On modular representations of $GL_2(L)$ for unramified L

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen

I.H.É.S. June 17, 2020

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen On modular representations of $GL_2(L)$ for unramified L

Contents

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen On modular representations of GL₂(*L*) for unramified *L*

< □ > < □ > < □ > < □ > < □ > < □ >

2

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen On modular representations of GL₂(*L*) for unramified *L*

◆□ → ◆□ → ◆三 → ◆三 →

ъ.

• p is a prime number, \mathbb{F} is a "big" finite field of characteristic p

- p is a prime number, \mathbb{F} is a "big" finite field of characteristic p
- *F* is a totally real number field where *p* is unramified, *v*|*p* is a fixed place of *F*

- p is a prime number, \mathbb{F} is a "big" finite field of characteristic p
- *F* is a totally real number field where *p* is unramified, *v*|*p* is a fixed place of *F*
- *D*/*F* is a quaternion algebra which is split at places above *p* and at exactly one infinite place

- p is a prime number, \mathbb{F} is a "big" finite field of characteristic p
- *F* is a totally real number field where *p* is unramified, *v*|*p* is a fixed place of *F*
- *D*/*F* is a quaternion algebra which is split at places above *p* and at exactly one infinite place
- $\overline{r} : \operatorname{Gal}(\overline{F}/F) \to \operatorname{GL}_2(\mathbb{F})$ is a continuous absolutely irreducible totally odd modular representation.

- p is a prime number, \mathbb{F} is a "big" finite field of characteristic p
- *F* is a totally real number field where *p* is unramified, *v*|*p* is a fixed place of *F*
- *D*/*F* is a quaternion algebra which is split at places above *p* and at exactly one infinite place
- \overline{r} : $\operatorname{Gal}(\overline{F}/F) \to \operatorname{GL}_2(\mathbb{F})$ is a continuous absolutely irreducible totally odd modular representation.

General aim:

Understand better certain smooth admissible representations of $\operatorname{GL}_2(F_v)$ over \mathbb{F} associated to \overline{r} (F_v :=completion of F at v).

Local factor at v associated to \overline{r}

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen On modular representations of $GL_2(L)$ for unramified L

→ 3 → 4 3

We first consider the smooth representation of $(D \otimes_F \mathbb{A}_F^{\infty})^{\times}$ over \mathbb{F} :

$$\pi(\overline{r}) := \operatorname{Hom}_{\operatorname{Gal}(\overline{F}/F)}\left(\overline{r}, \varinjlim_{K} H^{1}_{\operatorname{\acute{e}t}}(X_{K} \times_{F} \overline{F}, \mathbb{F})\right) \neq 0.$$

We first consider the smooth representation of $(D \otimes_F \mathbb{A}_F^{\infty})^{\times}$ over \mathbb{F} :

$$\pi(\overline{r}) := \operatorname{Hom}_{\operatorname{Gal}(\overline{F}/F)}\left(\overline{r}, \varinjlim_{\overline{K}} H^1_{\operatorname{\acute{e}t}}(X_K \times_F \overline{F}, \mathbb{F})\right) \neq 0.$$

One doesn't know if $\pi(\bar{r})$ has a Flath decomposition as a restricted tensor product of smooth D_w^{\times} -representations over finite places w of F ($D_w := D \otimes_F F_w$).

We first consider the smooth representation of $(D \otimes_F \mathbb{A}_F^{\infty})^{\times}$ over \mathbb{F} :

$$\pi(\overline{r}) := \operatorname{Hom}_{\operatorname{Gal}(\overline{F}/F)}\left(\overline{r}, \varinjlim_{\overline{K}} H^1_{\operatorname{\acute{e}t}}(X_K \times_F \overline{F}, \mathbb{F})\right) \neq 0.$$

One doesn't know if $\pi(\overline{r})$ has a Flath decomposition as a restricted tensor product of smooth D_w^{\times} -representations over finite places w of F ($D_w := D \otimes_F F_w$).

But one can still define from $\pi(\overline{r})$ in an "ad hoc" way a local factor $\pi_v(\overline{r})$ at v under technical assumptions on \overline{r} .

• p > 5 and $\overline{r}|_{\operatorname{Gal}(\overline{F}/F(\sqrt[p]{1}))}$ still absolutely irreducible

伺 と く ヨ と く ヨ と …

- p > 5 and $\overline{r}|_{\operatorname{Gal}(\overline{F}/F(\sqrt[p]{1}))}$ still absolutely irreducible
- weak genericity assumption on $\overline{r}_w := \overline{r}|_{\mathrm{Gal}(\overline{F}_w/F_w)}$ for w|p

- p > 5 and $\overline{r}|_{\operatorname{Gal}(\overline{F}/F(\sqrt[p]{1}))}$ still absolutely irreducible
- weak genericity assumption on $\overline{r}_w := \overline{r}|_{\text{Gal}(\overline{F}_w/F_w)}$ for w|p|
- \overline{r}_w non scalar if D ramifies at w (so $w \nmid p$).

- p > 5 and $\overline{r}|_{\operatorname{Gal}(\overline{F}/F(\sqrt[p]{1}))}$ still absolutely irreducible
- weak genericity assumption on $\overline{r}_w := \overline{r}|_{\text{Gal}(\overline{F}_w/F_w)}$ for w|p
- \overline{r}_w non scalar if D ramifies at w (so $w \nmid p$).

Then one can define an "optimal" open compact subgroup K^{ν} of $(D \otimes_F \mathbb{A}_F^{\infty,\nu})^{\times}$, a certain smooth finite dim. representation M^{ν} of K^{ν} over \mathbb{F} (a "type"), and set (B.-Diamond, Emerton-Gee-Savitt):

$$\pi_{\mathbf{v}}(\overline{\mathbf{r}}) := \operatorname{Hom}_{\mathbf{K}^{\mathbf{v}}} (\mathbf{M}^{\mathbf{v}}, \pi(\overline{\mathbf{r}}))[\mathfrak{m}]
eq 0$$

where $[\mathfrak{m}] :=$ kernel of Hecke operators at certain places $\neq v$.

- p > 5 and $\overline{r}|_{\operatorname{Gal}(\overline{F}/F(\sqrt[p]{1}))}$ still absolutely irreducible
- weak genericity assumption on $\overline{r}_w := \overline{r}|_{\text{Gal}(\overline{F}_w/F_w)}$ for w|p
- \overline{r}_w non scalar if D ramifies at w (so $w \nmid p$).

Then one can define an "optimal" open compact subgroup K^{ν} of $(D \otimes_F \mathbb{A}_F^{\infty,\nu})^{\times}$, a certain smooth finite dim. representation M^{ν} of K^{ν} over \mathbb{F} (a "type"), and set (B.-Diamond, Emerton-Gee-Savitt):

$$\pi_{\mathbf{v}}(\overline{\mathbf{r}}) := \operatorname{Hom}_{\mathbf{K}^{\mathbf{v}}} (\mathbf{M}^{\mathbf{v}}, \pi(\overline{\mathbf{r}}))[\mathfrak{m}] \neq 0$$

where $[\mathfrak{m}] :=$ kernel of Hecke operators at certain places $\neq v$.

 $\pi_{\nu}(\bar{r}) = \text{smooth admissible representation of } D_{\nu}^{\times} \cong \operatorname{GL}_{2}(F_{\nu}) \text{ over } \mathbb{F}$ with central character $\psi := \omega \det(\bar{r}_{\nu}) \ (\omega := \text{cyclo mod } p).$

・ロト ・ 同ト ・ ヨト ・ ヨト ・

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen On modular representations of GL₂(*L*) for unramified *L*

|| 日本 (日本) (日本)

Theorem 1 (Emerton, building on Colmez, B., Kisin, Berger,...)

Assume $F = \mathbb{Q}$ and $D = \operatorname{GL}_2$, then $\pi_v(\overline{r})$ is known. In particular:

- $\operatorname{GK}(\pi_v(\overline{r})) = 1$
- $\pi_v(\overline{r})$ is of finite length
- $\pi_v(\overline{r})$ is local, i.e. only depends on \overline{r}_v .

Theorem 1 (Emerton, building on Colmez, B., Kisin, Berger,...)

Assume $F = \mathbb{Q}$ and $D = \operatorname{GL}_2$, then $\pi_v(\overline{r})$ is known. In particular:

- $\operatorname{GK}(\pi_v(\overline{r})) = 1$
- $\pi_v(\overline{r})$ is of finite length
- $\pi_v(\overline{r})$ is local, i.e. only depends on \overline{r}_v .

(Should in fact hold as soon as $F_v = \mathbb{Q}_p$, as then $D_v \cong \mathrm{GL}_2(\mathbb{Q}_p)$.)

Theorem 1 (Emerton, building on Colmez, B., Kisin, Berger,...)

Assume $F = \mathbb{Q}$ and $D = \operatorname{GL}_2$, then $\pi_v(\overline{r})$ is known. In particular:

- $\operatorname{GK}(\pi_v(\overline{r})) = 1$
- $\pi_v(\overline{r})$ is of finite length
- $\pi_v(\overline{r})$ is local, i.e. only depends on \overline{r}_v .

(Should in fact hold as soon as $F_{\nu} = \mathbb{Q}_{p}$, as then $D_{\nu} \cong \operatorname{GL}_{2}(\mathbb{Q}_{p})$.) For $n \geq 1$ let $K_{\nu}(n) := 1 + p^{n}M_{2}(\mathcal{O}_{F_{\nu}}) \subset K_{\nu} := \mathcal{O}_{D_{\nu}}^{\times} \cong \operatorname{GL}_{2}(\mathcal{O}_{F_{\nu}})$.

Theorem 1 (Emerton, building on Colmez, B., Kisin, Berger,...)

Assume $F = \mathbb{Q}$ and $D = \operatorname{GL}_2$, then $\pi_v(\overline{r})$ is known. In particular:

- $\operatorname{GK}(\pi_v(\overline{r})) = 1$
- $\pi_v(\overline{r})$ is of finite length
- $\pi_v(\overline{r})$ is local, i.e. only depends on \overline{r}_v .

(Should in fact hold as soon as $F_{\nu} = \mathbb{Q}_{p}$, as then $D_{\nu} \cong \operatorname{GL}_{2}(\mathbb{Q}_{p})$.) For $n \geq 1$ let $K_{\nu}(n) := 1 + p^{n}M_{2}(\mathcal{O}_{F_{\nu}}) \subset K_{\nu} := \mathcal{O}_{D_{\nu}}^{\times} \cong \operatorname{GL}_{2}(\mathcal{O}_{F_{\nu}})$.

Definition 1 (Gelfand-Kirillov dimension)

Let π_{ν} be a smooth admissible representation of $K_{\nu}(1)$ over \mathbb{F} . There exists a unique $\operatorname{GK}(\pi_{\nu}) \in \{0, \ldots, \dim_{\mathbb{Z}_p}(K_{\nu})\}$ such that there are $a \leq b$ in $\mathbb{R}_{>0}$ with $a \leq \frac{\dim_{\mathbb{F}}(\pi_{\nu}^{K_{\nu}(n)})}{p^{n\operatorname{GK}(\pi_{\nu})}} \leq b$ for all $n \geq 1$.

イロト イポト イヨト イヨト

Let:

•
$$f := [F_v : \mathbb{Q}_p], q := p^f, K := K_v, K(1) := K_v(1)$$

•
$$\Gamma := K/K(1) \cong \operatorname{GL}_2(\mathbb{F}_q), Z(1) := \operatorname{center} \operatorname{of} K(1)$$

• $\mathfrak{m}_{\mathcal{K}} :=$ maximal ideal of Iwasawa algebra $\mathbb{F}[[\mathcal{K}(1)/Z(1)]].$

A B A A B A

Let:

•
$$f := [F_v : \mathbb{Q}_p], q := p^f, K := K_v, K(1) := K_v(1)$$

• $\Gamma := K/K(1) \cong \operatorname{GL}_2(\mathbb{F}_q), Z(1) := \operatorname{center} \operatorname{of} K(1)$

• \mathfrak{m}_{K} := maximal ideal of Iwasawa algebra $\mathbb{F}[[K(1)/Z(1)]]$.

Note that Z(1) acts trivially on $\pi_v(\bar{r})$ as $\psi|_{Z(1)} = 1$.

3

Let:

•
$$f := [F_v : \mathbb{Q}_p], q := p^f, K := K_v, K(1) := K_v(1)$$

•
$$\Gamma := K/K(1) \cong \operatorname{GL}_2(\mathbb{F}_q), Z(1) := \operatorname{center} \operatorname{of} K(1)$$

• $\mathfrak{m}_{\mathcal{K}} := \mathsf{maximal}$ ideal of Iwasawa algebra $\mathbb{F}[[\mathcal{K}(1)/Z(1)]]$.

Note that Z(1) acts trivially on $\pi_{\nu}(\overline{r})$ as $\psi|_{Z(1)} = 1$.

For arbitrary F, D and \overline{r} (as before), one has the following:

Theorem 2 (Emerton-Gee-Savitt, Le, Hu-Wang, Le-Morra-Schraen, building on B.-Paškūnas and Buzzard-Diamond-Jarvis)

The finite-dimensional Γ -representation $\pi_{\nu}(\bar{r})^{\mathcal{K}(1)} = \pi_{\nu}(\bar{r})[\mathfrak{m}_{\mathcal{K}}]$ is explicitly known, in particular is local and multiplicity free.

Let:

•
$$f := [F_v : \mathbb{Q}_p], q := p^f, K := K_v, K(1) := K_v(1)$$

•
$$\Gamma := K/K(1) \cong \operatorname{GL}_2(\mathbb{F}_q), Z(1) := \operatorname{center} \operatorname{of} K(1)$$

• $\mathfrak{m}_{\mathcal{K}} := \mathsf{maximal}$ ideal of Iwasawa algebra $\mathbb{F}[[\mathcal{K}(1)/Z(1)]]$.

Note that Z(1) acts trivially on $\pi_{\nu}(\overline{r})$ as $\psi|_{Z(1)} = 1$.

For arbitrary F, D and \overline{r} (as before), one has the following:

Theorem 2 (Emerton-Gee-Savitt, Le, Hu-Wang, Le-Morra-Schraen, building on B.-Paškūnas and Buzzard-Diamond-Jarvis)

The finite-dimensional Γ -representation $\pi_{\nu}(\bar{r})^{\mathcal{K}(1)} = \pi_{\nu}(\bar{r})[\mathfrak{m}_{\mathcal{K}}]$ is explicitly known, in particular is local and multiplicity free.

If $D_v \neq \operatorname{GL}_2(\mathbb{Q}_p)$ none of the statements in Theorem 1 are known.

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen On modular representations of GL₂(*L*) for unramified *L*

◆□ → ◆□ → ◆三 → ◆三 →

ъ.

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen On modular representations of $GL_2(L)$ for unramified L

< 一型

A = A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

Fix an embedding $\mathbb{F}_{q^2} \hookrightarrow \mathbb{F}$ and let ω_f , $\omega_{2f} :=$ associated Serre's fundamental characters of level f, 2f of inertia subgroup I_v .

Fix an embedding $\mathbb{F}_{q^2} \hookrightarrow \mathbb{F}$ and let ω_f , $\omega_{2f} :=$ associated Serre's fundamental characters of level f, 2f of inertia subgroup I_v .

We set $\overline{\rho} := \overline{r}_v$ and assume $\overline{\rho}$ is semi-simple such that:

Fix an embedding $\mathbb{F}_{q^2} \hookrightarrow \mathbb{F}$ and let ω_f , $\omega_{2f} :=$ associated Serre's fundamental characters of level f, 2f of inertia subgroup I_v .

We set $\overline{\rho} := \overline{r}_v$ and assume $\overline{\rho}$ is semi-simple such that:

•
$$\overline{\rho}$$
 reducible: $\overline{\rho}|_{I_v} \cong \begin{pmatrix} \omega_f^{(r_0+1)+\dots+p^{f-1}(r_{f-1}+1)} & 0 \\ 0 & 1 \end{pmatrix} \otimes \omega_f^*$
for some r_i with $9 \le r_i \le p - 12 \ (\Rightarrow p \ge 23)$

Fix an embedding $\mathbb{F}_{q^2} \hookrightarrow \mathbb{F}$ and let ω_f , $\omega_{2f} :=$ associated Serre's fundamental characters of level f, 2f of inertia subgroup I_v .

We set $\overline{\rho} := \overline{r}_v$ and assume $\overline{\rho}$ is semi-simple such that:

• $\overline{\rho}$ reducible: $\overline{\rho}|_{I_{\nu}} \cong \begin{pmatrix} \omega_{f}^{(r_{0}+1)+\dots+p^{f-1}(r_{f-1}+1)} & 0\\ 0 & 1 \end{pmatrix} \otimes \omega_{f}^{*}$ for some r_{i} with $9 \leq r_{i} \leq p-12$ ($\Rightarrow p \geq 23$) • $\overline{\rho}$ irreducible: $\overline{\rho}|_{I_{\nu}} \cong \begin{pmatrix} \omega_{2f}^{(r_{0}+1)+\dots+p^{f-1}(r_{f-1}+1)} & 0\\ 0 & \omega_{2f}^{q(\text{same})} \end{pmatrix} \otimes \omega_{f}^{*}$ for $10 \leq r_{0} \leq p-11$ and $9 \leq r_{i} \leq p-12$ if i > 0.

Fix an embedding $\mathbb{F}_{q^2} \hookrightarrow \mathbb{F}$ and let ω_f , $\omega_{2f} :=$ associated Serre's fundamental characters of level f, 2f of inertia subgroup I_v .

We set $\overline{\rho} := \overline{r}_v$ and assume $\overline{\rho}$ is semi-simple such that:

•
$$\overline{\rho}$$
 reducible: $\overline{\rho}|_{I_{\nu}} \cong \begin{pmatrix} \omega_{f}^{(r_{0}+1)+\dots+p^{f-1}(r_{f-1}+1)} & 0\\ 0 & 1 \end{pmatrix} \otimes \omega_{f}^{*}$
for some r_{i} with $9 \leq r_{i} \leq p-12$ ($\Rightarrow p \geq 23$)
• $\overline{\rho}$ irreducible: $\overline{\rho}|_{I_{\nu}} \cong \begin{pmatrix} \omega_{2f}^{(r_{0}+1)+\dots+p^{f-1}(r_{f-1}+1)} & 0\\ 0 & \omega_{2f}^{q(\text{same})} \end{pmatrix} \otimes \omega_{f}^{*}$
for $10 \leq r_{0} \leq p-11$ and $9 \leq r_{i} \leq p-12$ if $i > 0$.

This strong genericity assumption on $\overline{\rho}$ is not optimized!

Main result

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen On modular representations of $GL_2(L)$ for unramified L

◆□ > ◆□ > ◆豆 > ◆豆 >

3

Theorem 3

With the previous assumptions on *F*, *D*, \overline{r} and $\overline{\rho}$, we have:

 $\operatorname{GK}(\pi_v(\overline{r}))=f.$

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen On modular representations of $GL_2(L)$ for unramified L

Image: A Image: A
With the previous assumptions on *F*, *D*, \overline{r} and $\overline{\rho}$, we have:

$$\mathrm{GK}(\pi_{v}(\overline{r}))=f.$$

Remarks

• The assumptions on $\overline{\rho}$ should (conjecturally) be unnecessary, i.e. one should have $GK(\pi_v(\overline{r})) = f$ for F, D, \overline{r} as before.

With the previous assumptions on *F*, *D*, \overline{r} and $\overline{\rho}$, we have:

$$\mathrm{GK}(\pi_{v}(\overline{r}))=f.$$

Remarks

- The assumptions on $\overline{\rho}$ should (conjecturally) be unnecessary, i.e. one should have $GK(\pi_v(\overline{r})) = f$ for F, D, \overline{r} as before.
- Gee-Newton proved (without the assumptions on $\overline{\rho}$) that $\operatorname{GK}(\pi_{\nu}(\overline{r})) \geq f$, so our main result is $\operatorname{GK}(\pi_{\nu}(\overline{r})) \leq f$.

With the previous assumptions on *F*, *D*, \overline{r} and $\overline{\rho}$, we have:

$$\mathrm{GK}(\pi_{v}(\overline{r}))=f.$$

Remarks

- The assumptions on $\overline{\rho}$ should (conjecturally) be unnecessary, i.e. one should have $GK(\pi_v(\overline{r})) = f$ for F, D, \overline{r} as before.
- Gee-Newton proved (without the assumptions on $\overline{\rho}$) that $\operatorname{GK}(\pi_{\nu}(\overline{r})) \geq f$, so our main result is $\operatorname{GK}(\pi_{\nu}(\overline{r})) \leq f$.
- Even under the assumptions on $\overline{\rho}$, we do *not* know if $\pi_v(\overline{r})$ is of finite length or if $\pi_v(\overline{r})$ is local.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen On modular representations of GL₂(*L*) for unramified *L*

◆□ → ◆□ → ◆三 → ◆三 →

ъ.

First intermediate theorem

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen On modular representations of $GL_2(L)$ for unramified L

We first prove the following extension of Theorem 2 (much harder):

Theorem 4

The smooth finite-dimensional *K*-representation $\pi_v(\bar{r})[\mathfrak{m}_K^2]$ is explicitly known, in particular is local and multiplicity free.

We first prove the following extension of Theorem 2 (much harder):

Theorem 4

The smooth finite-dimensional K-representation $\pi_v(\bar{r})[\mathfrak{m}_K^2]$ is explicitly known, in particular is local and multiplicity free.

Let:

•
$$I := \{g \in K, g \equiv \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \mod p\} =$$
lwahori

•
$$I(1) := \{g \in K, g \equiv \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \mod p\} = \text{pro-}p \text{ Iwahori}$$

• $\mathfrak{m}_{I} := \text{maximal ideal of Iwasawa algebra } \mathbb{F}[[I(1)/Z(1)]].$

We first prove the following extension of Theorem 2 (much harder):

Theorem 4

The smooth finite-dimensional K-representation $\pi_v(\bar{r})[\mathfrak{m}_K^2]$ is explicitly known, in particular is local and multiplicity free.

Let:

•
$$I := \{g \in K, g \equiv \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \mod p\} =$$
lwahori

•
$$I(1) := \{g \in K, g \equiv \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \mod p\} = \text{pro-}p \text{ Iwahori}$$

• $\mathfrak{m}_{I} := \text{maximal ideal of Iwasawa algebra } \mathbb{F}[[I(1)/Z(1)]].$

Corollary 1

The smooth finite-dimensional *I*-representation $\pi_v(\bar{r})[\mathfrak{m}_I^3]$ is multiplicity free.

Second intermediate theorem

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen On modular representations of $GL_2(L)$ for unramified L

∃ ▶ ∢

Let π_v be a smooth admissible representation of I/Z(1) over \mathbb{F} such that $\pi_v[\mathfrak{m}_I^3]$ is multiplicity free. Then $\operatorname{GK}(\pi_v) \leq f$.

Theorem 5'

Let π_v be a smooth admissible representation of I/Z(1) over \mathbb{F} such that $\pi_v[\mathfrak{m}_I^3]$ is multiplicity free. Then $\operatorname{GK}(\pi_v) \leq f$.

It then directly follows from Corollary 1 and Theorem 5:

Corollary 2

We have $GK(\pi_v(\overline{r})) \leq f$.

Let π_v be a smooth admissible representation of I/Z(1) over \mathbb{F} such that $\pi_v[\mathfrak{m}_I^3]$ is multiplicity free. Then $\operatorname{GK}(\pi_v) \leq f$.

It then directly follows from Corollary 1 and Theorem 5:

Corollary 2

We have $GK(\pi_v(\bar{r})) \leq f$.

Using Gee-Newton for the reverse inequality, one gets Theorem 4.

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen On modular representations of $GL_2(L)$ for unramified L

∃ ▶ ∢

Let $\pi_{\nu}^{\vee} := \operatorname{Hom}_{\mathbb{F}}(\pi_{\nu}, \mathbb{F})$, then $\pi_{\nu}^{\vee}/\mathfrak{m}_{I} = (\pi_{\nu}^{I(1)})^{\vee} = \bigoplus_{\alpha} \chi_{\alpha}$ for some characters $\chi_{\alpha} : I/I(1) \to \mathbb{F}^{\times}$.

Let $\pi_{\nu}^{\vee} := \operatorname{Hom}_{\mathbb{F}}(\pi_{\nu}, \mathbb{F})$, then $\pi_{\nu}^{\vee}/\mathfrak{m}_{I} = (\pi_{\nu}^{I(1)})^{\vee} = \bigoplus_{\alpha} \chi_{\alpha}$ for some characters $\chi_{\alpha} : I/I(1) \to \mathbb{F}^{\times}$.

Let $\operatorname{Proj}_I \chi_{\alpha} := \chi_{\alpha} \otimes_{\mathbb{F}} \mathbb{F}[[I(1)/Z(1)]] = \text{projective envelope of } \chi_{\alpha}$ in the category of compact $\mathbb{F}[[I/Z(1)]]$ -modules.

Let $\pi_{\nu}^{\vee} := \operatorname{Hom}_{\mathbb{F}}(\pi_{\nu}, \mathbb{F})$, then $\pi_{\nu}^{\vee}/\mathfrak{m}_{I} = (\pi_{\nu}^{I(1)})^{\vee} = \bigoplus_{\alpha} \chi_{\alpha}$ for some characters $\chi_{\alpha} : I/I(1) \to \mathbb{F}^{\times}$.

Let $\operatorname{Proj}_{I}\chi_{\alpha} := \chi_{\alpha} \otimes_{\mathbb{F}} \mathbb{F}[[I(1)/Z(1)]] = \text{projective envelope of } \chi_{\alpha}$ in the category of compact $\mathbb{F}[[I/Z(1)]]$ -modules.

As χ_{α} does not appear in $\mathfrak{m}_{I}\pi_{v}^{\vee}/\mathfrak{m}_{I}^{3}\pi_{v}^{\vee}$ (by assumption), one proves there exist *I*-equivariant maps $h_{\alpha}:(\operatorname{Proj}_{I}\chi_{\alpha})^{\oplus 2f} \to \operatorname{Proj}_{I}\chi_{\alpha}$ s.t.:

Let $\pi_{\nu}^{\vee} := \operatorname{Hom}_{\mathbb{F}}(\pi_{\nu}, \mathbb{F})$, then $\pi_{\nu}^{\vee}/\mathfrak{m}_{I} = (\pi_{\nu}^{I(1)})^{\vee} = \bigoplus_{\alpha} \chi_{\alpha}$ for some characters $\chi_{\alpha} : I/I(1) \to \mathbb{F}^{\times}$.

Let $\operatorname{Proj}_{I}\chi_{\alpha} := \chi_{\alpha} \otimes_{\mathbb{F}} \mathbb{F}[[I(1)/Z(1)]] = \text{projective envelope of } \chi_{\alpha}$ in the category of compact $\mathbb{F}[[I/Z(1)]]$ -modules.

As χ_{α} does not appear in $\mathfrak{m}_{I}\pi_{\nu}^{\vee}/\mathfrak{m}_{I}^{3}\pi_{\nu}^{\vee}$ (by assumption), one proves there exist *I*-equivariant maps $h_{\alpha}:(\operatorname{Proj}_{I}\chi_{\alpha})^{\oplus 2f} \to \operatorname{Proj}_{I}\chi_{\alpha}$ s.t.:

• image $(h_{\alpha}) \subseteq \mathfrak{m}_{I}^{2} \operatorname{Proj}_{I} \chi_{\alpha}$

Let $\pi_{\nu}^{\vee} := \operatorname{Hom}_{\mathbb{F}}(\pi_{\nu}, \mathbb{F})$, then $\pi_{\nu}^{\vee}/\mathfrak{m}_{I} = (\pi_{\nu}^{I(1)})^{\vee} = \bigoplus_{\alpha} \chi_{\alpha}$ for some characters $\chi_{\alpha} : I/I(1) \to \mathbb{F}^{\times}$.

Let $\operatorname{Proj}_{I}\chi_{\alpha} := \chi_{\alpha} \otimes_{\mathbb{F}} \mathbb{F}[[I(1)/Z(1)]] = \text{projective envelope of } \chi_{\alpha}$ in the category of compact $\mathbb{F}[[I/Z(1)]]$ -modules.

As χ_{α} does not appear in $\mathfrak{m}_{I}\pi_{v}^{\vee}/\mathfrak{m}_{I}^{3}\pi_{v}^{\vee}$ (by assumption), one proves there exist *I*-equivariant maps $h_{\alpha}:(\operatorname{Proj}_{I}\chi_{\alpha})^{\oplus 2f} \to \operatorname{Proj}_{I}\chi_{\alpha}$ s.t.:

- image $(h_{\alpha}) \subseteq \mathfrak{m}_{I}^{2} \operatorname{Proj}_{I} \chi_{\alpha}$
- the map $(\operatorname{Proj}_I \chi_\alpha / \mathfrak{m}_I)^{\oplus 2f} \to \mathfrak{m}_I^2 \operatorname{Proj}_I \chi_\alpha / \mathfrak{m}_I^3$ is injective

Let $\pi_{\nu}^{\vee} := \operatorname{Hom}_{\mathbb{F}}(\pi_{\nu}, \mathbb{F})$, then $\pi_{\nu}^{\vee}/\mathfrak{m}_{I} = (\pi_{\nu}^{I(1)})^{\vee} = \bigoplus_{\alpha} \chi_{\alpha}$ for some characters $\chi_{\alpha} : I/I(1) \to \mathbb{F}^{\times}$.

Let $\operatorname{Proj}_{I}\chi_{\alpha} := \chi_{\alpha} \otimes_{\mathbb{F}} \mathbb{F}[[I(1)/Z(1)]] = \text{projective envelope of } \chi_{\alpha}$ in the category of compact $\mathbb{F}[[I/Z(1)]]$ -modules.

As χ_{α} does not appear in $\mathfrak{m}_{I}\pi_{v}^{\vee}/\mathfrak{m}_{I}^{3}\pi_{v}^{\vee}$ (by assumption), one proves there exist *I*-equivariant maps $h_{\alpha}:(\operatorname{Proj}_{I}\chi_{\alpha})^{\oplus 2f} \to \operatorname{Proj}_{I}\chi_{\alpha}$ s.t.:

- image $(h_{\alpha}) \subseteq \mathfrak{m}_{I}^{2} \operatorname{Proj}_{I} \chi_{\alpha}$
- the map $(\operatorname{Proj}_I \chi_\alpha/\mathfrak{m}_I)^{\oplus 2f} \to \mathfrak{m}_I^2 \operatorname{Proj}_I \chi_\alpha/\mathfrak{m}_I^3$ is injective
- π_{ν}^{\vee} is a quotient of $\oplus_{\alpha} \operatorname{coker}(h_{\alpha})$.

Let $\pi_{\nu}^{\vee} := \operatorname{Hom}_{\mathbb{F}}(\pi_{\nu}, \mathbb{F})$, then $\pi_{\nu}^{\vee}/\mathfrak{m}_{I} = (\pi_{\nu}^{I(1)})^{\vee} = \bigoplus_{\alpha} \chi_{\alpha}$ for some characters $\chi_{\alpha} : I/I(1) \to \mathbb{F}^{\times}$.

Let $\operatorname{Proj}_{I}\chi_{\alpha} := \chi_{\alpha} \otimes_{\mathbb{F}} \mathbb{F}[[I(1)/Z(1)]] = \text{projective envelope of } \chi_{\alpha}$ in the category of compact $\mathbb{F}[[I/Z(1)]]$ -modules.

As χ_{α} does not appear in $\mathfrak{m}_{I}\pi_{v}^{\vee}/\mathfrak{m}_{I}^{3}\pi_{v}^{\vee}$ (by assumption), one proves there exist *I*-equivariant maps $h_{\alpha}:(\operatorname{Proj}_{I}\chi_{\alpha})^{\oplus 2f} \to \operatorname{Proj}_{I}\chi_{\alpha}$ s.t.:

- image $(h_{\alpha}) \subseteq \mathfrak{m}_{I}^{2} \operatorname{Proj}_{I} \chi_{\alpha}$
- the map $(\operatorname{Proj}_I \chi_\alpha/\mathfrak{m}_I)^{\oplus 2f} \to \mathfrak{m}_I^2 \operatorname{Proj}_I \chi_\alpha/\mathfrak{m}_I^3$ is injective
- π_{ν}^{\vee} is a quotient of $\oplus_{\alpha} \operatorname{coker}(h_{\alpha})$.

Thm. 5 then follows from $GK(\pi_v) \leq \max_{\alpha} GK(\operatorname{coker}(h_{\alpha})^{\vee})$ and:

Let $\pi_{\nu}^{\vee} := \operatorname{Hom}_{\mathbb{F}}(\pi_{\nu}, \mathbb{F})$, then $\pi_{\nu}^{\vee}/\mathfrak{m}_{I} = (\pi_{\nu}^{I(1)})^{\vee} = \bigoplus_{\alpha} \chi_{\alpha}$ for some characters $\chi_{\alpha} : I/I(1) \to \mathbb{F}^{\times}$.

Let $\operatorname{Proj}_{I}\chi_{\alpha} := \chi_{\alpha} \otimes_{\mathbb{F}} \mathbb{F}[[I(1)/Z(1)]] = \text{projective envelope of } \chi_{\alpha}$ in the category of compact $\mathbb{F}[[I/Z(1)]]$ -modules.

As χ_{α} does not appear in $\mathfrak{m}_{I}\pi_{\nu}^{\vee}/\mathfrak{m}_{I}^{3}\pi_{\nu}^{\vee}$ (by assumption), one proves there exist *I*-equivariant maps $h_{\alpha}:(\operatorname{Proj}_{I}\chi_{\alpha})^{\oplus 2f} \to \operatorname{Proj}_{I}\chi_{\alpha}$ s.t.:

- image $(h_{\alpha}) \subseteq \mathfrak{m}_{I}^{2} \operatorname{Proj}_{I} \chi_{\alpha}$
- the map $(\operatorname{Proj}_I \chi_\alpha/\mathfrak{m}_I)^{\oplus 2f} \to \mathfrak{m}_I^2 \operatorname{Proj}_I \chi_\alpha/\mathfrak{m}_I^3$ is injective
- π_{ν}^{\vee} is a quotient of $\oplus_{\alpha} \operatorname{coker}(h_{\alpha})$.

Thm. 5 then follows from $GK(\pi_v) \leq \max_{\alpha} GK(\operatorname{coker}(h_{\alpha})^{\vee})$ and:

Proposition 1

We have $\operatorname{GK}(\operatorname{coker}(h_{\alpha})^{\vee}) \leq f$ (calculation in $\operatorname{gr}_{\mathfrak{m}_{I}}\mathbb{F}[[I(1)/Z(1)]])$.

• □ ▶ • □ ▶ • □ ▶ • □ ▶ • □ ▶

-

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen On modular representations of $GL_2(L)$ for unramified L

∃ ▶ ∢

• σ a Serre weight (= irreducible representation of Γ over \mathbb{F})

Let:

- σ a Serre weight (= irreducible representation of Γ over \mathbb{F})
- $\operatorname{Proj}_{\mathcal{K}} \sigma :=$ projective envelope of σ in category of compact $\mathbb{F}[[\mathcal{K}/Z(1)]]$ -modules

- σ a Serre weight (= irreducible representation of Γ over \mathbb{F})
- $\operatorname{Proj}_{K} \sigma :=$ projective envelope of σ in category of compact $\mathbb{F}[[K/Z(1)]]$ -modules

Enough to prove: dim_FHom_K(Proj_K $\sigma/\mathfrak{m}_{K}^{2}, \pi_{\nu}(\overline{r})) \leq 1$.

- σ a Serre weight (= irreducible representation of Γ over \mathbb{F})
- $\operatorname{Proj}_{K} \sigma :=$ projective envelope of σ in category of compact $\mathbb{F}[[K/Z(1)]]$ -modules

Enough to prove: $\dim_{\mathbb{F}} \operatorname{Hom}_{\mathcal{K}} (\operatorname{Proj}_{\mathcal{K}} \sigma / \mathfrak{m}_{\mathcal{K}}^2, \pi_{\nu}(\overline{r})) \leq 1.$

Can assume $\operatorname{Hom}_{\mathcal{K}}(\sigma, \pi_{\nu}(\overline{r})) \neq 0$ (i.e. $\sigma =$ Serre weight of $\overline{\rho}$).

- σ a Serre weight (= irreducible representation of Γ over \mathbb{F})
- $\operatorname{Proj}_{K} \sigma :=$ projective envelope of σ in category of compact $\mathbb{F}[[K/Z(1)]]$ -modules

Enough to prove: $\dim_{\mathbb{F}} \operatorname{Hom}_{\mathcal{K}} (\operatorname{Proj}_{\mathcal{K}} \sigma / \mathfrak{m}_{\mathcal{K}}^2, \pi_{\nu}(\overline{r})) \leq 1.$

Can assume $\operatorname{Hom}_{\mathcal{K}}(\sigma, \pi_{\nu}(\overline{r})) \neq 0$ (i.e. $\sigma = \text{Serre weight of } \overline{\rho}$).

Main tool: patching functor M_{∞} of Emerton-Gee-Savitt (building on Taylor-Wiles, Kisin) = exact functor from continuous repres. of K over finite type $W(\mathbb{F})$ -modules + central character lifting ψ to finite type R_{∞} -modules satisfying several properties (cf. E.-G.-S.).

 R_{∞} = patched deformation ring = power series ring over $W(\mathbb{F})$.

・ 戸 ト ・ ラ ト ・ ラ ト ・

Let:

• $\mathfrak{m}_{\infty} := \mathsf{maximal}$ ideal of R_{∞}

3 🕨 🖌 🗄

Let:

- $\mathfrak{m}_\infty := \mathsf{maximal}$ ideal of R_∞
- V := any finite dimensional representation of K over $\mathbb F$

Let:

- $\mathfrak{m}_\infty := \mathsf{maximal}$ ideal of R_∞
- V := any finite dimensional representation of K over $\mathbb F$

from the construction of M_∞ one gets:

$$\operatorname{Hom}_{\mathbb{F}}(M_{\infty}(V)/\mathfrak{m}_{\infty},\mathbb{F})\cong\operatorname{Hom}_{\mathcal{K}}(V,\pi_{\nu}(\overline{r})).$$

- $\mathfrak{m}_\infty :=$ maximal ideal of R_∞
- V := any finite dimensional representation of K over $\mathbb F$

from the construction of M_∞ one gets:

$$\operatorname{Hom}_{\mathbb{F}}(M_{\infty}(V)/\mathfrak{m}_{\infty},\mathbb{F})\cong\operatorname{Hom}_{\mathcal{K}}(V,\pi_{v}(\overline{r})).$$

Hence Theorem 4 (multiplicity free part) follows from:

Theorem 6

The R_{∞} -module $M_{\infty}(\operatorname{Proj}_{K}\sigma/\mathfrak{m}_{K}^{2})$ is cyclic.

Equivalently $M_{\infty}(\operatorname{Proj}_{\mathcal{K}}\sigma/\mathfrak{m}_{\mathcal{K}}^2) \cong$ quotient of R_{∞} .

We now prove Theorem 6. First: need to describe $\operatorname{Proj}_{\mathcal{K}}\sigma/\mathfrak{m}_{\mathcal{K}}^2$.

We now prove Theorem 6. First: need to describe $\operatorname{Proj}_{\mathcal{K}}\sigma/\mathfrak{m}_{\mathcal{K}}^2$. Let:

• $\operatorname{Proj}_{\Gamma}\sigma = \operatorname{Proj}_{\mathcal{K}}\sigma/\mathfrak{m}_{\mathcal{K}} :=$ projective envelope of σ in category of Γ -representations over \mathbb{F}

We now prove Theorem 6. First: need to describe $\operatorname{Proj}_{\mathcal{K}}\sigma/\mathfrak{m}_{\mathcal{K}}^2$. Let:

- $\operatorname{Proj}_{\Gamma}\sigma = \operatorname{Proj}_{\mathcal{K}}\sigma/\mathfrak{m}_{\mathcal{K}} :=$ projective envelope of σ in category of Γ -representations over \mathbb{F}
- $V_2^{\tau} := (\operatorname{Sym}^2(\mathbb{F}^2) \otimes_{\mathbb{F}} \det^{-1})^{\tau} = \text{algebraic representation of } \Gamma$ via $\tau : \mathbb{F}_q \hookrightarrow \mathbb{F}$ (arbitrary embedding),

We now prove Theorem 6. First: need to describe $\operatorname{Proj}_{\mathcal{K}}\sigma/\mathfrak{m}_{\mathcal{K}}^2$. Let:

- $\operatorname{Proj}_{\Gamma}\sigma = \operatorname{Proj}_{\mathcal{K}}\sigma/\mathfrak{m}_{\mathcal{K}} :=$ projective envelope of σ in category of Γ -representations over \mathbb{F}
- $V_2^{\tau} := (\operatorname{Sym}^2(\mathbb{F}^2) \otimes_{\mathbb{F}} \det^{-1})^{\tau} = \text{algebraic representation of } \Gamma$ via $\tau : \mathbb{F}_q \hookrightarrow \mathbb{F}$ (arbitrary embedding),

then $\operatorname{Proj}_{\mathcal{K}} \sigma / \mathfrak{m}_{\mathcal{K}}^2$ is a non-split extension:

$$\operatorname{Proj}_{\mathcal{K}} \sigma/\mathfrak{m}_{\mathcal{K}}^2 \cong \left(\oplus_{\tau} (V_2^{\tau} \otimes_{\mathbb{F}} \operatorname{Proj}_{\Gamma} \sigma) \right) - \operatorname{Proj}_{\Gamma} \sigma .$$

We now prove Theorem 6. First: need to describe $\operatorname{Proj}_{\mathcal{K}}\sigma/\mathfrak{m}_{\mathcal{K}}^2$. Let:

- $\operatorname{Proj}_{\Gamma}\sigma = \operatorname{Proj}_{\mathcal{K}}\sigma/\mathfrak{m}_{\mathcal{K}} :=$ projective envelope of σ in category of Γ -representations over \mathbb{F}
- $V_2^{\tau} := (\operatorname{Sym}^2(\mathbb{F}^2) \otimes_{\mathbb{F}} \det^{-1})^{\tau} = \text{algebraic representation of } \Gamma$ via $\tau : \mathbb{F}_q \hookrightarrow \mathbb{F}$ (arbitrary embedding),

then $\operatorname{Proj}_{\mathcal{K}} \sigma / \mathfrak{m}_{\mathcal{K}}^2$ is a non-split extension:

$$\operatorname{Proj}_{K} \sigma / \mathfrak{m}_{K}^{2} \cong \left(\oplus_{\tau} (V_{2}^{\tau} \otimes_{\mathbb{F}} \operatorname{Proj}_{\Gamma} \sigma) \right) - \operatorname{Proj}_{\Gamma} \sigma .$$

Moreover $V_2^{\tau} \otimes_{\mathbb{F}} \operatorname{Proj}_{\Gamma} \sigma \cong \operatorname{Proj}_{\Gamma} \sigma_{+2_{\tau}} \oplus \operatorname{Proj}_{\Gamma} \sigma \oplus \operatorname{Proj}_{\Gamma} \sigma_{-2_{\tau}}$.
We now prove Theorem 6. First: need to describe $\operatorname{Proj}_{\mathcal{K}}\sigma/\mathfrak{m}_{\mathcal{K}}^2$. Let:

- $\operatorname{Proj}_{\Gamma} \sigma = \operatorname{Proj}_{K} \sigma / \mathfrak{m}_{K} :=$ projective envelope of σ in category of Γ -representations over \mathbb{F}
- $V_2^{\tau} := (\operatorname{Sym}^2(\mathbb{F}^2) \otimes_{\mathbb{F}} \det^{-1})^{\tau} = \text{algebraic representation of } \Gamma$ via $\tau : \mathbb{F}_q \hookrightarrow \mathbb{F}$ (arbitrary embedding),

then $\operatorname{Proj}_{\mathcal{K}} \sigma / \mathfrak{m}_{\mathcal{K}}^2$ is a non-split extension:

$$\operatorname{Proj}_{K} \sigma / \mathfrak{m}_{K}^{2} \cong \left(\oplus_{\tau} (V_{2}^{\tau} \otimes_{\mathbb{F}} \operatorname{Proj}_{\Gamma} \sigma) \right) - \operatorname{Proj}_{\Gamma} \sigma .$$

Moreover $V_2^{\tau} \otimes_{\mathbb{F}} \operatorname{Proj}_{\Gamma} \sigma \cong \operatorname{Proj}_{\Gamma} \sigma_{+2_{\tau}} \oplus \operatorname{Proj}_{\Gamma} \sigma \oplus \operatorname{Proj}_{\Gamma} \sigma_{-2_{\tau}}$.

Let $Q_{\tau} :=$ unique quotient of $\operatorname{Proj}_{K} \sigma/\mathfrak{m}_{K}^{2}$ which is a non-split extension $(\operatorname{Proj}_{\Gamma} \sigma_{+2_{\tau}} \oplus \operatorname{Proj}_{\Gamma} \sigma_{-2_{\tau}}) \longrightarrow \operatorname{Proj}_{\Gamma} \sigma$.

To proceed, we lift the K-representation $\operatorname{Proj}_{K} \sigma/\mathfrak{m}_{K}^{2}$ to $W(\mathbb{F})$.

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen On modular representations of $GL_2(L)$ for unramified L

To proceed, we lift the K-representation $\operatorname{Proj}_{K}\sigma/\mathfrak{m}_{K}^{2}$ to $W(\mathbb{F})$. Let:

• $\widetilde{\operatorname{Proj}}_{\Gamma}\sigma :=$ unique representation of Γ lifting $\operatorname{Proj}_{\Gamma}\sigma$ over $W(\mathbb{F})$

To proceed, we lift the K-representation $\operatorname{Proj}_{K}\sigma/\mathfrak{m}_{K}^{2}$ to $W(\mathbb{F})$. Let:

Proj_Γσ := unique representation of Γ lifting Proj_Γσ over W(F)
 V
^τ₂ := (Sym²(W(F)²) ⊗_{W(F)} det⁻¹)^τ.

To proceed, we lift the K-representation $\operatorname{Proj}_{K}\sigma/\mathfrak{m}_{K}^{2}$ to $W(\mathbb{F})$.

Let:

Proj_Γσ := unique representation of Γ lifting Proj_Γσ over W(F)
 V
^τ₂ := (Sym²(W(F)²) ⊗_{W(F)} det⁻¹)^τ.

One can prove:

Proposition 3

(i) There is an invariant $W(\mathbb{F})$ -lattice L_2^{τ} in $(\widetilde{V}_2^{\tau} \otimes_{W(\mathbb{F})} \widetilde{\operatorname{Proj}}_{\Gamma} \sigma)[\frac{1}{p}]$ such that $L_2^{\tau}/p \cong Q_{\tau}$.

To proceed, we lift the K-representation $\operatorname{Proj}_{K}\sigma/\mathfrak{m}_{K}^{2}$ to $W(\mathbb{F})$.

Let:

Proj_Γσ := unique representation of Γ lifting Proj_Γσ over W(F)
 V
^τ₂ := (Sym²(W(F)²) ⊗_{W(F)} det⁻¹)^τ.

One can prove:

Proposition 3

(i) There is an invariant W(F)-lattice L^τ₂ in (Ṽ^τ₂ ⊗_{W(F)} P̃roj_Γσ)[¹/_p] such that L^τ₂/p ≅ Q_τ.
(ii) Let L := ker (P̃roj_Γσ ⊕ (⊕_τL^τ₂) → (Proj_Γσ)^{⊕f}), then L/p ≅ Proj_Kσ/m²_K.

To proceed, we lift the K-representation $\operatorname{Proj}_{K}\sigma/\mathfrak{m}_{K}^{2}$ to $W(\mathbb{F})$.

Let:

Proj_Γσ := unique representation of Γ lifting Proj_Γσ over W(F)
 V
^τ₂ := (Sym²(W(F)²) ⊗_{W(F)} det⁻¹)^τ.

One can prove:

Proposition 3

(i) There is an invariant $W(\mathbb{F})$ -lattice L_2^{τ} in $(\widetilde{V}_2^{\tau} \otimes_{W(\mathbb{F})} \widetilde{\operatorname{Proj}}_{\Gamma} \sigma)[\frac{1}{p}]$ such that $L_2^{\tau}/p \cong Q_{\tau}$. (ii) Let $L := \ker \left(\widetilde{\operatorname{Proj}}_{\Gamma} \sigma \oplus (\oplus_{\tau} L_2^{\tau}) \longrightarrow (\operatorname{Proj}_{\Gamma} \sigma)^{\oplus f} \right)$, then $L/p \cong \operatorname{Proj}_{\mathcal{K}} \sigma/\mathfrak{m}_{\mathcal{K}}^2$.

It is enough to prove that $M_{\infty}(L)$ is cyclic.

We know $M_{\infty}(\widetilde{\operatorname{Proj}}_{\Gamma}\sigma)$ is cyclic (Hu-Wang, Le-Morra-Schraen).

We know $M_{\infty}(\widetilde{\operatorname{Proj}}_{\Gamma}\sigma)$ is cyclic (Hu-Wang, Le-Morra-Schraen).

Proposition 2

The R_{∞} -module $M_{\infty}(L_2^{\tau}/p)$, and hence $M_{\infty}(L_2^{\tau})$, are cyclic.

We know $M_{\infty}(\widetilde{\operatorname{Proj}}_{\Gamma}\sigma)$ is cyclic (Hu-Wang, Le-Morra-Schraen).

Proposition 2

The R_{∞} -module $M_{\infty}(L_2^{ au}/p)$, and hence $M_{\infty}(L_2^{ au})$, are cyclic.

The proof is by dévissage, using:

- $M_{\infty}(\sigma') \neq 0 \Leftrightarrow \sigma' \hookrightarrow \pi_{\nu}(\overline{r})[\mathfrak{m}_{\mathcal{K}}] \ (\Leftrightarrow \sigma' \text{ Serre weight of } \overline{\rho})$
- $M_{\infty}(\operatorname{Proj}_{\Gamma}\sigma')$ cyclic (Hu-Wang, Le-Morra-Schraen)
- $M'' \subsetneq M' \subseteq M$ finite type R_{∞} -modules with M' cyclic, then M cyclic $\Leftrightarrow M/M''$ cyclic (E.-G.-S.).

We know $M_{\infty}(\widetilde{\operatorname{Proj}}_{\Gamma}\sigma)$ is cyclic (Hu-Wang, Le-Morra-Schraen).

Proposition 2

The R_{∞} -module $M_{\infty}(L_2^{ au}/p)$, and hence $M_{\infty}(L_2^{ au})$, are cyclic.

The proof is by dévissage, using:

- $M_{\infty}(\sigma') \neq 0 \Leftrightarrow \sigma' \hookrightarrow \pi_{\nu}(\bar{r})[\mathfrak{m}_{\mathcal{K}}] \ (\Leftrightarrow \sigma' \text{ Serre weight of } \bar{\rho})$
- $M_{\infty}(\operatorname{Proj}_{\Gamma}\sigma')$ cyclic (Hu-Wang, Le-Morra-Schraen)
- $M'' \subsetneq M' \subseteq M$ finite type R_{∞} -modules with M' cyclic, then M cyclic $\Leftrightarrow M/M''$ cyclic (E.-G.-S.).

Let $L^{\tau} := \ker \left(\widetilde{\operatorname{Proj}}_{\Gamma} \sigma \oplus L_{2}^{\tau} \to \operatorname{Proj}_{\Gamma} \sigma \right) = \widetilde{\operatorname{Proj}}_{\Gamma} \sigma \times_{\operatorname{Proj}_{\Gamma} \sigma} L_{2}^{\tau}.$

We know $M_{\infty}(\widetilde{\operatorname{Proj}}_{\Gamma}\sigma)$ is cyclic (Hu-Wang, Le-Morra-Schraen).

Proposition 2

The R_{∞} -module $M_{\infty}(L_2^{ au}/p)$, and hence $M_{\infty}(L_2^{ au})$, are cyclic.

The proof is by dévissage, using:

- $M_{\infty}(\sigma') \neq 0 \Leftrightarrow \sigma' \hookrightarrow \pi_{\nu}(\overline{r})[\mathfrak{m}_{\mathcal{K}}] \ (\Leftrightarrow \sigma' \text{ Serre weight of } \overline{\rho})$
- $M_{\infty}(\operatorname{Proj}_{\Gamma}\sigma')$ cyclic (Hu-Wang, Le-Morra-Schraen)
- $M'' \subsetneq M' \subseteq M$ finite type R_{∞} -modules with M' cyclic, then M cyclic $\Leftrightarrow M/M''$ cyclic (E.-G.-S.).

Let $L^{\tau} := \ker \left(\widetilde{\operatorname{Proj}}_{\Gamma} \sigma \oplus L_{2}^{\tau} \to \operatorname{Proj}_{\Gamma} \sigma \right) = \widetilde{\operatorname{Proj}}_{\Gamma} \sigma \times_{\operatorname{Proj}_{\Gamma} \sigma} L_{2}^{\tau}.$

I explain why $M_{\infty}(L^{\tau}) = M_{\infty}(\widetilde{\operatorname{Proj}}_{\Gamma}\sigma) \times_{M_{\infty}(\operatorname{Proj}_{\Gamma}\sigma)} M_{\infty}(L_{2}^{\tau})$ is cyclic. Proof for *L* can be reduced to this case by induction.

Let $R_{\nu} := R^{\Box}(\overline{\rho}) :=$ framed deformations of $\overline{\rho}$ (no conditions, but need to fix determinant lifting $\omega^{-1}\psi|_{\operatorname{Gal}(\overline{F}_{\nu}/F_{\nu})}$, I forget this here).

Let $R_{\nu} := R^{\Box}(\overline{\rho}) :=$ framed deformations of $\overline{\rho}$ (no conditions, but need to fix determinant lifting $\omega^{-1}\psi|_{\operatorname{Gal}(\overline{F}_{\nu}/F_{\nu})}$, I forget this here).

By previous cyclicities (using $R_{\infty} \cong R_{\nu}[[x_1, \ldots, x_h]])$:

• $M_{\infty}(\operatorname{Proj}_{\Gamma}\sigma) \cong (R_v/J)[[x_1,\ldots,x_h]]$

Let $R_{\nu} := R^{\Box}(\overline{\rho}) :=$ framed deformations of $\overline{\rho}$ (no conditions, but need to fix determinant lifting $\omega^{-1}\psi|_{\operatorname{Gal}(\overline{F}_{\nu}/F_{\nu})}$, I forget this here).

By previous cyclicities (using $R_{\infty} \cong R_{\nu}[[x_1, \ldots, x_h]])$:

- $M_{\infty}(\widetilde{\operatorname{Proj}}_{\Gamma}\sigma) \cong (R_v/J)[[x_1,\ldots,x_h]]$
- $M_{\infty}(L_2^{\tau}) \cong (R_v/J_{\tau})[[x_1,\ldots,x_h]]$

Let $R_{\nu} := R^{\Box}(\overline{\rho}) :=$ framed deformations of $\overline{\rho}$ (no conditions, but need to fix determinant lifting $\omega^{-1}\psi|_{\operatorname{Gal}(\overline{F}_{\nu}/F_{\nu})}$, I forget this here).

By previous cyclicities (using $R_{\infty} \cong R_{\nu}[[x_1, \ldots, x_h]])$:

• $M_{\infty}(\widetilde{\operatorname{Proj}}_{\Gamma}\sigma) \cong (R_v/J)[[x_1,\ldots,x_h]]$

•
$$M_{\infty}(L_2^{\tau}) \cong (R_v/J_{\tau})[[x_1,\ldots,x_h]]$$

•
$$M_{\infty}(\operatorname{Proj}_{\Gamma}\sigma) \cong (R_{\nu}/(p,J))[[x_1,\ldots,x_h]]$$

Let $R_{\nu} := R^{\Box}(\overline{\rho}) :=$ framed deformations of $\overline{\rho}$ (no conditions, but need to fix determinant lifting $\omega^{-1}\psi|_{\operatorname{Gal}(\overline{F}_{\nu}/F_{\nu})}$, I forget this here).

By previous cyclicities (using $R_{\infty} \cong R_{\nu}[[x_1, \ldots, x_h]])$:

• $M_{\infty}(\widetilde{\operatorname{Proj}}_{\Gamma}\sigma) \cong (R_v/J)[[x_1,\ldots,x_h]]$

•
$$M_{\infty}(L_2^{\tau}) \cong (R_v/J_{\tau})[[x_1,\ldots,x_h]]$$

•
$$M_{\infty}(\operatorname{Proj}_{\Gamma}\sigma) \cong (R_{\nu}/(p,J))[[x_1,\ldots,x_h]]$$

where:

• R_v/J parametrizes pot. cryst. lifts of $\overline{\rho}$ of any tame type whose reduction mod p contains σ and parallel HT weights (1,0)

Let $R_{\nu} := R^{\Box}(\overline{\rho}) :=$ framed deformations of $\overline{\rho}$ (no conditions, but need to fix determinant lifting $\omega^{-1}\psi|_{\operatorname{Gal}(\overline{F}_{\nu}/F_{\nu})}$, I forget this here).

By previous cyclicities (using $R_{\infty} \cong R_{\nu}[[x_1, \ldots, x_h]])$:

• $M_{\infty}(\widetilde{\operatorname{Proj}}_{\Gamma}\sigma) \cong (R_v/J)[[x_1,\ldots,x_h]]$

•
$$M_{\infty}(L_2^{\tau}) \cong (R_v/J_{\tau})[[x_1,\ldots,x_h]]$$

•
$$M_{\infty}(\operatorname{Proj}_{\Gamma}\sigma) \cong (R_{\nu}/(p,J))[[x_1,\ldots,x_h]]$$

where:

- *R_v*/*J* parametrizes pot. cryst. lifts of *ρ* of any tame type whose reduction mod *p* contains *σ* and parallel HT weights (1,0)
- *R_v*/*J_τ* parametrizes pot. cryst. lifts of *ρ* of same tame types but HT weights (1,0) outside embedding *τ*, (2, −1) at *τ*.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Needed: fiber product $(R_v/J) \times_{R_v/(p,J)} (R_v/J_\tau)$ is a quotient of R_v .

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen On modular representations of GL₂(*L*) for unramified *L*

∃ >

Needed: fiber product $(R_v/J) \times_{R_v/(p,J)} (R_v/J_\tau)$ is a quotient of R_v . This holds if and only if $J+J_\tau = (p, J)$. Enough to prove $p \in J+J_\tau$. Needed: fiber product $(R_v/J) \times_{R_v/(p,J)} (R_v/J_\tau)$ is a quotient of R_v . This holds if and only if $J+J_\tau = (p, J)$. Enough to prove $p \in J+J_\tau$.

Can explicitly compute J and $J_{\tau} \mod p^2$ and check:

Lemma

We have $p \in J + J_{\tau}$.

Needed: fiber product $(R_v/J) \times_{R_v/(p,J)} (R_v/J_\tau)$ is a quotient of R_v . This holds if and only if $J+J_\tau = (p, J)$. Enough to prove $p \in J+J_\tau$.

Can explicitly compute J and $J_{\tau} \mod p^2$ and check:

Lemma

We have $p \in J + J_{\tau}$.

This finishes the proof of main result!

One application

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen On modular representations of $GL_2(L)$ for unramified L

• = • •

Theorem 7 (Dotto-Le, building on C.-E.-G.-G.-P.-S.)

There is a "big" patched module \mathbf{M}_{∞} finitely generated over $R_{\infty}[[\operatorname{GL}_2(\mathcal{O}_{F_{\nu}})]]$ + compatible action of $\operatorname{GL}_2(F_{\nu})$ such that $\mathbf{M}_{\infty}/\mathfrak{m}_{\infty} \cong \pi_{\nu}(\overline{r})^{\vee}$.

伺 ト イヨ ト イヨト

Theorem 7 (Dotto-Le, building on C.-E.-G.-G.-P.-S.)

There is a "big" patched module \mathbf{M}_{∞} finitely generated over $R_{\infty}[[\operatorname{GL}_2(\mathcal{O}_{F_{\nu}})]]$ + compatible action of $\operatorname{GL}_2(F_{\nu})$ such that $\mathbf{M}_{\infty}/\mathfrak{m}_{\infty} \cong \pi_{\nu}(\overline{r})^{\vee}$.

Corollary of our main result

For any map $R_{\infty} \to \mathcal{O}_E$ of $W(\mathbb{F})$ -algebras (where $[E : \mathbb{Q}_p] < \infty$), $(\mathbf{M}_{\infty} \otimes_{R_{\infty}} \mathcal{O}_E)^{\vee}[1/p] = non-zero$ admissible unitary continuous representation of $\operatorname{GL}_2(F_v)$ over E with a unit ball lifting $\pi_v(\overline{r})$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem 7 (Dotto-Le, building on C.-E.-G.-G.-P.-S.)

There is a "big" patched module \mathbf{M}_{∞} finitely generated over $R_{\infty}[[\operatorname{GL}_2(\mathcal{O}_{F_{\nu}})]]$ + compatible action of $\operatorname{GL}_2(F_{\nu})$ such that $\mathbf{M}_{\infty}/\mathfrak{m}_{\infty} \cong \pi_{\nu}(\overline{r})^{\vee}$.

Corollary of our main result

For any map $R_{\infty} \to \mathcal{O}_E$ of $W(\mathbb{F})$ -algebras (where $[E : \mathbb{Q}_p] < \infty$), $(\mathbf{M}_{\infty} \otimes_{R_{\infty}} \mathcal{O}_E)^{\vee}[1/p] = non-zero$ admissible unitary continuous representation of $\operatorname{GL}_2(F_v)$ over E with a unit ball lifting $\pi_v(\overline{r})$.

Proof: The module \mathbf{M}_{∞} is CM over $R_{\infty}[[\operatorname{GL}_2(\mathcal{O}_{F_{\nu}})]]$ (Gee-Newton) + $\operatorname{GK}((\mathbf{M}_{\infty}/\mathfrak{m}_{\infty})^{\vee}) = f$ (our main result) $\Rightarrow \mathbf{M}_{\infty}$ is flat over R_{∞} ("Miracle Flatness" in non-commutative setting, see Gee-Newton).

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Remarks

• The case $\overline{\rho}$ non semi-simple should work as well (Hu-Wang).

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen On modular representations of GL₂(*L*) for unramified *L*

Remarks

• The case $\overline{\rho}$ non semi-simple should work as well (Hu-Wang).

• Hope to prove for suitable level K^{v} :

$$\mathrm{GK}\bigg(\mathrm{Hom}_{\mathrm{Gal}(\overline{F}/F)}\Big(\overline{r}, \lim_{\overrightarrow{K_{v}}} H^{1}_{\mathrm{\acute{e}t}}(X_{K^{v}K_{v}} \times_{F} \overline{F}, \mathbb{F})\Big)\bigg) = f.$$

Need to extend previous proof to cases without multiplicity 1.