities are depicted in this picture.
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One checks then, by induction on n, that the conditional distribution of Xn,
knowing T1, . . . , Tn, is the uniform distribution on the set {−Tn,−Tn+ 2, . . . , Tn−
2, Tn}. Then it follows that (Tn;n ≥ 0) is a Markov chain with the right transition
probabilities.

13.2. A Markov chain associated with the quantum Bernoulli random

walk. In section 5.2 we have seen that the quantum Bernoulli random walk gives
rise in a natural way to two Markov chains, one being the classical Bernoulli random
walk, and the other being the spin process. These two processes were obtained in the
preceding section as coordinates of a certain two-dimensional Markov chain given by
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the transition probabilities (13.1). We can also consider a two-dimensional Markov
chain having these two processes as marginals, by considering the Markov chain of
the end of section 5.2. Recall that this Markov chain was obtained by restricting the
generator of the quantum Bernoulli random walk to the commutative subalgebra
P(SU(2)) ⊂ A(SU(2)) generated by the center Z(SU(2)) and by a one parameter
subgroup. The spectrum of this algebra can be identified with the set

P̂ = {(r, k) ∈ N × Z | k ∈ {−r,−r + 2, . . . , r − 2, r}}

Indeed this algebra is generated by the pair of commuting self-adjoint operators
X,D in the sense that it consists in bounded functions of the pair (X,D). The
joint spectrum of these operators can be computed from the explicit description

of the irreducible representations of SU(2), and coincides with P̂ . The probability
transitions can be obtained by using the Clebsch-Gordan formula, or equivalently
by the computation in the proof of Lemma 3.3. One finds

p((r, k), (r + 1, k + 1)) =
r + k + 2

2(r + 1)

p((r, k), (r + 1, k − 1)) =
r − k + 2

2(r + 1)

p((r, k), (r − 1, k + 1)) =
r − k

2(r + 1)

p((r, k), (r − 1, k − 1)) =
r + k

2(r + 1)
.

These transition probabilities are on this picture
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Thus, although this Markov chain has the same one-dimensional marginal as the
one of the preceding section, they do not coincide. We will see that in order to
recover the transitions (13.1) we will have to introduce quantum groups.

13.3. The quantum group SUq(2). The Hopf algebra A(SU(2)) can be
deformed by introducing a real parameter q. The algebraic construction proceeds
with the introduction of three generators t, e, f which are required to satisfy the



INTRODUCTION TO RANDOM WALKS ON NONCOMMUTATIVE SPACES 43

relations

tet−1 = q2e, tft−1 = q−2f, ef − fe =
t− t−1

q − q−1

and a coproduct which is given by

∆(t) = t⊗ t, ∆(e) = e⊗ t−1 + 1 ⊗ e, ∆(f) = f ⊗ 1 + t⊗ f

Formally putting t = qh and letting q converge to 1 one finds in the limit the
defining relations for the envelopping algebra of the Lie algebra of SU(2), as well
as the coproduct.

One can prove that the irreducible finite dimensional representations of this
algebra are deformations of those of SU(2), indeed for each integer r ≥ 0 there exists
two representation in V +

r+1 and V −
r+1, with bases vr±k ; k ∈ {−r,−r+2, . . . , r− 2, r},

given by

tvr±j = ±qjvr±j

evr±j = ±
√

[

r − j

2

]

q

[

r + j + 2

2

]

q

vr±j+2

fvr±j =

√

[

r − j + 2

2

]

q

[

r + j

2

]

q

vr±j−2.

with [n]q = qn−q−n

q−q−1 . Using the coproduct one can define the tensor product of

two representations, and this tensor product obeys the same rules as the one for
representations of SU(2) i.e. one has

V ǫ1r1+1 ⊗ V ǫ2r2+1 =
⊕

r=|r2−r1|,|r2−r1|+2,...,r1+r2

V ǫ1ǫ2r+1 .

We will now restrict our attention to representations of the kind V +
l , and consider

the von Neumann-Hopf algebra A+(SUq(2)) = ⊕r≥0End[V
+
r+1], which is isomor-

phic, as an algebra, to A(SU(2)), but whose coproduct is deformed. The subalgebra
P(SUq(2)) generated by t and by the center remains unchanged in the deformation.
We consider the tracial state 1

2Tr on the two-dimensional component, and consider
the associated random walk. As in the case of SU(2), the restriction of the asso-
ciated Markov transtion operator to the commutative algebra P(SUq(2)) defines a
Markov chain on the spectrum of this algebra, whose transition probabilities can be
computed, using the deformed Clebsch Gordan formulas, as in Klimyk et Vilenkin
[KV], formulas (6) et (9), §14.4.3, to give

p((r, k), (r + 1, k + 1)) = q(r−k)/2
[

r+k+2
2

]

q

[r + 1]q
=

qr+1 − q−k−1

2(qr+1 − q−r−1)
(13.2)

p((r, k), (r + 1, k − 1)) = q−(r+k)/2

[

r−k+2
2

]

q

2[r + 1]q
=

q−k+1 − q−r−1

2(qr+1 − q−r−1)

p((r, k), (r − 1, k + 1)) = q−(r+k+2)/2

[

r−k
2

]

q

2[r + 1]q
=

q−k−1 − q−r−1

2(qr+1 − q−r−1)

p((r, k), (r − 1, k − 1)) = q(r−k+2)/2

[

r+k
2

]

q

2[r + 1]q
=

qr+1 − q−k+1

2(qr+1 − q−r−1)
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Letting q tend to 0, one checks that (13.2) converges to (13.1), and thus we
get Pitman’s theorem as an outcome of the q → 0 limit of the quantum Bernoulli
random walk, see [B7] for details.

This observation is at the basis of a vast generalization of Pitman’s theorem,
see e.g. [BBO].
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