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Throughout the talk:

p is a prime number, F is a “big” finite field of characteristic p

F is a totally real number field where p is unramified, v |p is a
fixed place of F
D/F is a quaternion algebra which is split at places above p
and at exactly one infinite place
r : Gal(F/F )→ GL2(F) is a continuous absolutely irreducible
totally odd modular representation.

General aim:

Understand better certain smooth admissible representations of
GL2(Fv ) over F associated to r (Fv :=completion of F at v).

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen On modular representations of GL2(L) for unramified L



Throughout the talk:

p is a prime number, F is a “big” finite field of characteristic p

F is a totally real number field where p is unramified, v |p is a
fixed place of F

D/F is a quaternion algebra which is split at places above p
and at exactly one infinite place
r : Gal(F/F )→ GL2(F) is a continuous absolutely irreducible
totally odd modular representation.

General aim:

Understand better certain smooth admissible representations of
GL2(Fv ) over F associated to r (Fv :=completion of F at v).

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen On modular representations of GL2(L) for unramified L



Throughout the talk:

p is a prime number, F is a “big” finite field of characteristic p

F is a totally real number field where p is unramified, v |p is a
fixed place of F
D/F is a quaternion algebra which is split at places above p
and at exactly one infinite place

r : Gal(F/F )→ GL2(F) is a continuous absolutely irreducible
totally odd modular representation.

General aim:

Understand better certain smooth admissible representations of
GL2(Fv ) over F associated to r (Fv :=completion of F at v).

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen On modular representations of GL2(L) for unramified L



Throughout the talk:

p is a prime number, F is a “big” finite field of characteristic p

F is a totally real number field where p is unramified, v |p is a
fixed place of F
D/F is a quaternion algebra which is split at places above p
and at exactly one infinite place
r : Gal(F/F )→ GL2(F) is a continuous absolutely irreducible
totally odd modular representation.

General aim:

Understand better certain smooth admissible representations of
GL2(Fv ) over F associated to r (Fv :=completion of F at v).

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen On modular representations of GL2(L) for unramified L



Throughout the talk:

p is a prime number, F is a “big” finite field of characteristic p

F is a totally real number field where p is unramified, v |p is a
fixed place of F
D/F is a quaternion algebra which is split at places above p
and at exactly one infinite place
r : Gal(F/F )→ GL2(F) is a continuous absolutely irreducible
totally odd modular representation.

General aim:

Understand better certain smooth admissible representations of
GL2(Fv ) over F associated to r (Fv :=completion of F at v).

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen On modular representations of GL2(L) for unramified L



Local factor at v associated to r

For K ⊂ (D ⊗F A∞F )× a compact open subgroup, let XK/F :=
associated Shimura curve = smooth projective algebraic variety/F .

We first consider the smooth representation of (D ⊗F A∞F )× over F:

π(r) := HomGal(F/F )

(
r , lim
−→
K

H1
ét(XK ×F F ,F)

)
6= 0.

One doesn’t know if π(r) has a Flath decomposition as a restricted
tensor product of smooth D×w -representations over finite places w
of F (Dw := D ⊗F Fw ).

But one can still define from π(r) in an “ad hoc” way a local factor
πv (r) at v under technical assumptions on r .
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Local factor at v associated to r

From now on assume:
p > 5 and r |Gal(F/F ( p√1)) still absolutely irreducible

weak genericity assumption on rw := r |Gal(Fw/Fw ) for w |p
rw non scalar if D ramifies at w (so w -p).

Then one can define an “optimal” open compact subgroup K v of
(D ⊗F A∞,vF )×, a certain smooth finite dim. representation Mv of
K v over F (a “type”), and set (B.-Diamond, Emerton-Gee-Savitt):

πv (r) := HomK v

(
Mv , π(r)

)
[m] 6= 0

where [m] := kernel of Hecke operators at certain places 6= v .

πv (r) = smooth admissible representation of D×v ∼= GL2(Fv ) over
F with central character ψ := ωdet(r v ) (ω := cyclo mod p).
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Some known results

Theorem 1 (Emerton, building on Colmez, B., Kisin, Berger,...)

Assume F = Q and D = GL2, then πv (r) is known. In particular:
GK(πv (r)) = 1
πv (r) is of finite length
πv (r) is local, i.e. only depends on r v .

(Should in fact hold as soon as Fv = Qp, as then Dv
∼= GL2(Qp).)

For n ≥ 1 let Kv (n) := 1 + pnM2(OFv ) ⊂ Kv := O×Dv

∼= GL2(OFv ).

Definition 1 (Gelfand-Kirillov dimension)

Let πv be a smooth admissible representation of Kv (1) over F.
There exists a unique GK(πv ) ∈ {0, . . . , dimZp(Kv )} such that

there are a ≤ b in R>0 with a ≤ dimF(π
Kv (n)
v )

pnGK(πv ) ≤ b for all n ≥ 1.

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen On modular representations of GL2(L) for unramified L



Some known results

Theorem 1 (Emerton, building on Colmez, B., Kisin, Berger,...)

Assume F = Q and D = GL2, then πv (r) is known. In particular:
GK(πv (r)) = 1
πv (r) is of finite length
πv (r) is local, i.e. only depends on r v .

(Should in fact hold as soon as Fv = Qp, as then Dv
∼= GL2(Qp).)

For n ≥ 1 let Kv (n) := 1 + pnM2(OFv ) ⊂ Kv := O×Dv

∼= GL2(OFv ).

Definition 1 (Gelfand-Kirillov dimension)

Let πv be a smooth admissible representation of Kv (1) over F.
There exists a unique GK(πv ) ∈ {0, . . . , dimZp(Kv )} such that

there are a ≤ b in R>0 with a ≤ dimF(π
Kv (n)
v )

pnGK(πv ) ≤ b for all n ≥ 1.

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen On modular representations of GL2(L) for unramified L



Some known results

Theorem 1 (Emerton, building on Colmez, B., Kisin, Berger,...)

Assume F = Q and D = GL2, then πv (r) is known. In particular:
GK(πv (r)) = 1
πv (r) is of finite length
πv (r) is local, i.e. only depends on r v .

(Should in fact hold as soon as Fv = Qp, as then Dv
∼= GL2(Qp).)

For n ≥ 1 let Kv (n) := 1 + pnM2(OFv ) ⊂ Kv := O×Dv

∼= GL2(OFv ).

Definition 1 (Gelfand-Kirillov dimension)

Let πv be a smooth admissible representation of Kv (1) over F.
There exists a unique GK(πv ) ∈ {0, . . . , dimZp(Kv )} such that

there are a ≤ b in R>0 with a ≤ dimF(π
Kv (n)
v )

pnGK(πv ) ≤ b for all n ≥ 1.

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen On modular representations of GL2(L) for unramified L



Some known results

Theorem 1 (Emerton, building on Colmez, B., Kisin, Berger,...)

Assume F = Q and D = GL2, then πv (r) is known. In particular:
GK(πv (r)) = 1
πv (r) is of finite length
πv (r) is local, i.e. only depends on r v .

(Should in fact hold as soon as Fv = Qp, as then Dv
∼= GL2(Qp).)

For n ≥ 1 let Kv (n) := 1 + pnM2(OFv ) ⊂ Kv := O×Dv

∼= GL2(OFv ).

Definition 1 (Gelfand-Kirillov dimension)

Let πv be a smooth admissible representation of Kv (1) over F.
There exists a unique GK(πv ) ∈ {0, . . . , dimZp(Kv )} such that

there are a ≤ b in R>0 with a ≤ dimF(π
Kv (n)
v )

pnGK(πv ) ≤ b for all n ≥ 1.

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen On modular representations of GL2(L) for unramified L



Some known results

Theorem 1 (Emerton, building on Colmez, B., Kisin, Berger,...)

Assume F = Q and D = GL2, then πv (r) is known. In particular:
GK(πv (r)) = 1
πv (r) is of finite length
πv (r) is local, i.e. only depends on r v .

(Should in fact hold as soon as Fv = Qp, as then Dv
∼= GL2(Qp).)

For n ≥ 1 let Kv (n) := 1 + pnM2(OFv ) ⊂ Kv := O×Dv

∼= GL2(OFv ).

Definition 1 (Gelfand-Kirillov dimension)

Let πv be a smooth admissible representation of Kv (1) over F.
There exists a unique GK(πv ) ∈ {0, . . . , dimZp(Kv )} such that

there are a ≤ b in R>0 with a ≤ dimF(π
Kv (n)
v )

pnGK(πv ) ≤ b for all n ≥ 1.

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen On modular representations of GL2(L) for unramified L



Some known results

Let:
f := [Fv : Qp], q := pf , K := Kv , K (1) := Kv (1)

Γ := K/K (1) ∼= GL2(Fq), Z (1) := center of K (1)

mK := maximal ideal of Iwasawa algebra F[[K (1)/Z (1)]].

Note that Z (1) acts trivially on πv (r) as ψ|Z(1) = 1.

For arbitrary F , D and r (as before), one has the following:

Theorem 2 (Emerton-Gee-Savitt, Le, Hu-Wang, Le-Morra-Schraen,
building on B.-Paškūnas and Buzzard-Diamond-Jarvis)

The finite-dimensional Γ-representation πv (r)K(1) = πv (r)[mK ] is
explicitly known, in particular is local and multiplicity free.

If Dv 6= GL2(Qp) none of the statements in Theorem 1 are known.
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Hypothesis on r v

Fix an embedding Fq2 ↪→ F and let ωf , ω2f := associated Serre’s
fundamental characters of level f , 2f of inertia subgroup Iv .

We set ρ := r v and assume ρ is semi-simple such that:

ρ reducible: ρ|Iv ∼=

(
ω

(r0+1)+···+pf−1(rf−1+1)
f 0

0 1

)
⊗ ω∗f

for some ri with 9 ≤ ri ≤ p − 12 (⇒ p ≥ 23)

ρ irreducible: ρ|Iv ∼=

(
ω

(r0+1)+···+pf−1(rf−1+1)
2f 0

0 ω
q(same)
2f

)
⊗ ω∗f

for 10 ≤ r0 ≤ p − 11 and 9 ≤ ri ≤ p − 12 if i > 0.

This strong genericity assumption on ρ is not optimized!
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We set ρ := r v and assume ρ is semi-simple such that:

ρ reducible: ρ|Iv ∼=

(
ω

(r0+1)+···+pf−1(rf−1+1)
f 0

0 1

)
⊗ ω∗f

for some ri with 9 ≤ ri ≤ p − 12 (⇒ p ≥ 23)

ρ irreducible: ρ|Iv ∼=

(
ω

(r0+1)+···+pf−1(rf−1+1)
2f 0

0 ω
q(same)
2f

)
⊗ ω∗f

for 10 ≤ r0 ≤ p − 11 and 9 ≤ ri ≤ p − 12 if i > 0.

This strong genericity assumption on ρ is not optimized!
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Main result

Theorem 3
With the previous assumptions on F , D, r and ρ, we have:

GK(πv (r)) = f .

Remarks
The assumptions on ρ should (conjecturally) be unnecessary,
i.e. one should have GK(πv (r)) = f for F , D, r as before.
Gee-Newton proved (without the assumptions on ρ) that
GK(πv (r)) ≥ f , so our main result is GK(πv (r)) ≤ f .
Even under the assumptions on ρ, we do not know if πv (r) is
of finite length or if πv (r) is local.
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First intermediate theorem

We first prove the following extension of Theorem 2 (much harder):

Theorem 4

The smooth finite-dimensional K -representation πv (r)[m2
K ] is

explicitly known, in particular is local and multiplicity free.

Let:
I := {g ∈ K , g ≡ ( ∗ ∗0 ∗ ) mod p} = Iwahori
I (1) := {g ∈ K , g ≡ ( 1 ∗

0 1 ) mod p} = pro-p Iwahori
mI := maximal ideal of Iwasawa algebra F[[I (1)/Z (1)]].

Corollary 1

The smooth finite-dimensional I -representation πv (r)[m3
I ] is

multiplicity free.
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Second intermediate theorem

Theorem 5
Let πv be a smooth admissible representation of I/Z (1) over F
such that πv [m3

I ] is multiplicity free. Then GK(πv ) ≤ f .

It then directly follows from Corollary 1 and Theorem 5:

Corollary 2

We have GK(πv (r)) ≤ f .

Using Gee-Newton for the reverse inequality, one gets Theorem 4.
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Proof of second intermediate theorem

Let π∨v := HomF(πv ,F), then π∨v /mI = (π
I (1)
v )∨ = ⊕αχα for some

characters χα : I/I (1)→ F×.

Let ProjIχα := χα ⊗F F[[I (1)/Z (1)]] = projective envelope of χα
in the category of compact F[[I/Z (1)]]-modules.

As χα does not appear in mIπ
∨
v /m

3
I π
∨
v (by assumption), one proves

there exist I -equivariant maps hα : (ProjIχα)⊕2f→ ProjIχα s.t.:

image(hα) ⊆ m2
I ProjIχα

the map (ProjIχα/mI )
⊕2f → m2

I ProjIχα/m3
I is injective

π∨v is a quotient of ⊕αcoker(hα).

Thm. 5 then follows from GK(πv ) ≤ maxαGK(coker(hα)∨) and:

Proposition 1

We have GK(coker(hα)∨) ≤ f (calculation in grmI
F[[I (1)/Z (1)]]).
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Proof of first intermediate theorem

Let:
σ a Serre weight (= irreducible representation of Γ over F)
ProjKσ := projective envelope of σ in category of compact
F[[K/Z (1)]]-modules

Enough to prove: dimFHomK

(
ProjKσ/m2

K , πv (r)
)
≤ 1.

Can assume HomK (σ, πv (r)) 6= 0 (i.e. σ = Serre weight of ρ).

Main tool: patching functor M∞ of Emerton-Gee-Savitt (building
on Taylor-Wiles, Kisin) = exact functor from continuous repres. of
K over finite type W (F)-modules + central character lifting ψ to
finite type R∞-modules satisfying several properties (cf. E.-G.-S.).

R∞ = patched deformation ring = power series ring over W (F).
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Proof of first intermediate theorem

Let:
m∞ := maximal ideal of R∞

V := any finite dimensional representation of K over F

from the construction of M∞ one gets:

HomF
(
M∞(V )/m∞,F

) ∼= HomK

(
V , πv (r)

)
.

Hence Theorem 4 (multiplicity free part) follows from:

Theorem 6

The R∞-module M∞(ProjKσ/m2
K ) is cyclic.

Equivalently M∞(ProjKσ/m2
K ) ∼= quotient of R∞.
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Proof of first intermediate theorem

We now prove Theorem 6. First: need to describe ProjKσ/m2
K .

Let:
ProjΓσ = ProjKσ/mK := projective envelope of σ in category
of Γ-representations over F
V τ

2 := (Sym2(F2)⊗F det−1)τ = algebraic representation of Γ
via τ : Fq ↪→ F (arbitrary embedding),

then ProjKσ/m2
K is a non-split extension:

ProjKσ/m
2
K
∼=
(
⊕τ (V τ

2 ⊗F ProjΓσ)
)

ProjΓσ .

Moreover V τ
2 ⊗F ProjΓσ ∼= ProjΓσ+2τ ⊕ ProjΓσ ⊕ ProjΓσ−2τ .

Let Qτ := unique quotient of ProjKσ/m2
K which is a non-split

extension
(
ProjΓσ+2τ ⊕ ProjΓσ−2τ

)
ProjΓσ .
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Proof of first intermediate theorem

To proceed, we lift the K -representation ProjKσ/m2
K to W (F).

Let:
P̃rojΓσ :=unique representation of Γ lifting ProjΓσ over W (F)

Ṽ τ
2 := (Sym2(W (F)2)⊗W (F) det−1)τ .

One can prove:

Proposition 3

(i) There is an invariant W (F)-lattice Lτ2 in (Ṽ τ
2 ⊗W (F) P̃rojΓσ)[ 1

p ]
such that Lτ2/p ∼= Qτ .
(ii) Let L := ker

(
P̃rojΓσ ⊕ (⊕τLτ2) −→ (ProjΓσ)⊕f

)
, then

L/p ∼= ProjKσ/m2
K .

It is enough to prove that M∞(L) is cyclic.
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2 ⊗W (F) P̃rojΓσ)[ 1

p ]
such that Lτ2/p ∼= Qτ .

(ii) Let L := ker
(
P̃rojΓσ ⊕ (⊕τLτ2) −→ (ProjΓσ)⊕f

)
, then

L/p ∼= ProjKσ/m2
K .

It is enough to prove that M∞(L) is cyclic.

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen On modular representations of GL2(L) for unramified L



Proof of first intermediate theorem

To proceed, we lift the K -representation ProjKσ/m2
K to W (F).

Let:
P̃rojΓσ :=unique representation of Γ lifting ProjΓσ over W (F)

Ṽ τ
2 := (Sym2(W (F)2)⊗W (F) det−1)τ .

One can prove:

Proposition 3

(i) There is an invariant W (F)-lattice Lτ2 in (Ṽ τ
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Ṽ τ
2 := (Sym2(W (F)2)⊗W (F) det−1)τ .

One can prove:

Proposition 3

(i) There is an invariant W (F)-lattice Lτ2 in (Ṽ τ
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Proof of first intermediate theorem

We know M∞(P̃rojΓσ) is cyclic (Hu-Wang, Le-Morra-Schraen).

Proposition 2

The R∞-module M∞(Lτ2/p), and hence M∞(Lτ2), are cyclic.

The proof is by dévissage, using:
M∞(σ′) 6= 0⇔ σ′ ↪→ πv (r)[mK ] (⇔ σ′ Serre weight of ρ)
M∞(ProjΓσ′) cyclic (Hu-Wang, Le-Morra-Schraen)
M ′′ ( M ′ ⊆ M finite type R∞-modules with M ′ cyclic, then
M cyclic ⇔ M/M ′′ cyclic (E.-G.-S.).

Let Lτ := ker
(
P̃rojΓσ ⊕ Lτ2 → ProjΓσ

)
= P̃rojΓσ ×ProjΓσ L

τ
2 .

I explain why M∞(Lτ ) = M∞(P̃rojΓσ)×M∞(ProjΓσ) M∞(Lτ2) is
cyclic. Proof for L can be reduced to this case by induction.

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen On modular representations of GL2(L) for unramified L



Proof of first intermediate theorem

We know M∞(P̃rojΓσ) is cyclic (Hu-Wang, Le-Morra-Schraen).

Proposition 2

The R∞-module M∞(Lτ2/p), and hence M∞(Lτ2), are cyclic.

The proof is by dévissage, using:
M∞(σ′) 6= 0⇔ σ′ ↪→ πv (r)[mK ] (⇔ σ′ Serre weight of ρ)
M∞(ProjΓσ′) cyclic (Hu-Wang, Le-Morra-Schraen)
M ′′ ( M ′ ⊆ M finite type R∞-modules with M ′ cyclic, then
M cyclic ⇔ M/M ′′ cyclic (E.-G.-S.).

Let Lτ := ker
(
P̃rojΓσ ⊕ Lτ2 → ProjΓσ

)
= P̃rojΓσ ×ProjΓσ L

τ
2 .

I explain why M∞(Lτ ) = M∞(P̃rojΓσ)×M∞(ProjΓσ) M∞(Lτ2) is
cyclic. Proof for L can be reduced to this case by induction.

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen On modular representations of GL2(L) for unramified L



Proof of first intermediate theorem

We know M∞(P̃rojΓσ) is cyclic (Hu-Wang, Le-Morra-Schraen).

Proposition 2

The R∞-module M∞(Lτ2/p), and hence M∞(Lτ2), are cyclic.

The proof is by dévissage, using:
M∞(σ′) 6= 0⇔ σ′ ↪→ πv (r)[mK ] (⇔ σ′ Serre weight of ρ)
M∞(ProjΓσ′) cyclic (Hu-Wang, Le-Morra-Schraen)
M ′′ ( M ′ ⊆ M finite type R∞-modules with M ′ cyclic, then
M cyclic ⇔ M/M ′′ cyclic (E.-G.-S.).

Let Lτ := ker
(
P̃rojΓσ ⊕ Lτ2 → ProjΓσ

)
= P̃rojΓσ ×ProjΓσ L

τ
2 .

I explain why M∞(Lτ ) = M∞(P̃rojΓσ)×M∞(ProjΓσ) M∞(Lτ2) is
cyclic. Proof for L can be reduced to this case by induction.

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen On modular representations of GL2(L) for unramified L



Proof of first intermediate theorem

We know M∞(P̃rojΓσ) is cyclic (Hu-Wang, Le-Morra-Schraen).

Proposition 2

The R∞-module M∞(Lτ2/p), and hence M∞(Lτ2), are cyclic.

The proof is by dévissage, using:
M∞(σ′) 6= 0⇔ σ′ ↪→ πv (r)[mK ] (⇔ σ′ Serre weight of ρ)
M∞(ProjΓσ′) cyclic (Hu-Wang, Le-Morra-Schraen)
M ′′ ( M ′ ⊆ M finite type R∞-modules with M ′ cyclic, then
M cyclic ⇔ M/M ′′ cyclic (E.-G.-S.).

Let Lτ := ker
(
P̃rojΓσ ⊕ Lτ2 → ProjΓσ

)
= P̃rojΓσ ×ProjΓσ L

τ
2 .

I explain why M∞(Lτ ) = M∞(P̃rojΓσ)×M∞(ProjΓσ) M∞(Lτ2) is
cyclic. Proof for L can be reduced to this case by induction.

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen On modular representations of GL2(L) for unramified L



Proof of first intermediate theorem

We know M∞(P̃rojΓσ) is cyclic (Hu-Wang, Le-Morra-Schraen).

Proposition 2

The R∞-module M∞(Lτ2/p), and hence M∞(Lτ2), are cyclic.

The proof is by dévissage, using:
M∞(σ′) 6= 0⇔ σ′ ↪→ πv (r)[mK ] (⇔ σ′ Serre weight of ρ)
M∞(ProjΓσ′) cyclic (Hu-Wang, Le-Morra-Schraen)
M ′′ ( M ′ ⊆ M finite type R∞-modules with M ′ cyclic, then
M cyclic ⇔ M/M ′′ cyclic (E.-G.-S.).

Let Lτ := ker
(
P̃rojΓσ ⊕ Lτ2 → ProjΓσ

)
= P̃rojΓσ ×ProjΓσ L

τ
2 .

I explain why M∞(Lτ ) = M∞(P̃rojΓσ)×M∞(ProjΓσ) M∞(Lτ2) is
cyclic. Proof for L can be reduced to this case by induction.

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen On modular representations of GL2(L) for unramified L



Proof of first intermediate theorem

Let Rv := R�(ρ) := framed deformations of ρ (no conditions, but
need to fix determinant lifting ω−1ψ|Gal(F v/Fv ), I forget this here).

By previous cyclicities (using R∞ ∼= Rv [[x1, . . . , xh]]):

M∞(P̃rojΓσ) ∼= (Rv/J)[[x1, . . . , xh]]

M∞(Lτ2) ∼= (Rv/Jτ )[[x1, . . . , xh]]

M∞(ProjΓσ) ∼= (Rv/(p, J))[[x1, . . . , xh]]

where:
Rv/J parametrizes pot. cryst. lifts of ρ of any tame type whose
reductionmod p contains σ and parallel HT weights (1, 0)

Rv/Jτ parametrizes pot. cryst. lifts of ρ of same tame types
but HT weights (1, 0) outside embedding τ , (2,−1) at τ .
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Needed: fiber product (Rv/J)×Rv/(p,J) (Rv/Jτ ) is a quotient of Rv .

This holds if and only if J+Jτ = (p, J). Enough to prove p ∈ J+Jτ .

Can explicitly compute J and Jτ mod p2 and check:

Lemma
We have p ∈ J + Jτ .

This finishes the proof of main result!
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One application

Theorem 7 (Dotto-Le, building on C.-E.-G.-G.-P.-S.)

There is a “big” patched module M∞ finitely generated over
R∞[[GL2(OFv )]] + compatible action of GL2(Fv ) such that
M∞/m∞ ∼= πv (r)∨.

Corollary of our main result

For any map R∞ → OE of W (F)-algebras (where [E : Qp] <∞),
(M∞ ⊗R∞ OE )∨[1/p] = non-zero admissible unitary continuous
representation of GL2(Fv ) over E with a unit ball lifting πv (r).

Proof: The module M∞ is CM over R∞[[GL2(OFv )]] (Gee-Newton)
+ GK((M∞/m∞)∨) = f (our main result) ⇒M∞ is flat over R∞
(“Miracle Flatness” in non-commutative setting, see Gee-Newton).
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Remarks
The case ρ non semi-simple should work as well (Hu-Wang).

Hope to prove for suitable level K v :

GK
(

HomGal(F/F )

(
r , lim
−→
Kv

H1
ét(XK vKv ×F F ,F)

))
= f .

Need to extend previous proof to cases without multiplicity 1.
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