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Abstract

Contact homology was introduced by Eliashberg, Givental and Hofer. In this theory,

we count holomorphic curves in the symplectization of a contact manifold, which are

asymptotic to periodic Reeb orbits. These closed orbits are assumed to be nondegen-

erate and, in particular, isolated. This assumption makes practical computations of

contact homology very difficult.

In this thesis, we develop computational methods for contact homology in Morse-Bott

situations, in which closed Reeb orbits form submanifolds of the contact manifold. We

require some Morse-Bott type assumptions on the contact form, a positivity property

for the Maslov index, mild requirements on the Reeb flow, and c1(ξ) = 0.

We then use these methods to compute contact homology for several examples, in

order to illustrate their efficiency. As an application of these contact invariants, we

show that T 5 and T 2 × S3 carry infinitely many pairwise non-isomorphic contact

structures in the trivial formal homotopy class.
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Chapter 1

Introduction

1.1 Contact geometry

The main object of contact geometry is the study of contact structures on differ-

entiable manifolds. These naturally arise in different branches of physics, such as

classical mechanics and geometric optics.

Definition 1.1. A 1-form α on a (2n− 1)-dimensional manifold M is called contact

if α ∧ (dα)n−1 is a volume form on M .

Equivalently, the 2-form dα defines a symplectic form on the hyperplane distribution

ξ = kerα.

Definition 1.2. A hyperplane distribution ξ ⊂ TM is called a contact structure if it

is defined locally by a contact form. We say that (M, ξ) is a contact manifold.

Note that, if the hyperplane distribution is co-orientable, then it admits a global

defining 1-form α. In what follows, we will always assume that ξ is co-orientable.

Any other choice of a contact form for ξ is given by fα, where f is a nonvanishing

function on M . The conformal class of the symplectic form dα on ξ is independent

of f , since d(fα) restricts to fdα on ξ.

Contact manifolds, like symplectic manifolds, have no local invariants. This is a

consequence of Darboux’ theorem.

1



2 CHAPTER 1. INTRODUCTION

Theorem 1.3. Let (M, ξ) be a contact manifold with contact form α. For every p ∈
M , there exist an open neighborhood U of p and a diffeomorphism ϕ : U → R2n−1 with

coordinates x1, . . . , xn−1, y1, . . . , yn−1, ϑ such that ϕ∗α = dϑ+x·dy = dϑ+
∑n−1

i=1 xidyi.

On the other hand, contact structures are stable under isotopy, as shown by Gray’s

theorem.

Theorem 1.4. Let {ξt}t∈[0,1] be a smooth family of contact structures on a closed

manifold M . Then there exists a smooth path {ϕt}t∈[0,1] of diffeomorphisms of M

such that ϕ0 = Id and ϕ∗t ξt = ξ0 for all t ∈ [0, 1].

This is a fundamental result in contact topology, since it shows that there is a hope of

classifying contact structures on a given closed manifold M . When dimM = 3, many

such classification results have been obtained already (see for example Eliashberg

[2] [3], Giroux [9] [11], Honda [17] [18]) using purely 3-dimensional techniques. The

starting point of this intense research is the result of Martinet [23] that every closed

orientable 3-manifold admits a contact structure.

When dimM > 3, those techniques cannot be used and the only general way that

was available until the mid 90s in order to distinguish contact structures was the

computation of their formal homotopy class.

Definition 1.5. An almost contact structure is the data of a hyperplane distribution

ξ equipped with a complex structure J . Equivalently, it is a reduction of the structure

group of TM to U(n− 1).

A contact structure ξ defines an almost contact structure, since the set of complex

structures J on ξ that are compatible with dα is contractible and independent of the

choice of α.

Definition 1.6. The formal homotopy class of a contact structure ξ is the homotopy

class of the corresponding almost contact structure.

But this “classical invariant” can sometimes be very difficult to compute. Moreover,

several examples of distinct contact structures in the same formal homotopy class are

known.
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1.2 Contact homology

Contact homology [4] was introduced in the mid 90s by Eliashberg and Hofer, and it

was soon followed by Symplectic Field Theory [5]. These theories are based on the

introduction of pseudo-holomorphic curves in symplectic geometry by Gromov [12].

We count pseudo-holomorphic curves in the symplectization (R×M,d(etα)) of (M,α)

that converge, for t → ±∞, to closed orbits of the Reeb vector field Rα associated

to α by the conditions ı(Rα)dα = 0 and α(Rα) = 1. Note that the dynamic proper-

ties of Rα strongly depend on the choice of a contact form α for ξ. We construct a

chain complex generated by the closed Reeb orbits and whose differential counts the

pseudo-holomorphic curves mentioned above. Contact homology is the homology of

that chain complex and turns out to be a contact invariant, i.e. is independent of the

choice of α.

The usefulness of contact homology has already been demonstrated by several compu-

tations for certain contact manifolds. Unfortunately, these computations are limited

and uneasy, because of an important assumption in the theory : the closed Reeb

orbits must be nondegenerate (and, in particular, isolated). Therefore, when the con-

tact manifold admits a natural and very symmetric contact form, this contact form

has to be perturbed before starting the computation. As a consequence of this, the

Reeb flow becomes rather chaotic and hard to study. But the worst part comes from

the Cauchy-Riemann equation, which becomes perturbed as well. It is then nearly

impossible to compute the moduli spaces of holomorphic curves. To avoid these dif-

ficulties, one would like to extend the theory to a larger set of admissible contact

forms. That is the goal of this thesis.

Contact homology can be thought of as some sort of Morse theory for the action

functional for loops γ in M : A(γ) =
∫
γ
α. The critical points of A are the closed

orbits under the Reeb flow ϕt and the corresponding critical values are the periods

of these orbits. The set of critical values of A is called the action spectrum and will

be denoted by σ(α). If the contact form is very symmetric, the closed Reeb orbits

will not be isolated, so we have to think of A as a Morse-Bott functional. These
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considerations motivate the following definition.

Definition 1.7. A contact form α on M is said to be of Morse-Bott type if the action

spectrum σ(α) of α is discrete and if, for every T ∈ σ(α), NT = {p ∈M |ϕT (p) = p}
is a closed, smooth submanifold of M , such that rank dα|NT is locally constant and

TpNT = ker(ϕT∗ − I)p.

The last condition is exactly the Morse-Bott condition for the action functional A,

since the linearized Reeb flow corresponds to the Hessian of A.

We define ST to be the quotient of NT under the circle action induced by the Reeb

flow.

1.3 Main theorems

We will construct a Morse-Bott chain complex (C∗, d) involving the Reeb dynamics

and holomorphic curves for a contact form α of Morse-Bott type.

Theorem 1.8. Let α be a contact form of Morse-Bott type for a contact structure ξ

on M satisfying c1(ξ) = 0.

Assume that, for all T ∈ σ(α), NT and ST are orientable, π1(ST ) has no disorienting

loop, and all Reeb orbits in ST are good. Assume that the almost complex structure

J is invariant under the Reeb flow on all submanifolds NT . Assume that the orbit

spaces ST have index positivity and that the Reeb field Rα has bounded return time.

Then the homology H∗(C∗, d) of the Morse-Bott chain complex (C∗, d) of (M,α) is

isomorphic to the contact homology HC∗(M, ξ) of (M, ξ = kerα) with coefficients in

the Novikov ring of H2(M,Z)/R.

It is sometimes better to consider instead cylindrical homology, for which we count

cylindrical curves only. In that case, we construct a Morse-Bott chain complex (C ā
∗ , d)

for each homotopy class ā of periodic Reeb orbits.

Theorem 1.9. Let α be a contact form of Morse-Bott type for a contact structure ξ

on M satisfying c1(ξ) = 0.

Assume that, for all T ∈ σ(α), NT and ST are orientable, π1(ST ) has no disorienting
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loop, and all Reeb orbits in ST are good. Assume that the almost complex structure

J is invariant under the Reeb flow on all submanifolds NT . Assume that cylindrical

homology is well defined : C0
k = 0 for k = −1, 0,+1, that all orbit spaces ST of con-

tractible periodic orbits have index positivity, and that the Reeb field Rα has bounded

return time.

Then the homology H∗(C
ā
∗ , d) of the Morse-Bott chain complex (C ā

∗ , d) of (M,α) is

isomorphic to the cylindrical homology HF ā
∗ (M, ξ) of (M, ξ = kerα) with coefficients

in the Novikov ring of H2(M,Z)/R.

The assumptions and the notation in these statements will be explained later in this

thesis. The strategy of the proof is to rewrite the chain complex for contact homology

using the Morse-Bott data. Therefore, the homology of the Morse-Bott chain complex

is isomorphic to contact homology, and it is a contact invariant as a consequence of

its original definition [5].

We then apply these Morse-Bott techniques to compute contact homology for certain

families of contact structures. As a result, we obtain some information on the contact

topology of some manifolds.

Corollary 1.10. There are infinitely many pairwise non-isomorphic contact struc-

tures on T 5 and on T 2 × S3 in the trivial formal homotopy class.

This thesis is organized as follows.

In chapter 2, we introduce holomorphic curves in the symplectization of a contact

manifold, with a contact form of Morse-Bott type. We then explain how to perturb

this setup to obtain non-degenerate closed Reeb orbits.

In chapter 3, we study the asymptotic behavior of holomorphic curves with finite

Hofer energy, in the neighborhood of a puncture. We show that the map converges

exponentially fast to a closed Reeb orbit within an orbit space.

In chapter 4, we prove a compactness theorem for holomorphic curves in a symplec-

tization. We also generalize this result to the case of a contact form of Morse-Bott

type with a vanishing perturbation.

In chapter 5, we derive the Fredholm theory for holomorphic curves in a symplecti-

zation. We also work out estimates for gluing holomorphic curves and fragments of
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gradient trajectories in the orbit spaces.

In chapter 6, we explain how to achieve transversality for the moduli spaces of (gen-

eralized) holomorphic curves, using virtual cycle techniques.

In chapter 7, we generalize the construction of coherent orientations for the moduli

spaces of holomorphic curves with a contact form of Morse-Bott type.

In chapter 8, we use the preceding results to construct the moduli spaces of holomor-

phic curves in different setups and prove the main theorems.

In chapter 9, we use the main theorems to compute contact homology in various

classes of examples, illustrating the efficiency of these Morse-Bott techniques.

In chapter 10, we apply theorem 1.9 to the study of certain families of contact struc-

tures and deduce some information about the contact topology of certain manifolds.



Chapter 2

Morse-Bott setup

2.1 Holomorphic curves with degenerate asymp-

totics

Let (M,α) be a compact, (2n−1)-dimensional contact manifold. We denote the Reeb

vector field associated to α by Rα. We are interested in the periodic orbits γ of Rα,

i.e. curves γ : [0, T ]→ M such that dγ
dt

= Rα and γ(0) = γ(T ). The period T of γ is

also called action and can be computed using the action functional
∫
γ
α.

If α is not a generic contact form for ξ = kerα but has some symmetries, then the

closed Reeb orbits are not isolated but come in families. Let NT = {p ∈M |ϕT (p) =

p}, where ϕt is the flow of Rα. We assume that α is of Morse-Bott type in the sense

of definition 1.7, so that NT is a smooth submanifold of M . The Reeb flow on M

induces an S1 action on NT . Denote the quotient NT/S
1 by ST ; this is an orbifold

with singularity groups Zk. The singularities correspond to Reeb orbits with period

T/k, covered k times. Since σ(α) is discrete, there will be countably many such or-

bit spaces ST . We will denote by Si the connected components of the orbit spaces

(i = 1, 2, . . . ).

The contact distribution ξ is equipped with a symplectic form dα. Let J be the set of

complex structures on ξ, compatible with dα. This set is nonempty and contractible.

7
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Note that J is independent of the choice of contact form α for ξ (for a given coori-

entation of ξ), because the conformal class of dα is fixed. Let J̃ ∈ J ; we can extend

J̃ to an almost complex structure J on the symplectization (R ×M,d(etα)), where

t denotes the coordinate of R, by J |ξ = J̃ and J ∂
∂t

= Rα. Note that if we replace

α with fα, where f is a positive function on M , we can keep the same J̃ , but the

extension to R×M is modified.

Let (Σ, j) be a compact Riemann surface, let x0
1, . . . , x

0
s0 be marked points on Σ,

and let x+
1 , . . . , x

+
s+
, x−1 , . . . , x

−
s− ∈ Σ be a set of punctures. We are interested in

J-holomorphic curves

ũ = (a, u) : (Σ \ {x+
1 , . . . , x

+
s+
, x0

1, . . . , x
0
s0 , x

−
1 , . . . , x

−
s−}, j)→ (R×M,J)

which have the following behavior near the punctures : limp→x±i
a(p) = ±∞ and

the map u converges, near a puncture, to a closed Reeb orbit. We say that x+
i

(i = 1, . . . , s+) are positive punctures and x−j (j = 1, . . . , s−) are negative punctures.

We will show in chapter 3 that such an asymptotic behavior for the J-holomorphic

maps is guaranteed if the Hofer energy is finite.

Definition 2.1. Let C = {φ ∈ C0(R, [0, 1]) |φ′ ≥ 0}; then the Hofer energy is defined

by

E(ũ) = sup
φ∈C

∫

Σ

ũ∗d(φα).

We now show that punctures at finite distance can be eliminated if the Hofer energy

is finite.

Lemma 2.2. Let ũ : (D2 \ {0}, j)→ (R×M,J) be a holomorphic map with E(ũ) <

∞. Suppose that a is bounded in a neighborhood of the origin. Then ũ extends

continuously to a holomorphic map ṽ : (D2, j)→ (R×M,J) with E(ṽ) = E(ũ) <∞.

Proof. Let K be a compact subset of R ×M containing ũ(D2 \ {0}). Choose φ ∈ C
such that φ′(t) > 0 for all (t, x) ∈ K. Then, d(φα) is nondegenerate on K and the

energy of ũ is its area with respect to the symplectic form d(φα). Hence, we can apply

the usual removable singularity lemma for a compact symplectic manifold [28].
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As a corollary of this lemma, we can always assume that the domain of a holomorphic

map in R×M with finite energy has no punctures that are mapped at finite distance.

We want to associate a homology class to a holomorphic map. In order to do this,

we need to fix some additional data. Choose a base point in each orbit space ST

and, for the corresponding Reeb orbit, choose a capping disk in M (if the Reeb orbit

is not contractible, we choose instead a representative for its homotopy class, and a

homotopy from the orbit to the representative). Then, given a holomorphic map with

asymptotic Reeb orbits γ+
1 , . . . , γ

+
s+
, γ−1 , . . . , γ

−
s− , we join each asymptotic Reeb orbit

γ±i to the base point of the corresponding orbit space. Gluing the holomorphic curve,

the cylinders lying above the paths and the capping disks, we obtain a homology class

in H2(M,Z).

However, the result depends on the homotopy class of the chosen path in ST . Clearly,

the homology class is well-defined modulo R = Image (iT ◦ π−1
T : H1(ST ,Z) →

H2(M,Z)), where iT : NT →M is the embedding of NT into M and πT : NT → ST is

the quotient under the Reeb flow. The elements of R are analogous to the rim tori of

Ionel and Parker [19]. Note that c1(ξ) vanishes on R, because ξ restricted to a torus

lying above a loop in ST is the pullback of a vector bundle over that loop. Hence, the

quotient of the Novikov ring of H2(M,Z) by R is well-defined and we can choose to

work with these somewhat less precise coefficients.

Note that it would be possible to recover more information on the homology class,

using a topological construction as in [19], but this would be very impractical for

computations. Therefore, we prefer to content ourselves with H2(M,Z)/R.

The moduli spaces of such J-holomorphic curves are defined under the following

equivalence relation :

(Σ \ {x+
1 , . . . , x

+
s+
, x0

1, . . . , x
0
s0 , x

−
1 , . . . , x

−
s−}, j, ũ)

∼ (Σ′ \ {x′+1 , . . . , x′
+
s+ , x

′0
1, . . . , x

′0
s0 , x

′−
1 , . . . , x

′−
s−}, j′, ũ′)
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if there exists a biholomorphism

h : (Σ \ {x+
1 , . . . , x

+
s+
, x−1 , . . . , x

−
s−}, j)→ (Σ′ \ {x′+1 , . . . , x′

+
s+ , x

′−
1 , . . . , x

′−
s−}, j′)

such that h(x±i ) = x′±i for i = 1, . . . , s±, h(x0
i ) = x′0i for i = 1, . . . , s0 and ũ = ũ′ ◦ h.

We will denote the moduli space of J-holomorphic maps of genus g, of homology

class A ∈ H2(M)/R, with s0 marked points, s+ positive punctures and asymptotic

Reeb orbits in S+
1 , . . . , S

+
S+ , with s− negative punctures and asymptotic Reeb orbits

in S−1 , . . . , S
−
s− by

MA
g,s+,s−,s0(S+

1 , . . . , S
+
s+

;S−1 , . . . , S
−
s−).

In addition to the usual evaluation maps ev0
i :M→M (i = 1, . . . , s0) at the marked

points, this moduli space M will be equipped with evaluation maps ev+
i :M→ S+

i

(i = 1, . . . , s+) and ev−j : M → S−j (j = 1, . . . , s−) at the positive and negative

punctures.

Let θ1, . . . , θm be a set of representatives for a basis of H∗(M). We introduce variables

t1, . . . , tm associated to these cycles, with grading |ti| = dim θi−2. We formally define

θ̄ =
∑m

i=1 tiθi and express every possible condition at the marked points using the

fibered product

M×M θ̄ . . .×M θ̄

that is defined using the evaluation maps ev0
i , i = 1, . . . , s0.

In order to construct contact homology, we just consider moduli spaces with genus

g = 0 and one positive puncture : s+ = 1. However, we will construct these moduli

spaces in full generality, since that does not really require more work.

2.2 Perturbation of the contact form

Let us construct a function f̄T with support in a small neighborhood of ∪T ′≤TNT ′

and such that df̄T (Rα) = 0 on NT ′ . In particular, f̄T will descend to a differentiable

function fT on the orbifold ST . We will choose f̄T in such a way that it induces a
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Morse function fT on ST .

We proceed by induction on T . For the smallest T ∈ σ(α), the orbit space ST is a

smooth manifold. Pick any Morse function fT on it.

For larger values of T ∈ σ(α), ST will be an orbifold having as singularities the orbit

spaces ST ′ such that T ′ divides T . We extend the functions fT ′ to a function fT on ST ,

so that the Hessian of fT restricted to the normal bundle to ST ′ is positive definite.

Finally, we extend f̄T to a tubular neighborhood of NT so that it is constant on the

fibers of the normal bundle of NT (for some metric invariant under the Reeb flow).

We then use cut off depending on the distance from NT . We can choose the radial

size of the tubular neighborhood of NT to be very small, so that Rα is C1-close to its

value on NT in the tubular neighborhood.

Consider the perturbed contact form αλ = (1 + λf̄T )α, where λ is a small positive

constant.

Lemma 2.3. For all T , we can choose λ > 0 small enough so that the periodic orbits

of Rαλ in M of action T ′ ≤ T are nondegenerate and correspond to the critical points

of fT ′.

Proof. The new Reeb vector field Rαλ = Rα +X where X is characterized by

i(X)dα = λ
df̄T

(1 + λf̄T )2
on ξ,

α(X) = −λ f̄T

1 + λf̄T
.

The first equation describes the transversal deformations of the Reeb orbits. These

vanish when dfT = 0, that is at critical points of fT . On the other hand, if λ is small

enough, the perturbation cannot create new periodic orbits, for a fixed action range,

because we have an upper bound on the deformation of the flow for the corresponding

range of time. The surviving periodic orbits are nondegenerate, because the Hessian

at a critical point is nondegenerate. This corresponds to first order variations of X,

that is of the linearized Reeb flow.
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Let p ∈ ST ′ be a simple Reeb orbit that is a critical point of fT ′ . Then we will denote

the closed orbit corresponding to p ∈ SkT ′ by γpkT ′ (k = 1, 2, . . . ).

We can compute the Conley-Zehnder index of these closed Reeb orbits for a small

value of λ.

Lemma 2.4. If λ is as in lemma 2.3 and kT ′ ≤ T , then

µCZ(γpkT ′) = µ(SkT ′)−
1

2
dimSkT ′ + indexp(fkT ′).

Proof. Let H be the Hessian of fT at critical point p. Then, the ξ-component of X

is given by −λJHx, where x is a local coordinate in a uniformization chart near p.

The linearized Reeb flow now has a new crossing at t = 0, with crossing form −λH.

Its signature is σ(0) = indexp(fkT ) − (dimSkT − indexp(fkT )). Half of this must be

added to µ(SkT ) to obtain the Conley-Zehnder index of the nondegenerate orbit.

On the other hand, we have to make sure that all Reeb orbits with action greater

than T do not interfere with the closed orbits characterized above. For this, we need

to make an assumption on the behavior of the Reeb field Rα.

Definition 2.5. We say that the Reeb field Rα has bounded return time if there exists

∆T <∞ such that, for every Reeb trajectory leaving a small tubular neighborhood UT

of NT at p, we have ϕt(p) ∈ UT for some 0 < t < ∆T .

This assumption is automatically satisfied in a number of cases, for example if NT =

M for some T ∈ σ(α), or in the more general examples discussed in chapters 9 and

10. We will also need the following definition adapted from [34].

Definition 2.6. We say that the orbit spaces ST have index positivity if there exist

constants c > 0, c′ such that µ(ST ) > cT + c′ for all T ∈ σ(α).

Then, we have the following result.

Lemma 2.7. Assume that the orbit spaces ST have index positivity, that c1(ξ) = 0

and that the Reeb field has bounded return time. Then there exists λ0 > 0 such that, if

0 < λ < λ0, all period orbits γλ of Rαλ of action greater than T satisfy µCZ(γλ) >
c
2
T .
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In order to prove this lemma, we will need the following result from [34].

Lemma 2.8. (Catenation Lemma) Let Ψ1, Ψ2 be paths of symplectic matrices

satisfying Ψi(0) = I. Then

|µ(Ψ1 ∗Ψ2)− µ(Ψ1)− µ(Ψ2)| ≤ 2n.

The catenation Ψ1 ∗Ψ2 of the paths Ψ1,Ψ2 : [0, 1]→ Sp(2n) is defined as follows :

Ψ1 ∗Ψ2(t) =

{
Ψ1(2t) if 0 ≤ t ≤ 1

2
,

Ψ1(1)Ψ2(2t− 1) if 1
2
≤ t ≤ 1.

Proof of lemma 2.7. First choose a trivialization of TM along the closed orbit γλ of

Rαλ . If γλ is contractible, just take the trivialization induced by any capping disk.

The Conley-Zehnder index is independent of the choice of the capping disk since

c1(ξ) = 0. If γλ is not contractible, choose a homotopy to a standard representative

of its homotopy class, with a prescribed trivialization. Again, the index will not

depend on the choice of the homotopy.

Note that all closed orbits of Rαλ must intersect the neighborhood of NT where α

is perturbed. By the bounded return time assumption, it is clear that closed Reeb

orbits spend most of their time in a small neighborhood UT of NT , when λ > 0 is

sufficiently small. Because of this, we can just concentrate on the contributions to

µCZ due to the portions of trajectories in UT . Indeed, for λ sufficiently small, and

for δ > 0 independent of λ, every fragment γiλ of γλ in UT with length L = δ
λ

is

C1-close to a multiple γi of a non-perturbed orbit in ST . In particular, we have

|µCZ(γiλ)− µCZ(γi)| ≤ 2n. But by assumption, µCZ(γi) > cL+ c′. Hence, µCZ(γiλ) >

cL+ c′ − 2n.

Next, we catenate the fragments γiλ to rebuild the closed orbit γλ. By a repeated use

of the catenation lemma, we obtain µCZ(γλ) > (cL + c′ − 4n)T
L

= cT + (c′ − 4n)λT
δ
.

Hence, if λ is sufficiently small, we can make sure that µCZ(γλ) >
c
2
T .
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2.3 Morse theory on the orbit spaces

In this section, we indicate how to generalize the results of Morse theory to certain

orbifolds, in the specific case of the orbit spaces ST with the functions fT .

Definition 2.9. A Morse function fT on the orbit space ST is called admissible if,

for every critical point γ of fT with minimal period T/k, the unstable manifold of γ

is contained in ST/k.

By construction, the Morse functions fT introduced in the last section are admissible.

This assumption is enough to extend Morse theory to our orbifolds.

Proposition 2.10. If the Morse function fT is admissible on the orbit space ST ,

then the Morse-Witten complex of fT is well-defined and its homology is isomorphic

to the singular homology of ST .

Proof. Let γ ∈ ST be a critical point of fT with minimal period T/k. Pick a uni-

formization chart U for ST , centered at γ. Since fT is admissible, the unstable sphere

of γ is fixed by the group acting on U . Hence, its image in ST is topologically a

sphere, and W u(γ) is a smooth disk embedded in ST .

Moreover, if δ is another critical point of fT with minimal period dividing T/k, then

its stable manifold intersects W u(γ) at smooth points only. Therefore, the moduli

spaces of gradient flow trajectories can be defined as in the smooth case. The stable

and unstable manifolds will intersect transversely after a small perturbation of fT in

the smooth part of ST/k.

Next, we want to show that d2 = 0 and homology is isomorphic to H∗(ST ). But

we have already seen that the unstable manifolds provide a cell decomposition of

ST , so that the Morse-Witten complex of fT coincide with the complex of that cell

decomposition.

Note that the assumption that the unstable manifolds are fixed by the uniformizing

groups is essential. It is easy to construct an example where neither the unstable nor

the stable manifolds of a critical point are fixed, and d2 6= 0.



Chapter 3

Asymptotic behavior

In this chapter, we generalize to any dimension 2n− 1 for M the estimates of Hofer,

Wysocki and Zehnder [16] for the asymptotic behavior of holomorphic maps in a

symplectization when dimM = 3.

3.1 Local coordinates

In order to study the asymptotic behavior of J-holomorphic curves near a submanifold

NT of closed Reeb orbits, we need to use appropriate coordinate charts.

Lemma 3.1. Let (M,α) be a (2n − 1)-dimensional manifold with contact form α

of Morse-Bott type. Let γ be a closed Reeb orbit in Ni ⊂ NT , with minimal period

T/m. Then, there exists a tubular neighborhood V of P = γ(R) and a neighborhood

U ⊂ S1 × R2n−2 of S1 × {0} and a covering map φ : U → V such that

(i) V ∩Ni is invariant under Reeb flow,

(ii) φ|S1×{0} covers P exactly m times,

(iii) the preimage under φ of any periodic orbit γ′ in V ∩Ni consists of one or more

S1 × {p}, where p ∈ Rk ⊂ R2n−2,

(iv) φ∗α = fα0 where f |Rk = T and df |Rk = 0.

15
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Proof. Let π : Ṽ → V be a m-fold covering of V so that all Reeb trajectories in Ṽ

are closed with period T . Let Ñ be the preimage of NT and γ̃ be a lift of γ. Let ∆1

be the distribution in N corresponding to the kernel of dα on ξ ∩ TNT . It is easy to

check that this distribution is integrable. ∆1 is invariant under the Reeb flow, so we

can find local coordinates in Ñ so that the first coordinate, ϑ ∈ R/Z, is a coordinate

along Reeb orbits, and the integral leaves of ∆1 are flat coordinate planes. Note that

the supplementary coordinate planes to the integral leaves are contact manifolds with

1-form α, since the kernel of dα is spanned by just Rα. Therefore, we can apply a

parametric version of Lutz-Martinet theorem and obtain coordinates in Ñ so that α

is standard. Finally, we have to extend these coordinates to Ṽ . Choose vector fields

spanning the normal bundle to Ñ so that α and dα are standard in T Ṽ along Ñ .

Then we obtain coordinates in Ṽ by exponentiating these vector fields using some

metric. Using some Moser-type argument, we change the coordinates away from Ñ

so that α = fα0. By construction, f = T and df = 0 on Ñ .

In the tubular neighborhood U ⊂ S1 × R2n−2, the coordinate for the S1 factor will

be denoted by ϑ and the coordinates for the R2n−2 factor will be denoted by z =

(x1, . . . , xn−1, y1, . . . , yn−1). In these coordinates, α0 = dϑ + x · dy and φ−1(V ∩Ni)

is a linear subspace generated by ϑ and k − 1 components of z. We will denote by

z =

[
zin

zout

]

the splitting between the coordinates zin tangential to Ni and the rest zout of the

components of z.

Fix σ > 0. Let Il = [al, bl] ⊂ R be a sequence of intervals, and let ũl = (al, ul) :

S1 × Il → R×M be a solution of the Cauchy-Riemann equations with finite energy,

such that ul(s, t) ∈ S1 × [−σ,+σ]2n−2 for all s ∈ Il, t ∈ S1.
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Assume that, for every multi-index α,

sup
(s,t)∈Il×S1

|∂αzout(s, t)| → 0,

sup
(s,t)∈Il×S1

|∂α(zin(s, t)− zin(s, 0))| → 0,

sup
(s,t)∈Il×S1

|∂α(ϑ(s, t)− ϑ(s, 0)− t)| → 0,

and for every multi-index α with |α| ≥ 1,

sup
(s,t)∈Il×S1

|∂αzin(s, t)| → 0,

sup
(s,t)∈Il×S1

|∂α(ϑ(s, t)− t)| → 0,

when l→∞.

In the local coordinates of lemma 3.1, the Cauchy-Riemann equations read :

zs +Mzt + (atI − asM)S̃zout = 0,

as − (ϑt + x · yt)f = 0,

at + (ϑs + x · ys)f = 0,

where M is the matrix of the almost complex structure on ξ with respect to basis

(∂x1 , . . . ∂xn−1 ,−x1∂ϑ + ∂y1 , . . .− xn−1∂ϑ + ∂yn−1), and S̃ is a (2n− 2)× (2n− k − 1)

matrix given by

S̃ = − 1

T 2

[
0

∇2
N⊥i
f

]

.

Define A(s) : L2
1(S1,R2n−2) ⊂ L2(S1,R2n−2)→ L2(S1,R2n−2) by

A(s)γ = −Mγt − (atI − asM)S̃γout

= −Mγt − Sγout.
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When ϑ = ϑ(al, 0) + t, a = Ts, zout = 0 and zin = zin(al, 0), we will denote this

operator by Al. These operators are self-adjoint with respect to the inner product

〈u, v〉l =

∫ 1

0

dα0(u,Mv)dt

=

∫ 1

0

〈u,−J0Mlv〉dt

where J0 is the standard complex structure on R2n−2 and 〈·, ·〉 = dα0(·, J0·). The

kernel of Al is independent of l and is generated by constant loops with values in

the tangent space to Ni. Let Pl be the orthonormal projection to kerAl with respect

to 〈·, ·〉l, and Ql = I − Pl. The operator Ql clearly has the following properties :

(Qlz)t = zt, (Qlz)s = Qlzs, (Qlz)out = zout and QlAl = AlQl.

3.2 Convergence to a Reeb orbit

We will first obtain some estimates for the decaying rate of zout. For s ∈ Il, let

gl(s) = 1
2
‖Qlz(s)‖2

l and let βl(s) = (ϑ(al, 0)− ϑ(s, 0), zin(al, 0)− zin(s, 0)).

Lemma 3.2. There exist l0 > 0 and β̄ > 0 such that for l ≥ l0 and s ∈ Il satisfying

|βl(s)| ≤ β̄, we have

g′′l (s) ≥ c2
1gl(s)

where c1 > 0 is a constant independent of l.

Proof. We have

g′′l (s) ≥ 〈Qlzss, Qlz〉l.

Let us compute the right hand side. First

Qlzs = QlA(s)z(s)

= QlAlz +Ql[A(s)− Al]z

= QlAlz +Ql[∆lzt + ∆̂lzout + (∆̃lβl)zt + (∆̄lβl)zout]

= AlQlz +Ql∆l(Qlz)t +Ql∆̂l(Qlz)out +Ql(∆̃lβl)(Qlz)t +Ql(∆̄lβl)(Qlz)out,



3.2. CONVERGENCE TO A REEB ORBIT 19

where

∆l = M(zin(s, 0), 0, ϑ(s, 0) + t)−M,

∆̂l = S(zin(s, 0), 0, ϑ(s, 0) + t)− S,

∆̃lβl = Ml −M(zin(s, 0), 0, ϑ(s, 0) + t),

∆̄lβl = Sl − S(zin(s, 0), 0, ϑ(s, 0) + t).

The expressions ∆l and ∆̂l contain the dependence in zout so that

sup
(s,t)∈θl

|∂α∆l(s, t)| → 0,

sup
(s,t)∈θl

|∂α∆̂l(s, t)| → 0.

On the other hand, the expressions ∆̃l and ∆̄l contain the dependence in zin, therefore

sup
(s,t)∈θl

|∂α∆̃l(s, t)| ≤ cα,

sup
(s,t)∈θl

|∂α∆̄l(s, t)| ≤ cα.

Taking the derivative once more, we obtain

Qlzss = Al(Qlz)s +Ql(
∂

∂s
∆l)(Qlz)t +Ql∆l(Qlzs)t

+Ql(
∂

∂s
∆̂l)(Qlz)out +Ql∆̂((Qlz)out)s

+Ql(
∂

∂s
∆̃l)βl(Qlz)t +Ql(∆̃l

d

ds
βl)(Qlz)t +Ql(∆̃lβl)(Qlzs)t

+Ql(
∂

∂s
∆̄l)βl(Qlz)out +Ql(∆̄l

d

ds
βl)(Qlz)out +Ql(∆̄lβl)(Qlzs)out.
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Taking the inner product with Qlz, we obtain

〈Qlzss, Qlz〉l = 〈Qlzs, Al(Qlz)〉l + 〈( ∂
∂s

∆l)(Qlz)t, Qlz〉l + 〈∆l(Qlzs)t, Qlz〉l

+〈( ∂
∂s

∆̂l)(Qlz)out, Qlz〉l + 〈∆̂((Qlz)out)s, Qlz〉l

+〈( ∂
∂s

∆̃l)βl(Qlz)t, Qlz〉l + 〈(∆̃l

d

ds
βl)(Qlz)t, Qlz〉l

+〈(∆̃lβl)(Qlzs)t, Qlz〉l

+〈( ∂
∂s

∆̄l)βl(Qlz)out, Qlz〉l + 〈(∆̄l

d

ds
βl)(Qlz)out, Qlz〉l

+〈(∆̄lβl)(Qlzs)out, Qlz〉l.

Let us denote the 11 terms of the right hand side by T1, . . . , T11.

Substitute Qlzs by its value in T1 :

T1 = ‖AlQlz‖2
l + 〈Ql∆lQlzt, AlQlz〉l + 〈Ql∆̂l(Qlz)out, AlQlz〉l

+〈Ql(∆̃lβl)Qlzt, AlQlz〉l + 〈Ql(∆̄lβl)(Qlz)out, AlQlz〉l.

Use integration by parts in T3 and T8 :

T3 = 〈∆l(Qlzs)t, Qlz〉l

=

∫ 1

0

〈(Qlzs)t,−∆∗l J0MQlz〉dt

= −
∫ 1

0

〈Qlzs, (−
∂

∂t
∆∗l J0M)Qlz〉dt−

∫ 1

0

〈Qlzs,−∆∗l J0MQlzt〉dt

and similarly

T8 = −
∫ 1

0

〈Qlzs, (−
∂

∂t
(∆̃lβl)J0M)Qlz〉dt−

∫ 1

0

〈Qlzs,−(∆̃lβl)J0MQlzt〉dt.

Applying Cauchy-Schwarz inequality to all terms Ti and taking into account the
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asymptotic behavior of ∆l, ∆̂l and of ∆̃l, ∆̄l, we obtain

T1 ≥ ‖AlQlz‖2
l − ε(l)‖Qlzt‖l‖AlQlz‖l − ε(l)‖Qlz‖l‖AlQlz‖l

−c|βl|‖Qlzt‖l‖AlQlz‖l − c|βl|‖Qlz‖l‖AlQlz‖l,

T2 ≥ −ε(l)‖Qlzt‖l‖Qlz‖l,

T3 ≥ −ε(l)‖Qlzs‖l‖Qlz‖l − ε(l)‖Qlzs‖l‖Qlzt‖l,

T4 ≥ −ε(l)‖Qlz‖2
l ,

T5 ≥ −ε(l)‖Qlzs‖l‖Qlz‖l,

T6 ≥ −c|βl|‖Qlzt‖l‖Qlz‖l,

T7 ≥ −ε(l)‖Qlzt‖l‖Qlz‖l,

T8 ≥ −c|βl|‖Qlzs‖l‖Qlz‖l − c|βl|‖Qlzs‖l‖Qlzt‖l,

T9 ≥ −c|βl|‖Qlz‖2
l ,

T10 ≥ −ε(l)‖Qlz‖2
l ,

T11 ≥ −c|βl|‖Qlzs‖l‖Qlz‖l,

where ε(l) denotes a positive constant converging to zero as l→∞.

Using the expression for Qlzs we obtain

‖Qlzs‖l ≤ ‖AlQlz‖l + ε(l)‖Qlzt‖l + ε(l)‖Qlz‖l + c|βl|‖Qlzt‖l + c|βl|‖Qlz‖l.

On the other hand, it is clear from the definition of Ql that

‖AlQlz‖l ≥ c1(‖(Qlz)t‖2
l + ‖Qlz‖2

l )
1
2 .

Using these 2 inequalities to eliminate Qlz, Qlzs and Qlzt from the estimates for the

Ti, we end up with

〈Qlzss, Qlz〉l ≥ (1− ε(l)− c|βl|)‖AlQlz‖2
l .

Therefore, if we choose l0 sufficiently large and β̄ sufficiently small, then for l > l0



22 CHAPTER 3. ASYMPTOTIC BEHAVIOR

and |βl(s)| < β̄ we will have

〈Qlz
′′(s), Qlz(s)〉l ≥

1

2
‖AlQlz(s)‖2

l .

From this we deduce that

g′′l (s) ≥ 〈Qlz
′′(s), Qlz(s)〉l

≥ 1

2
‖AlQlz(s)‖2

l

≥ c2
1

2
‖Qlz‖2

l = c2
1gl(s).

Define sl = sup{s ∈ Il | |βl(s′)| ≤ β̄ for all s′ ∈ [al, s]}. Then from lemma 3.2, we

deduce that

gl(s) ≤ max(gl(al), gl(sl))
cosh(c1(s− al+sl

2
))

cosh(c1
al−sl

2
)

for s ∈ [al, sl].

Now, let us derive some estimates for zin. Let e be a unit vector in R2n−2 with

eout = 0.

Lemma 3.3. For l ≥ l0 and s ∈ [al, sl], we have

|〈z(s), e〉l − 〈z(al), e〉l| ≤
4d

c1

max(‖Qlz(al)‖l, ‖Qlz(sl)‖l).

Proof. The inner product of the Cauchy-Riemann equation with e gives

d

ds
〈z, e〉l + 〈Mzt, e〉l + 〈Szout, e〉l = 0.

But we have

〈Mzt, e〉l =

∫ 1

0

〈M(Qlz)t,−J0Mc,de〉dt

=

∫ 1

0

〈Qlz,
d

dt
(M∗J0Mc,d)e〉dt
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so that

|〈Mzt, e〉l| ≤ d1‖Qlz‖l

and similarly

〈S(Qlz)out, e〉l =

∫ 1

0

〈(Qlz)out, S
∗(−J0)Mc,de〉dt

so that

|〈Szout, e〉l| ≤ d2‖Qlz‖l.

Therefore

〈z(s), e〉l − 〈z(al), e〉l ≤ d

∫ s

Rl

‖Qlz(σ)‖ldσ

for s ∈ Il. By lemma 3.2, we have

‖Qlz(σ)‖l ≤ max(Qlz(al), Qlz(sl))

√
cosh(c1(s− al+sl

2
))

cosh(c1
al−sl

2
)

for σ ∈ [al, sl]. Hence, using the fact that
√

coshu <
√

2 cosh u
2

and that
√

coshu >
√

2 sinh u
2
, we obtain

|〈z(s), e〉l − 〈z(al), e〉l| ≤
4d

c1

max(‖Qlz(al)‖l, ‖Qlz(sl)‖l)
√

2
sinh(c1

al−sl
4

)
√

cosh(c1
al−sl

2
)

≤ 4d

c1

max(‖Qlz(al)‖l, ‖Qlz(sl)‖l).

Combining our estimates, we can now determine the behavior of a holomorphic map

near puncture at infinity.

Proposition 3.4. Let ũ = (a, u) : R+×S1 → (R×M,J) be a holomorphic map with

E(ũ) <∞. Suppose that the image of ũ is unbounded in R×M . Then there exists a

periodic Reeb orbit γ in M such that lims→∞ u(s, t) = γ(Tt) and lims→∞ a(s, t) = ±∞
in C∞(S1).
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Proof. By standard results [13], we can find a sequence Rl →∞ such that

lim
l→∞

u(Rl, t) = γ(Tt),

lim
l→∞

a(Rl, t) = ±∞

for some periodic Reeb orbit γ of period T .

Let δl > 0 be the largest number such that u(s, t) ∈ S1 × [−σ,+σ]2n−2 for all s ∈
[Rl, Rl + δl], t ∈ S1. Then, all the above results clearly apply to Il = [Rl, Rl + δl] and

ũl = ũ|Il .
By construction, |〈z(Rl), e〉l| → 0 and ‖Qlz(Rl)‖l → 0. On the other hand, we can

extract a subsequence so that u(sl, t) converges to a closed Reeb orbit γ′. Therefore,

‖Qlz(sl)‖l → 0. Using lemmas 3.2 and 3.3, we then have

sup
s∈[Rl,sl]

‖z(s)‖l → 0.

From this we can deduce the pointwise estimate

sup
(s,t)∈[Rl,sl]×S1

|zin(s, t)| → 0.

Indeed, arguing by contradiction, if (s′l, t
′
l) is such that |zin(s′l, t

′
l)| ≥ δ with s′l ∈

[Rl, sl], then |zin(s′l, t)| ≥ δ
2

for all t ∈ S1, since sup(s,t)∈Il×S1 |∂z(s, t)| → 0. But then

‖zin(s′l)‖ ≥ C δ
2
, contradicting the uniform convergence obtained above.

On the other hand, let us prove that we have

sup
s∈[Rl,sl]

|βl(s)| → 0.

We already know that this is true for zin, so we just have to prove that

sup
(s,t)∈[Rl,sl]×S1

|ϑ(s, t)− ϑ(Rl, t)| → 0.
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In order to do this, consider the Cauchy-Riemann equations for a and ϑ :

{
as − (ϑt + xyt)f = 0,

at + (ϑs + xys)f = 0,

where f = T + bzout. This can be rewritten as

{
as − Tϑt = Txyt + bzout(ϑt + xyt),

at + Tϑs = −Txys − bzout(ϑs + xys).

The right hand side is bounded in norm by

C max(‖Qlz(Rl)‖, ‖Qlz(sl)‖)
cosh(c1(s− Rl+sl

2
))

cosh(c1
Rl−sl

2
)

.

Indeed, ‖zout‖l ≤ C ′‖Qlz‖l, ‖zt‖l ≤ C ′′‖Qlzt‖l and zs can be expressed in terms of

zt and zout using the Cauchy-Riemann equation. Therefore, integrating the second

equation over t, we obtain

∫ 1

0

ϑsdt ≤ C max(‖Qlz(Rl)‖, ‖Qlz(sl)‖)
cosh(c1(s− Rl+sl

2
))

cosh(c1
Rl−sl

2
)

.

Integrating over s, we get

∫ 1

0

|ϑ(s, τ)− ϑ(Rl, τ)|dτ ≤ C ′max(‖Qlz(Rl)‖, ‖Qlz(sl)‖).

We already know that ϑt − 1 → 0 uniformly, so the above estimate implies uniform

convergence and not just L1 convergence.

Therefore

sup
(s,t)∈θl×S1

|z(s, t)| → 0

because for l sufficiently large, sl = Rl + δl since βl will always be smaller than β̄.

Therefore, δl = +∞ for l sufficiently large, and u converges uniformly to γ on the

corresponding half-cylinder.
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3.3 Exponential decay

Knowing that the holomorphic cylinder converges to a given Reeb orbit, we can revisit

our estimates from propositions 3.2 and 3.3, in order to get finer information about

the decaying rate of z.

Proposition 3.5. There exists r > 0 such that, for every multi-index I there is a

constant cI so that

|∂Iz(s, t)| ≤ cIe
−rs

for all s ≥ s0.

Proof. By proposition 3.4, we can assume that u(s, t) ∈ V for s sufficiently large. Let

M∞(t) = lims→∞M(s, t) and S∞(t) = lims→∞ S(s, t). Then

zs = A(s)z

= A∞z + ∆̄zt + ∆zout

where ∆ = S∞ − S and ∆̄ = M∞ −M . Applying the projection Q corresponding to

the limiting Reeb orbit, we obtain

ws = A∞w +Q∆̄wt +Q∆wout

where w = Qz. Let W be the vector obtained by catenating ( ∂
∂s

)a(A∞)bw for 0 ≤
a, b ≤ k. Then W satisfy an equation of the same type :

Ws = A∞W +Q∆̃Wt +Q∆̂Wout

where A∞ = diag(A∞, . . . , A∞) and Q = diag(Q, . . . , Q). Therefore, using the same

estimates as in proposition 3.2, we obtain

‖W (s)‖ ≤ e−r(s−s0)‖W (s0)‖.
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Next we estimate Pz and its derivatives. Applying P to the Cauchy-Riemann equa-

tion, we get

(Pz)s = P ∆̄(Qz)t + P∆(Qz)out.

We can apply ( ∂
∂s

)a to this equation, and express the derivatives of Pz in terms

of quantities converging exponentially to zero. Moreover, by integrating, Pz itself

converges exponentially to zero (we already know its limit is zero, so there is no

constant term).

Similarly, we obtain decaying rates for a and ϑ.

Proposition 3.6. For the same r as in proposition 3.5, there is a constant c′I for

every multi-index I so that

|∂I(ϑ(s, t)− t− ϑ0)| ≤ c′Ie
−rs,

|∂I(a(s, t)− Ts− a0)| ≤ c′Ie
−rs.

Proof. The proof is identical to the original argument of Hofer, Wysocki and Zehnder

[16], since this is an estimate in 2 dimensions, independently of dimM . Alternatively,

we can use lemma 4.2 in [15].

3.4 Energy and area

The results of the last sections show the importance of the Hofer energy. However, it

is sometimes more natural to work with the area of a J-holomorphic map.

Definition 3.7. The area of a holomorphic map ũ : (Σ, j) → (R ×M,J) is defined

by A(f) =
∫

Σ
f ∗dα.

Note that the area is a nonnegative quantity, since dα is positive on complex lines in

the contact distribution.

The next lemma describes the relationship between finiteness of area and finiteness

of energy.
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Lemma 3.8. Let ũ : (Σ, j)→ (R×M,J) be a holomorphic map. Then the following

are equivalent :

(i) A(ũ) <∞ and ũ is a proper map,

(ii) E(ũ) <∞ and Σ has no punctures with a bounded as in lemma 2.2.

Proof. (i) ⇒ (ii) By properness of ũ, each puncture of Σ can be called positive

or negative, according to the end of R × M that it approaches. In a neighbor-

hood U of a puncture x±i , let z be a complex coordinate vanishing at x±i . Let

Dr(x
±
i ) = {q ∈ U | |z(q)| ≤ r} and Cr(x

±
i ) = ∓∂Dr(x

±
i ). Consider

∫
Cr(x

±
i )
u∗α as

a function of r. It is an increasing function of r∓1, since dα ≥ 0 on complex lines.

On the other hand, it is a nonnegative function for a negative puncture x−i , because
∫
Cr(x

−
i )
u∗α = d

dr

∫
Cr(x

−
i )
a by holomorphicity, and the latter is nonnegative by proper-

ness of ũ. Hence, this is a decreasing function of 1
r

bounded below and it has a

nonnegative limit for r → 0, for all negative punctures.

Consider now a positive puncture x+
i ; by Stokes theorem,

∑s+

i=1

∫
Cr(x

+
i )
u∗α ≤ A(ũ) +

∑s−

i=1

∫
Cr(x

−
i )
u∗α < C < ∞. Hence, we obtain an increasing function of 1

r
bounded

above and it has a finite limit for r → 0, for all positive punctures. Now, let

φ ∈ C and let φn ∈ C such that φn ◦ ũ is constant in D 1
n
(x±i ) for all punctures

x±i . Such functions exist, by properness of ũ. Moreover, we can choose φn so that

‖φ − φn‖C1 < εn, with εn → 0 for n → ∞. By Stokes theorem,
∫

Σ
ũ∗d(φnα) =

limr→0

∑s+

i=1

∫
Cr(x

+
i )
u∗α < C <∞. Moreover, this integral is uniformly convergent in

n. Hence,
∫

Σ
ũ∗d(φα) = limn→∞

∫
Σ
ũ∗d(φnα) < C and E(ũ) < C.

(ii) ⇒ (i) Take φ = 1 in the expression for E(ũ) to obtain A(ũ) ≤ E(ũ) <∞. More-

over, ũ has only positive and negative punctures by assumption. Therefore, for every

compact set K in R ×M , there exists, by proposition 3.4, a neighborhood of each

puncture such that its image under ũ is disjoint from K. Hence, ũ−1(K) is closed in

Σ and away from the punctures, so it is compact.

In that case, the area and energy of a holomorphic map are easily computable using

Stokes theorem.
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Lemma 3.9. Under the conditions of lemma 3.8, denote by γ+
1 , . . . , γ

+
s+
, γ−1 , . . . , γ

−
s−

the periodic Reeb orbits of M asymptotic to the positive and negative punctures of Σ.

Then

E(ũ) =
s+∑

j=1

A(γ+
j )

and

A(ũ) =
s+∑

j=1

A(γ+
j )−

s−∑

j=1

A(γ+
j )

where A(γ) =
∫
γ
α is the action functional.



Chapter 4

Compactness

4.1 Fixed asymptotics

4.1.1 Convergence of holomorphic maps

We first introduce in a more systematic way the types of holomorphic maps we will

consider for the compactness theorem.

Definition 4.1. A level k holomorphic map (Σ, j, ũ) to (R ×M,J) consists of the

following data :

(i) A labeling of the connected components of Σ∗ = Σ \ {nodes} by integers in

{1, . . . , k}, called levels, such that two components sharing a node have levels

differing by at most 1. We denote by Σi the union of connected components of

Σ∗ with level i.

(ii) Holomorphic maps ũi : (Σi, j)→ (R×M,J) with E(ũi) <∞, i = 1, . . . , k, such

that each node shared by Σi and Σi+1, is a positive puncture for ũi, asymptotic

to some periodic Reeb orbit γ and is a negative puncture for ũi+1, asymptotic

to the same periodic Reeb orbit γ, and such that ũi extends continuously across

each node within Σi.

The area of a level k holomorphic map (Σ, j, ũ) is naturally defined by A(ũ) =
∑k

i=1 A(ũi).

30
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Similarly as in the setting of Gromov-Witten theory, there is a notion of stability for

holomorphic maps.

Definition 4.2. A level k holomorphic map (Σ, j, ũ) to (R ×M,J) is stable if, for

every i = 1, . . . , k, either A(ũi) > 0 or Σi has a negative Euler characteristic (after

removing marked points).

We now define a notion of convergence for a sequence of stable level k holomorphic

maps.

Definition 4.3. A sequence of stable level k holomorphic maps (Σn, jn, ũn) converges

to a stable level k′ (k′ ≥ k) holomorphic map (Σ, j, ũ) if there exist a sequence of maps

φn : Σn → Σ and sequences t
(i)
n ∈ R (i = 1, . . . , k′), such that

(i) the maps φn are diffeomorphisms, except that they may collapse a circle in Σn

to a node in Σ, and φn∗jn → j away from the nodes of Σ.

(ii) the sequences of maps (t
(i)
n +an◦φ−1

n , un◦φ−1
n ) : Σi → R×M converge in the C∞

topology to ũi : Σi → R×M on every compact subset of Σi, for i = 1, . . . , k′.

(iii) for each node p of Σ between adjacent levels, consider a sequence of curves

γn : (−ε,+ε) → Σn intersecting φ−1
n (p) transversally at t = 0 and satisfying

φn ◦ γn = γ for all n. Then limt→0+ u(γ(t)) = limt→0− u(γ(t)).

These conditions automatically imply that limn→∞A(ũn) = A(ũ).

4.1.2 Compactness theorem

We will denote the minimal distance between two distinct values of the action spec-

trum by ~ > 0.

Theorem 4.4. Let (Σn, jn, ũn) be a sequence of stable level k holomorphic maps to

(R×M,J) of same genus such that E(ũn) < C. Then there exists a subsequence that

converges to a stable level k′ (k′ ≥ k) holomorphic map (Σ, j, ũ) to (R×M,J).

In order to prove this theorem, we need the following lemmas.
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Lemma 4.5. (Gromov-Schwarz) Let f : D2(1)→ W be a pseudoholomorphic disk

in an almost complex manifold, such that J is tamed by an exact symplectic form. If

the image of f is contained in a compact set K ⊂W , then

‖∇kf(x)‖ ≤ C(K, k) for all x ∈ D2(
1

2
).

Lemma 4.6. (Monotonicity) There are constants ε0 and c0 such that for every

ε ≤ ε0 and for every holomorphic curve S, if x ∈ S is such that S∩B(x, ε) is compact

with its boundary contained in ∂B(x, ε), then

∫

S∩B(x,ε)

ω ≥ π

1 + c0ε
ε2.

Lemma 4.7. (Hofer) Let (X, d) be a complete metric space, f : X → R be a non-

negative continuous function, x ∈ X, and δ > 0. Then there exist y ∈ X and a

positive number ε ≤ δ such that

d(x, y) < 2δ, sup
Bε(y)

f ≤ 2f(y), εf(y) ≥ δf(x).

Proofs of Gromov-Schwarz lemma and the monotonicity lemma can be found in [28].

A proof of Hofer’s lemma is contained in [14].

Proof of theorem 4.4. First note that it is enough to consider k = 1, because we can

handle each level separately. Next, after extracting a subsequence, we can assume

that the maps ũn are asymptotic to the same Reeb orbits. Indeed, the energy bound

and the discreteness of the action spectrum guarantee that there are finitely many

possibilities for the asymptotics of ũn. In order to prove the theorem for this reduced

case, we proceed in 5 steps.

Step 1. Riemann surfaces.

Consider the sequence of Riemann surfaces (Σn, jn). If Σn is a plane or a cylinder,

choose additional marked points, so that the Euler characteristic is negative. Then,

we have a unique hyperbolic metric of curvature -1 on each Σn, and we can extract
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a subsequence, such that (Σn, jn) converges to a nodal curve (C, j). More precisely,

there exist maps φn : Σn → C that collapse a circle above some of the nodes of C,

but otherwise are diffeomorphisms, such that φn∗jn → j away from the nodes of C.

Step 2. Convergence away from the nodes.

Denote by Ci (i = 1, . . . ,m) the connected components of C∗ = C\{nodes}. Let ε > 0

and denote the ε−thick part of Ci by Cε
i . On Cε

i , the maps φn are diffeomorphisms,

and we can define ũεi,n = (aεi,n, u
ε
i,n) : Cε

i → R×M by ũεi,n = ũn ◦ φ−1
n .

Lemma 4.8. There exist sequences y
(1)
n , . . . , y

(2l)
n of points in Cε

i , where l is bounded

by energy, so that ‖∇ũεi,n‖ is uniformly bounded on Cε
i for the Poincaré metric on

Ci \ {y(1)
n , . . . , y

(2l)
n }.

Proof. Let x ∈ Cε
i , and assume that for every open neighborhood U of x, the diameter

of aεi,n(U) is unbounded when n→∞. Therefore, there exists a sequence xn → x such

that ‖∇ũεi,n(xn)‖ → ∞. Now, let δn > 0 such that δn → 0 and δn‖∇ũεi,n(xn)‖ → ∞.

Applying Hofer’s lemma, we obtain new sequences yn ∈ Cε
i and 0 < εn ≤ δn such that

yn → x and

sup
Bεn (yn)

‖∇ũεi,n‖ ≤ 2‖∇ũεi,n(yn)‖, εn‖∇ũεi,n(yn)‖ → ∞.

Denote cn = ‖∇ũεi,n(yn)‖ and Rn = εncn. Consider the rescaled maps ṽxn(z) =

ũεi,n(yn + c−1
n z). In this definition, we used a fixed complex coordinate on Cε

i near x.

This sequence satisfies the following properties :

sup
BRn

‖∇ṽxn‖ ≤ 2, Rn →∞

and
∫
BRn

(vxn)∗dα is uniformly bounded by the energy of ũn. Now, by Ascoli-Arzela,

we can extract a converging subsequence and we obtain a finite energy plane ṽx. By

proposition 3.4, we deduce that ṽx is converging to a Reeb orbit γ for large radius.

Hence, the energy of ṽx is equal to the action of γ, so it is bounded below by ~. Since

the energy of ũn is uniformly bounded, and such a point x requires a quantum ~ of
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energy, there are only finitely many such points : x1, . . . , xl.

Add two marked points on Σn for each of these points xi : y
(2i−1)
n = φ−1

n (yn) and

y
(2i)
n = φ−1

n (yn + c−1
n ). Since these 2 sequences converge to the same point, the new

limiting curve C ′ is going to have an extra spherical component, with two marked

points on it. So, considering the ε-thick parts of the components of C ′, we will have

an extra component corresponding to the rescaled map ṽx, and the component C ′εi

that contained x will have a deleted disk around x.

Now consider x 6= xi (i = 1, . . . , l). There exists a neighborhood Ux of x such that

the diameter of aεi,n(Ux) is bounded when n → ∞. In this case, we can directly

apply Gromov-Schwarz lemma. Indeed, the assumption on aεi,n implies that, after

translating the map ũεi,n, the image of Ux will be contained in a set of the form I×M
where I ⊂ R is a fixed, bounded interval. As the symplectic form is exact on R×M ,

the lemma applies after replacing Ux by a smaller disk centered at x. Therefore,

we obtain uniform gradient bounds in a neighborhood Ux of each point x of Cε
i .

Extracting a finite cover out of {Ux}, we get a finite uniform bound for ‖∇ũεi,n‖ on

Cε
i .

By a repeated use of the Ascoli-Arzela theorem, we can extract a subsequence con-

verging uniformly on Cε
i in the Cr norm, for r as large as we want. Taking the

diagonal sequence, we obtain smooth convergence to a map ũεi . As ε > 0 is arbitrary,

we actually obtain smooth, uniform convergence to ũi on each compact subset of Ci.

Step 3. Convergence in the thin part.

We have to understand the asymptotic behavior of the map ũ on Ci near a node.

First, if a is bounded near the node, then, by lemma 2.2, the map ũ extends contin-

uously on Ci across the node. On the other hand, if a is unbounded near the node,

the behavior of ũ is described by proposition 3.4 : there exists a closed Reeb orbit γ

such that the map ũ is asymptotic to γ near the node.

Then, given a node of C adjacent to the components Ci and Cj, the asymptotic behav-

ior of ũ on the 2 components might be different. For example, ũ could be asymptotic

to different Reeb orbits, or be asymptotic to a Reeb orbit on Ci and be mapped at

finite distance on Cj, or be mapped at finite distance but to different points.
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To each node of C, we can associate two objects γ+ and γ−, one for each component

of C adjacent to the node. If the node is adjacent to only one component Ci, then

we define the second object to be the asymptotic Reeb orbit of the maps ũn at that

node. When γ± is a point, we define its action A(γ±) to be zero.

Lemma 4.9. There exist sequences p
(1)
n , . . . , p

(r)
n of marked points on Σn, where r

is bounded by energy, so that for every node in the limiting stable map (C, j, ũ),

T+ = A(γ+) coincides with T− = A(γ−).

Proof. We will work in cylindrical coordinates in the thin part of Σn. If the injectivity

radius is sufficiently small, we know that the curve contains a cylindrical model with

coordinates (s, t), where t ∈ R/Z, s ∈ In ⊂ R, z = s + it is a complex coordinate,

and {s = 0} is the shortest closed geodesic in the thin part.

We can translate the s coordinate in such a way that
∫
{s=0} α = T+− ~. Indeed, this

integral is an increasing function of s, is very close to T+ for s large and very close

to T− for s small. Now, for n → ∞, we have In → R since the injectivity radius

converges to zero. Hence, we obtain a sequence of holomorphic curves on compact

subsets of the cylinder. Add a marked point p
(i)
n on Sn at the coordinates s = 0, t = 0.

This will create an additional component for C∗, and we can obtain gradient bounds

on it using lemma 4.8. It is clear that the Reeb orbit (or point) associated to the

node for s → +∞ has action T+, by definition of ~, and that the Reeb orbit (or

point) associated to the node for s → −∞ has action T ∈ (T+ − ~, T−]. Hence, the

number of new components we can generate in this way is finite, so that we end up

in a situation where T+ = T− for every node of C.

Corollary 4.10. If T+ = T− = 0, then ũ extends continuously to a neighborhood of

the node in C.

Proof. The image of a node belonging to 2 components Ci and Cj of C consists a

priori of 2 points p+ and p−. Assume that p+ 6= p−. Extract from Σn a cylinder

In × S1 so that the images of the boundary circles lie in small neighborhoods of p+

and p− respectively. Let pn be a point in the middle of the cylinder. Apply the

monotonicity lemma with a ball centered at pn. On one hand, the energy will then be
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bounded away from zero, but on the other hand, the area
∫
C
d(etα) converges to zero

because
∫
{s=s0} α→ 0 for all s0. Hence, we obtain a contradiction, and p+ = p−.

Step 4. Asymptotic convergence.

When T+ = T− > 0, we have to check that the Reeb orbits γ+ and γ− discussed in

the previous step are geometrically the same.

The convergence of (Σn, jn) to (C, j) specifies, for each node in C, a limiting angle

allowing us to identify the tangent spaces on each component of C (modulo scaling).

Therefore, given coordinates (s, t) on the 2 cylindral ends near a node, if makes sense

to identify the t coordinates.

Lemma 4.11. If T+ = T− > 0, then

lim
s→−∞

u+(s, t) = lim
s→+∞

u−(s, t).

Proof. Let us first prove that the limiting Reeb orbits belong to the same path com-

ponent of orbit space. By continuity of un we can find a point pn in the thin part

of Σn that is mapped to a point away from a fixed neighborhood of the spaces of

orbits with period T+ = T−. Translate the coordinates (s, t) so that pn corresponds

to s = 0, t = 0. The area of the corresponding sequence of curves converges to zero,

since
∫
{s=s0} α becomes independent of s0. Then the sequence converges to a cylinder

(without bubble, since no area is available) with zero area, so it is a vertical cylinder

over a Reeb orbit of period T+ = T−. But this is a contradiction with the choice of

the points pn. Hence, the orbits γ+ and γ− belong to the same path component of

the orbit space.

Next, let us check that the orbits γ+ and γ− agree. By contradiction, assume that

γ+ 6= γ−. Use a local chart around γ+ as in lemma 3.1, with zin = 0 along γ+. Then,

for n sufficiently large, we can extract from (Σn, jn) a finite cylinder [an, bn] × S1 so

that zin(an, 0)→ 0 and bn is the largest number satisfying u(s, t) ∈ S1× [−σ,+σ]2n−2

for all s ∈ [an, bn], t ∈ S1. Reduce σ > 0 if necessary to make sure that γ− is not

contained in S1 × [−σ,+σ]2n−2. Since T+ = T−, the energy of these cylinders con-

verges to zero, and for every cn ∈ [an, bn], the maps ũn(cn + s, t) converge uniformly
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with their derivatives to a vertical cylinder over a closed Reeb orbit. Therefore, we

can apply to this situation the estimates of lemmas 3.2 and 3.3. Then, proceeding as

in proposition 3.4, it follows that

sup
s∈[an,sn]

|βn(s)| → 0.

But this would imply that, for n large, sn = bn = +∞, which is absurd.

Finally, note that the parametrizations agree as well. Indeed, suppose that

lim
s→−∞

u+(s, t) = lim
s→+∞

u−(s, t+ δ)

where δ 6= 0. Then, we can repeat the above argument with β̄ much smaller than |δ|
and obtain a contradiction as well.

Step 5. Level structure.

Let us introduce an ordering on the set of components of C∗. For two components

Ci and Cj, pick two points xi ∈ Ci and xj ∈ Cj. Then, we will say that Ci ≤ Cj

if limn→∞ an(xi) − an(xj) < ∞. If Ci ≤ Cj and Cj ≤ Ci, then we will say that

Ci ∼ Cj. Clearly, this ordering is independent of the choice of points xi and xj.

Now, we can label the components Ci with their level number as follows : the set of

minimal components for the above ordering will be of level 1. Then, after removing

these components, the set of minimal components will be of level 2, etc, . . . . Clearly,

this labelling is constant across nodes that are mapped at finite distance. However,

it may happen that the level number jumps by an integer N > 1 across a node at

infinity. In that case, we have to insert N − 1 additional components between these

two components, each of them a vertical cylinder over the Reeb orbit corresponding

to the above node. Finally, remove the marked points that we added in step 1 of the

proof. If level i becomes unstable because of this, we remove it and decrease by 1

the labeling of higher levels. Hence, we obtain a level structure that satisfies all the

necessary conditions for a stable level k′ holomorphic map in a symplectization.
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4.2 Degenerating the asymptotics

The above compactness results are valid for a sequence Jn of almost complex struc-

tures on the symplectic cobordism (W,ω) such that Jn → J and Jn is independent of

n near the ends of the cobordism.

However, it would be very useful to extend our compactness results to the case in

which the complex structure on the contact distribution ξ near the boundary is fixed,

but the Reeb dynamics (and hence Jn) vary.

In particular, we wish to consider the case of αn = (1 + λnf̄T )α, where α is a contact

form of Morse-Bott type, αn has nondegenerate periodic Reeb orbits, f̄T descends to

a Morse function fT on each orbit space ST for α, and λn → 0. Moreover, we assume

that J is invariant under the Reeb flow along the submanifolds NT .

4.2.1 Convergence of generalized holomorphic maps

For degenerating asymptotics, it turns out that we need to generalize the concept of

level k holomorphic curves in order to obtain a limit. First, we need the following

definition when k = 1.

Definition 4.12. A generalized level 1 holomorphic map ũ from (Σ, j) to (R×M,J)

with Morse functions fT consists of the following data :

(i) A labeling of the connected components of Σ∗ = Σ \ {nodes} by integers in

{1, . . . , l}, called sublevels, such that two components sharing a node have sub-

levels differing by at most 1. We denote by Σi the union of connected components

of sublevel i.

(ii) Positive numbers ti, i = 1, . . . , l − 1.

(iii) Holomorphic maps ũi : (Σi, j)→ (R×M,J) with E(ũi) <∞, i = 1, . . . , l, such

that

• each node shared by Σi and Σi+1, is a positive puncture for ũi, asymptotic

to some periodic Reeb orbit γ ∈ ST and is a negative puncture for ũi+1,



4.2. DEGENERATING THE ASYMPTOTICS 39

asymptotic to a periodic Reeb orbit δ ∈ ST , such that ϕfTti (γ) = δ, where

ϕfTt is the gradient flow of fT .

• ũi extends continuously across each node within Σi.

We say that the positive asymptotics of ũ are the critical points of fT obtained by

following ∇fT from the periodic Reeb orbits corresponding to the positive punctures

of ũl. Similarly, the negative asymptotics of ũ are the critical points of fT obtained by

following−∇fT from the periodic Reeb orbits corresponding to the negative punctures

of ũ1. Next, we extend the definition to level k as in section 4.1.1.

Definition 4.13. A generalized level k holomorphic map ũ from (Σ, j) to (R×M,J)

with Morse functions fT consists of k generalized level 1 holomorphic maps ũi, i =

1, . . . , k, such that the positive asymptotics of ũi coincide with the negative asymp-

totics of ũi+1.

We now extend the definition of stability to generalized holomorphic maps.

Definition 4.14. A generalized level k holomorphic map (Σ, j, ũ) to (R ×M,J) is

stable if, for every i = 1, . . . , k, either A(ũi) > 0, or ũi contains at least one non-

constant gradient trajectory of fT , or Σi has a negative Euler characteristic (after

removing marked points).

We now define a notion of convergence for a sequence of stable generalized level k

holomorphic maps.

Definition 4.15. A sequence of stable level k Jn-holomorphic maps (Σn, jn, ũn) con-

verges to a stable generalized level k′ (k′ ≥ k) J-holomorphic map (Σ, j, ũ) if there exist

a sequence of maps φn : Σn → Σ and sequences t
(i,j)
n ∈ R (i = 1, . . . , k′, j = 1, . . . , li),

where li is the number of sublevels in level i, such that

(i) the maps φn are diffeomorphisms, except that they may collapse a circle in Σn

to a node in Σ, and φn∗jn → j away from the nodes of Σ.

(ii) the sequences of maps (t
(i,j)
n + an ◦ φ−1

n , un ◦ φ−1
n ) : Σi,j → R ×M converge in

the C∞ topology to ũi,j : Σi → R × M on every compact subset of Σi,j, for

i = 1, . . . , k′, j = 1, . . . , li.
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(iii) for each node p of Σ between adjacent (sub)levels, consider a sequence of curves

γn : (−ε,+ε) → Σn intersecting φ−1
n (p) transversally at t = 0 and satisfying

φn ◦ γn = γ for all n. Then limt→0+ u(γ(t)) and limt→0− u(γ(t)) lie on the same

gradient trajectory of f̄T in NT .

4.2.2 Compactness theorem

The goal of this section is to prove the following compactness theorem.

Proposition 4.16. Let ũn : (Σn, jn) → (R ×M,Jλn) be a sequence of holomorphic

curves of fixed genus and asymptotics, such that limn→∞ λn = 0 and E(ũn) < C.

Then there exists a subsequence that converges to a generalized holomorphic map ũ

with Morse functions fT .

Clearly, the arguments of section 4.1 are enough to obtain convergence of each sub-

level. Moreover, the study of the asymptotics in section 4.1 show that, in each

sublevel, the holomorphic maps converge to closed Reeb orbits for contact form α.

We just need to show that these orbits are related by the gradient flow of f̄T for any

pair of adjacent levels.

We therefore need to modify our arguments in the study of the asymptotics. Let

us write down the Cauchy-Riemann equations in the local coordinates provided by

lemma 3.1. The difference with the equations of the last chapter lies in the fact that

Jl
∂
∂t

= Rαl = Rα +Xl. We obtain

zs +Mzt +
1

(1 + λlf̄)
Szout +

λl

f(1 + λlf̄)2
(atI − asM)v = 0,

as − (ϑt + x · yt)f = 0,

at + (ϑs + x · ys)f = 0,

where

v =

[
f̄y − xf̄ϑ
−f̄x

]

.

Note that, on NT , f̄ϑ = 0 so that Mv = ∇f̄ with respect to the metric ω(·, J ·).
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Moreover, since this vector field is tangent to NT and invariant under the Reeb flow,

it lies in kerAx for all x ∈ NT . In particular, QxMv = 0.

Let w =

[
a

ϑ

]

; we will also write w̃ =

[
ã

ϑ̃

]

where ã = a−(1+λlf̄)Ts and ϑ̃ = ϑ−t.

On the other hand let

Ãl =

(
0 T (1 + λlf̄)

− 1
T (1+λlf̄)

0

)
d

dt
.

Clearly, ker Ãl consists of the functions w̃(t) that are independent of t. Let P̃ be the

orthonogal projection from L2(S1) to ker Ãl and Q̃ = I − P̃ .

We can rewrite the last two Cauchy-Riemann equations as :

ws = Ãlw +Bzout +Bzt +B(Qlz) + C〈Plz, zs〉l.

Here, B stands for a matrix that is bounded with all its derivatives, and C is a

constant. Similarly, for w̃, we have an equation of the form

w̃s = Ãlw̃ +Bzout +Bzt +B(Qlz) + C〈Plz, zs〉l + C ′λls〈Mv, zs〉l

where the last term comes from λls
∂f̄
∂s

in ws.

We first need to generalize the estimates of lemma 3.2.

Lemma 4.17. There exists l0 > 0, β̄ > 0 and δ > 0 such that for l ≥ l0 and s ∈ Il
satisfying |βl(s)| ≤ β̄, the function Hl(s) = ‖Qlz(s)‖2

l + δ2‖w̃‖2 satisfies

H ′′l (s) ≥ K2Hl(s)

where K > 0 is a constant independent of l.

Proof. Applying Ql to the first Cauchy-Riemann equation, we obtain

Qlzs = AlQlz +B(Qlz)out +B(Qlz)t + λlBQ̃w̃
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where we took into account the fact that Qlv = 0. The last term involving w̃ comes

from the last term of the Cauchy-Riemann equation, after substracting from as the

part that is independent of t and that is killed by Ql.

On the other hand, applying Q̃ to the equation for w̃s, we obtain

Q̃w̃s = ÃlQ̃w̃ +B(Qlz) +B(Qlz)t + CQ̃〈Plz, zs〉l + C ′λlsQ̃〈Mv, zs〉l.

Replacing zs by its expression in the first Cauchy-Riemann equation, we obtain an

equation of the form

Q̃w̃s = ÃlQ̃w̃ +B(Qlz) +B(Qlz)t + λlBQ̃w̃

where we used the fact that Q̃〈Plz,Mv〉l = Q̃〈Mv,Mv〉l = 0.

From these expression for Qlzs and Q̃w̃s we deduce the following inequalities :

‖Qlzs‖l ≤ ‖AlQlz‖l + ε̃(l)‖Qlzt‖l + ε̃(l)‖Qlz‖l + ε(l)C‖Q̃w̃‖,

‖Q̃w̃s‖ ≤ (1− ε(l))‖ÃlQ̃w̃‖+ C‖Qlz‖+ C‖Qlzt‖,

where ε̃(l) represents at term of the form ε(l)+C|βl| following the notations of lemma

3.2.

Taking the derivative of the expression for Qlzs with respect to s, we obtain

Qlzss = Al(Qlz) + ε̃(l)Qlz + ε̃(l)(Qlz)s + ε̃(l)(Qlz)t + ε̃(l)(Qlz)st + ε(l)Q̃w̃ + ε(l)Q̃w̃s.

Now consider the scalar product of this expression with Qlz :

d2

ds2
‖Qlz‖l ≥ 〈Qlz,Qlzss〉l

≥ ‖AlQlz‖2
l − ε̃(l)‖Qlz‖2

l − ε̃(l)‖Qlzs‖l‖Qlzt‖l − ε(l)‖Qlz‖l‖Q̃w̃‖

−ε(l)‖Qlz‖l‖Q̃w̃s‖.
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Using the inequality for ‖Q̃w̃s‖ on the last term, we obtain

d2

ds2
‖Qlz‖l ≥ c2

1(1− ε̃(l))‖Qlz‖2
l − ε(l)‖Qlz‖l‖Q̃w̃‖.

Next, taking the derivative of the expression for Q̃w̃s with respect to s, we obtain

Q̃w̃ss = ÃlQ̃w̃s +B(Qlz) +B(Qlzs) +B(Qlz)t +B(Qlz)st + λlBQ̃w̃ + λlBQ̃w̃s.

Now consider the scalar product of this expression with Q̃w̃ :

d2

ds2
‖Q̃w̃‖2 ≥ 〈Q̃w̃, Q̃w̃ss〉

≥ ‖ÃlQ̃w̃‖2 − ε(l)‖Q̃w̃‖2 −B‖Q̃w̃‖‖Qlz‖ −B‖Q̃w̃‖‖Qlzs‖

−B‖Q̃w̃‖‖Qlzt‖ −B‖Q̃w̃t‖‖Qlzs‖ − ε(l)‖Q̃w̃s‖‖Q̃w̃‖.

Using the inequalities for ‖Qlzs‖ and ‖Q̃w̃‖, we obtain

d2

ds2
‖Q̃w̃‖2 ≥ c2

2(1− ε(l))‖Q̃w̃‖2 −B‖Q̃w̃‖‖Qlz‖.

Let Fl = ‖Qlz‖ and Gl = ‖Q̃w̃‖. We just obtained the 2 inequalities

(F 2
l )′′ ≥ c2

1

2
F 2
l − ε(l)FlGl,

(G2
l )
′′ ≥ c2

2

2
G2
l −B FlGl.

Let Hl = F 2
l + δ2G2

l for some δ > 0. Combining the above inequalities, we obtain

H ′′l ≥ cHl − (ε(l) + δ2B)FlGl

≥ cHl −
ε(l) + δ2B

2δ
Hl

where c =
min(c21,c

2
2)

2
. In order to obtain the desired inequality for H ′′l , we need to

choose δ > 0 so that ε(l)+δ2B

2δ
< c. Clearly, for l0 sufficiently large, ε(l0) will be small

enough so that we can choose a small δ > 0 satisfying this condition. Then, for
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ε(l) < ε(l0), then condition will still be satisfied with the same δ > 0.

Therefore, under the assumptions of lemma 4.17, the function Hl satisfies an estimate

Hl(s) ≤ max(Hl(al), Hl(bl))
cosh(c(s− al+bl

2
)

cosh(cal−bl
2

)

where βl(s) ≤ β̄ for all s ∈ [al, bl]. After extracting a subsequence, we can assume

that max(Hl(al), Hl(bl))→ 0 for l→∞.

Next, let us generalize the estimates of lemma 3.3 in order to understand the behavior

of zin.

Lemma 4.18. For l ≥ l0 and s ∈ Il satisfying |βl(s)| ≤ β̄, we have

|〈zin(s)− ϕfT /(1+λlfT )
λl(s−al) zin(al), e〉l| ≤

4d′

c

√
max(Hl(al), Hl(bl)).

Proof. Let e be a constant unit vector in some of the zin directions. Taking the scalar

product of the first Cauchy-Riemann equation with e, we obtain

d

ds
〈z, e〉+ 〈Mzt, e〉+ 〈S ′zout, e〉+ 〈λlBQ̃w̃, e〉 − 〈

λl

(1 + λlfT )2
Mv, e〉 = 0.

The second and third terms are estimated as in lemma 3.3. The fourth term is

estimated using the upper bound of Hl. We then obtain

|〈 d
ds
zin −

λl

(1 + λlfT )2
∇fT , e〉| ≤ d′

√
max(Hl(al), Hl(bl))

√
cosh(c(s− al+bl

2
))

cosh(cal−bl
2

)
.

Integrating with respect to s, we obtain, as in lemma 3.3,

|〈zin(s)− ϕfT /(1+λlfT )
λl(s−al) zin(al), e〉| ≤

4d′

c

√
max(Hl(al), Hl(bl))

sinh(cal−bl
4

)
√

cosh(cal−bl
2

)

≤ 4d′

c

√
max(Hl(al), Hl(bl)).
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With these results, we can now prove the generalized compactness theorem.

Proof of proposition 4.16. Let pn be a point in the thin part of Σn. Choose cylindrical

coordinates (s, t) near pn so that s = 0 and t = 0 at pn. We can extract a subsequence

so that ũn converges to a vertical cylinder over a closed Reeb orbit γ ∈ ST . Fix a

small neighborhood of γ where we have the coordinates of lemma 3.1. Let In be the

largest interval such that the assumptions of lemma 4.17 and 4.18 are satisfied for

s ∈ In. As a consequence of these lemmas, we obtain that ũn converges to a cylinder

in NT over a fragment of gradient trajectory of fT in ST . Repeating this argument

with the closed orbits at the endpoints of the obtained trajectory, we enlarge the

fragment of gradient trajectory. Indeed, the size of the tubular neighborhood of a

Reeb orbit such that we can apply lemmas 4.17 and 4.18 is bounded away from zero

on a given orbit space.

Proceeding this way, we obtain a maximal gradient flow trajectory, i.e. such that

for every choice of pn as above, ũn converges to a vertical cylinder over a closed

Reeb orbit on the obtained trajectory. It follows that the endpoints of the maximal

trajectory coincide with the closed Reeb orbits to which the upper and lower levels

of the holomorphic curve converge.

Finally, let us show that the gradient trajectories between 2 given sublevels have the

same length. By contradiction, assume that we have lengths l1 and l2 with l1 < l2.

Then, it is always possible to find tn such that one portion of cylinder of ũn near

an = tn converges to a portion of gradient trajectory (of total length l2), but another

portion does not. Hence, by lemma 4.18, the second portion of cylinder cannot be

contained in a tubular neighborhood of a closed Reeb orbit. Therefore, this portion

of cylinder must converge to a J-holomorphic cylinder with positive area. But this

contradicts the fact that all positive area fragments of the limit were already taken

care of. Therefore, we must have l1 = l2.



Chapter 5

Fredholm theory

5.1 Fredholm property

5.1.1 Banach manifold with exponential weights

Let us reformulate the results of chapter 3. First, we know that a finite energy holo-

morphic map on a genus g Riemann surface Σ with s+ +s− punctures to the symplec-

tization of (M,α) is converging to closed Reeb orbits near a puncture. Let x+
1 , . . . , x

+
s+

be the punctures so that the map converges to Reeb orbits γ+
1 ∈ S+

1 , . . . , γ
+
s+
∈ S+

s+

for t → +∞ and x−1 , . . . , x
−
s− be the punctures so that the map converges to Reeb

orbits γ−1 ∈ S−1 , . . . , γ
−
s− ∈ S−

s− for t → −∞. Let Bp,dk (g;S+
1 , . . . , S

+
s+

;S−1 , . . . , S
−
s−)

be the Banach manifold of maps ũ : Σũ → R × M with the prescribed asymp-

totics at the punctures, which are locally in Lpk and so that, near each puncture,

a(s, t)− Ts− a0, ϑ(s, t)− t− ϑ0, z(s, t) ∈ Lp,dk = {f(s, t)|f(s, t)ed|s|/p ∈ Lpk}.

Corollary 5.1. If ũ : (Σũ, j) → (R ×M,J) is holomorphic and has finite energy,

then ũ ∈ Bp,dk (g;S+
1 , . . . , S

+
s+

;S−1 , . . . , S
−
s−) for some choice of orbit spaces S±i , for all

k ≥ 0, all p > 2 and 0 < d < r.

Let us now define a Banach bundle E over Bp,dk (g;S+
1 , . . . , S

+
s+

;S−1 , . . . , S
−
s−) so that

the Cauchy-Riemann operator can be considered as a section ∂J of E . The fiber Eũ
over ũ will be the Banach space Lp,dk−1(Λ0,1(ũ)) of Lp,dk−1 (0, 1)-forms over Σ with values

46
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in E = ũ∗T (R ×M). In order to keep notation simple, we will also use Lp,dk (ũ) for

the Lp,dk sections of E.

We want to allow the conformal structure of the Riemann surface to vary, therefore we

have to consider the enlarged Banach manifold B̃ = Tg,s++s−×B where Tg,s++s− is the

Teichmüller space for Riemann surfaces of genus g and s+ + s− punctures (or marked

points). Similarly, we have a Banach bundle Ẽ over B̃ and the Cauchy-Riemann op-

erator induces a section ∂J : B̃ → Ẽ .

The zero set ∂
−1

J (0) of the Cauchy-Riemann section ∂J : B̃ → Ẽ is the set of holo-

morphic maps. We will consider holomorphic maps modulo the following equivalence

relation : ũ : (Σũ, j)→ (R×M,J) is equivalent to ũ′ : (Σũ′ , j
′)→ (R×M,J) if there

exists a biholomorphism h : (Σũ, j)→ (Σũ′ , j
′) such that ũ = ũ′ ◦ h and h(x±i ) = x±

′
i

(i = 1, . . . , s±).

The moduli space of holomorphic maps consists of the equivalence classes in ∂
−1

J (0) ⊂
B̃; we will denote it by

MA
g,s+,s−(S+

1 , . . . , S
+
s+

;S−1 , . . . , S
−
s−)

where A ∈ H2(M) is the homology class of the holomorphic curves, defined as in sec-

tion 2.1. It follows by elliptic regularity that holomorphic maps are smooth, therefore

the moduli space is independent of the values of p, k and d as long as they satisfy the

assumptions of corollary 5.1.

5.1.2 Linearized operator

Consider the linearization of the section ∂J : B → E near some ũ ∈ B. We obtain a

linear operator ∂ũ between Banach spaces of sections of E :

∂ũ : TũB → Eũ = Lp,dk−1(Λ0,1(ũ)).
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Near a puncture x±i , this operator is given by

∂

∂s
+ J0

∂

∂t
+ S±i (s, t)

where (s, t) are cylindrical coordinates, J0 is the standard complex structure and

S±i (s, t) are symmetric matrices. Let us define S±i (t) = lims→±∞ S
±
i (s, t).

We identify TũB with RN⊕Lp,dk (ũ), where N =
∑s+

i=1(dimS+
i +2)+

∑s−

j=1(dimS−j +2).

The terms 2 account for dim span( ∂
∂t
, Rα). Let v

(±,i)
j (j = 1, . . . , dimS±i + 2) be a

basis of solutions for the equation J0∂tv + S±i (t)v = 0 on the circle. Let ρ±i be a

function with support in a small neighborhood of x±i , depending only on s and equal

to 1 for ±s large. Then the summand RN is spanned by the functions ρi(s)v
(±,i)
j (t).

Note that, because of the exponential behavior of ũ, the linear operator is exponen-

tially converging to its asymptotic value at each puncture. Hence, the image of the

RN summand in the domain is contained in Lp,dk−1.

Proposition 5.2. The linear operator

∂ũ : RN ⊕ Lp,dk (ũ)→ Lp,dk−1(Λ0,1(ũ))

is Fredholm.

Proof. Clearly, using the elementary properties of Fredholm operators, it is equivalent

to prove the Fredholm property for ∂1 = ∂ũ|Lp,dk (ũ). Moreover, let

ϕ : Lp,dk (ũ)→ Lpk(ũ) and ϕ′ : Lp,dk (Λ0,1(ũ))→ Lpk(Λ
0,1(ũ))

be the multiplication by ed|s|/p; clearly, this map is an isomorphism for every k. Let

now ∂
′
= ϕ′ ◦∂1 ◦ϕ−1. Given the explicit expression ∂1 = ∂s+J0∂t+S±i (s, t) near the

puncture x±i , we obtain the expression ∂
′
= ∂s+J0∂t+S±i (s, t)∓d/p. Note that with

these perturbed matrices near the ends, the operator ∂
′
: Lpk(ũ)→ Lpk−1(Λ0,1(ũ)) has

nondegenerate asymptotics. Hence, the usual Fredholm theory applies to ∂
′
. Finally,

∂1 is Fredholm as well since it is conjugate to a Fredholm operator.
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5.2 Fredholm index

5.2.1 Reduction to Riemann-Roch

The Fredholm index of holomorphic cylinders in Floer homology is classically com-

puted using the analysis of the spectral flow [30]. Later, a gluing method was used to

extend these results to holomorphic curves with different topologies [32]. The strat-

egy was to glue punctured holomorphic curves in order to obtain a compact Riemann

surface, and then apply the Riemann-Roch theorem. However, those results were still

dependent of the original computation using the spectral flow.

We know explain a refinement of the gluing construction that completely reduces the

index computation to the Riemann-Roch theorem, without using the spectral flow

techniques.

Let ∂ : Lpk(E) → Lpk−1(Λ0,1(E)) be a linearized Cauchy-Riemann operator for sec-

tions of a hermitian vector bundle E over a punctured Riemann surface Σ, with

non-degenerate asymptotics. We already know by classical elliptic results that this

operator is Fredholm.

Near a puncture x±i , the operator ∂ has the form ∂s + J0∂t + S±i (s, t) where J0 is

the standard complex structure, in an appropriate trivialization. We can assume

without loss of generality that, for ±s large enough, S±i (s, t) = S±i (t) is a loop

of symmetric matrices. Let Ψ±i (t) be the path of symplectic matrices defined by

Ψ̇±i (t) = J0S
±
i (t)Ψ±i (t) and Ψ±i (0) = I.

Let us now construct another linearized Cauchy-Riemann operator ∂ for sections of

E, almost identical to ∂, but with slightly different asymptotics.

Note that Ψ±i (1) and its inverse can be joined by a path of symplectic matrices such

that 1 is never an eigenvalue. Indeed, Sp∗(2n) = {Ψ ∈ Sp(2n) | det(Ψ − I) 6= 0}
has exactly 2 connected components, distinguished by the sign of det(Ψ − I), and

det(Ψ−I) = det(Ψ) det(I−Ψ−1) = det(Ψ−1−I). Therefore, we can homotope Ψ±i (t)

to a path Ψ̃±i (t) with the same Maslov index and satisfying Ψ̃±i (0) = Ψ±i (0) = I and

Ψ̃±i (1) = Ψ±i (1)−1. Define S̃±i (t) by ˙̃Ψ
±
i (t) = J0S̃

±
i (t)Ψ̃±i (t).

Near the puncture x±i , the operator ∂
′

will have the form ∂s + J0∂t + S̃±i (s, t) with
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S̃(s, t) = S̃∞(t) for ±s large enough. It is clear that ∂
′

and ∂ are in the same path

component of the set of Fredholm operators, and therefore have the same index.

We now want to glue two copies of the Riemann surface Σ. Near each puncture x±i ,

take a complex coordinate z±i vanishing at the puncture. Cut out a small disk of

radius ε > 0. Then glue the two boundary circles |z±i | = ε on each copy of Σ by

identifying z±i on one copy of Σ with ε2

z±i
on the other copy of Σ. If Σ has genus g and

s+ + s− punctures, then the glued Riemann surface Σ]Σ has genus 2g + s+ + s− − 1.

Next, we want to glue the vector bundles E over each copy on Σ in order to obtain

a vector bundle E]E over Σ]Σ. To that end, define a clutching function Φ±i in a

neighborhood of |z±i | = ε by Φ±i (t) = Ψ±i (t)Ψ̃±i (1− t)−1, where t = ∓arg z
2π

. This is well

defined, since Φ±i (0) = Φ±i (1) by construction. An elementary computation shows

that the operator ∂ and ∂
′

then match over the glued boundary and give a glued

operator ∂]∂
′
.

The first Chern class of the glued vector bundle E]E is given by c1(E]E) = 2c1(E) +
∑s+

i=1 µ(Φ+
i )−

∑s−

j=1 µ(Φ−j ), where µ(Φ±i ) is the Maslov index of the loop of symplectic

matrices Φ±i (t). Let us compute this in terms of the Conley-Zehnder index of Ψ±i .

The loop Ψ±i (t)Ψ̃±i (1 − t)−1 is homotopic to the catenation of the paths Ψ±i (t) and

Ψ̃±i (1− t)−1. By the catenation property of the Conley-Zehnder index, we then have

2µ(Φ±i ) = µCZ(Ψ±i (t))− µCZ(Ψ̃±i (t)−1)

= µCZ(Ψ±i (t)) + µCZ(Ψ̃±i (t))

= 2µCZ(Ψ±i ).

Hence, by the Riemann-Roch theorem, the Fredholm index of the glued operator ∂]∂
′

is given by

n(2− 4g − 2s+ − 2s− + 2) + 4c1(E) +
s+∑

i=1

2µCZ(Ψ+
i )−

s−∑

j=1

2µCZ(Ψ−j ).

Now we use theorem 3.2.12 of [32], stating that the Fredholm index is additive under

the gluing operation we used above. This theorem was proved using standard analytic



5.2. FREDHOLM INDEX 51

estimates, and is completely independent of the spectral flow.

Since, ∂ and ∂
′

have the same Fredholm index, we just need to divide the above

expression by 2 in order to obtain

index(∂) = n(2− 2g − s+ − s−) + 2c1(E) +
s+∑

i=1

µCZ(Ψ+
i )−

s−∑

j=1

µCZ(Ψ−j ).

This is the classical formula that was derived already in [32].

5.2.2 The generalized Maslov index

The Fredholm index of the ∂ operator is usually computed in terms of the Conley-

Zehnder index corresponding to the asymptotic conditions. Here however, those

asymptotics are degenerate, so the Conley-Zehnder index is not defined. Robbin

and Salamon [29] introduced a Maslov index for general paths of symplectic matrices.

Let Ψ(t) be a path of symplectic matrices such that Ψ(0) = I; assume that there

are a finite number of values of t (0 < t < 1), t1, . . . , tl, called crossings, such that

Vt = ker(Ψ(t)− I) 6= 0, and that J0
d
dt

Ψ(t), the crossing form, is nondegenerate on Vt.

Denote the signature of that symmetric form by σ(t). Then, the Maslov index µ(Ψ)

can be defined by :

µ(Ψ) =
1

2
σ(0) +

l∑

i=1

σ(ti) +
1

2
σ(1)

where σ(1) is defined to be zero if Ψ(1)−I is invertible. Then, the Maslov index is half-

integer valued, invariant under homotopy with fixed ends, additive under catenation

of paths, and µ(Ψ) + 1
2
dimV1 ∈ Z.

5.2.3 Computation of the index

The index of ∂ is given by index(∂1) +N , by elementary properties of the Fredholm

index. Now, ∂1 and ∂
′

have the same Fredholm index, since they are conjugate to
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each other. Using the index formula from section 5.2.1, we have :

index(∂
′
) = n(2− 2g − s+ − s−) + 2c1(E) +

s+∑

i=1

µCZ(Ψ+′
i)−

s−∑

j=1

µCZ(Ψ−
′
j).

In this equation, the paths of matrices Ψ±
′
i are the solutions of

{
J0∂tΨ

±′
i(t) + (S±i (s, t)∓ d/p)Ψ±′i(t) = 0,

Ψ±
′
i(0) = I.

The paths of symplectic matrices Ψ±
′
i for ∂

′
are related to the paths of symplectic

matrices Ψ±i for ∂ in the following way :

Ψ±
′
(t) =

{
Ψ±(2t) for t ≤ 1/2,

Ψ±(1)e∓d(2t−1)/p for t > 1/2.

For d > 0 sufficiently small, there will be no crossing for t > 1/2. At t = 1/2, however,

there is a crossing with crossing form ∓d/pI. Using the definition of the Maslov index

and its catenation property, we deduce that µCZ(Ψ±
′
) = µ(Ψ±)∓ 1

2
dim ker(Ψ± − I).

Hence, substituting into the index formula for ∂
′
, we obtain :

index(∂1) = n(2− 2g − s+ − s−) + 2c1(E) +
s+∑

i=1

µ(Ψ+
i )−

s−∑

j=1

µ(Ψ−j )− 1

2
N.

Therefore we have proved

Proposition 5.3. The Fredholm index of the linear operator

∂ : RN ⊕ Lp,dk (E)→ Lp,dk−1(Λ0,1(E))

is given by the formula

n(2− 2g − s+ − s−) + 2c1(E) +
s+∑

i=1

µ(Ψ+
i )−

s−∑

j=1

µ(Ψ−j ) +
1

2
N.
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If we apply this formula to the linearization of the Cauchy-Riemann operator at some

ũ ∈ Bp,dk (g;S+
1 , . . . , S

+
s+

;S−1 , . . . , S
−
s−) then we have µ(Ψ+

i ) = µ(S+
i ), µ(Ψ−j ) = µ(S−j )

and since N =
∑s+

i=1(dimS+
i + 2) +

∑s−

j=1(dimS−j + 2), we obtain :

n(2− 2g)− (n− 1)(s+ + s−) + 2c1(E) +
∑s+

i=1 µ(S+
i ) + 1

2

∑s+

i=1 dimS+
i

−
∑s−

j=1 µ(S−j ) + 1
2

∑s−

j=1 dimS−t .

But for the moduli space we have to consider instead the Banach manifold

Tg,s++s− × Bp,dk (g;S+
1 , . . . , S

+
s+

;S−1 , . . . , S
−
s−).

Adding dim Tg,s++s− = 6g − 6 + 2(s+ + s−) to the above index formula, we obtain

Corollary 5.4. The predicted dimension of the moduli space of holomorphic maps

MA
g,s+,s−(S+

1 , . . . , S
+
s+

;S−1 , . . . , S
−
s−)

is given by

(n−3)(2−2g−s+−s−)+2c1(A)+
s+∑

i=1

µ(S+
i )+

1

2

s+∑

i=1

dimS+
i −

s−∑

j=1

µ(S−j )+
1

2

s−∑

j=1

dimS−t .

Note that, if 6g − 6 + 2(s+ + s−) ≤ 0, the Teichmüller space is trivial but the

automorphism group of (Σ, j) fixing the punctures has dimension 6−6g−2(s+ +s−).

Otherwise, this group is discrete.

5.3 Gluing estimates

In this section, we derive the estimates that are necessary to study the structure of

the moduli space near a split (generalized) holomorphic map.
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5.3.1 Holomorphic maps

We first work out the estimates for holomorphic maps. Let ũ ∈ Bp,dk (g;S+
1 , . . . , S

+
s+

;

S−1 , . . . , S
−
s−) and ṽ ∈ Bp,dk (g′;S

′+
1 , . . . , S

′+
s
′+ ;S

′−
1 , . . . , S

′−
s
′−) such that ũ and ṽ are

asymptotic to the same Reeb orbit γi ∈ S−s−+1−i = S
′+
i for i = 1, . . . , t ≤ min(s−, s

′+).

We want to construct a glued map

ũ]Rṽ ∈ Bp,dk (g + g′ + t− 1;S+
1 , . . . , S

+
s+
, S
′+
t+1, . . . , S

′+
s
′+ ;S−1 , . . . , S

−
s−−t, S

′−
1 , . . . , S

′−
s
′−).

First, we construct a glued Riemann surface ΣR = Σũ]RΣṽ, for R ∈ R+ sufficiently

large. Take cylindrical coordinates (si, ti) near x−
s−+1−i and (s′i, t

′
i) near y

′+
i , for i =

1, . . . , t. Pick a Riemannian metric g on M ; we could choose the metric induced by

ω and J . We have

aũ(si, ti) = Tsi + a0
ũ + η(si, ti),

aṽ(s
′
i, t
′
i) = Ts′i + a0

ṽ + η′(s′i, t
′
i),

u(si, ti) = expγi(ti)(Ui(si, ti)),

v(s′i, t
′
i) = expγi(t′i)(Vi(s

′
i, t
′
i)),

where Ui and η are decaying exponentially for si → −∞ and Vi and η′ are decaying

exponentially for s′i → +∞.

For R > R0, cut out the punctured disks si < −R+a0
ũ

T
near the negative punctures

and the punctured disks s′i >
R−a0

ṽ

T
near the positive punctures, and identify the

boundaries of the remaining surfaces via ti = t′i. In each neck, we obtain cylindrical

coordinates (s′′i , t
′′
i ), where t′′i = ti = t′i and s′′i = si +

R+a0
ũ

T
= s′i −

R−a0
ṽ

T
.

Let us define the preglued map ũ]Rṽ on ΣR. Away from the necks, this map coincides

with ũ on Σũ and with ṽ on Σṽ. In the neck i, the map ũ]Rṽ(s′′i , t
′′
i ) is given by






(Ts′′i + β(s′′i − 1)η(s′′i , t
′′
i ), expγi(ti)(β(s′′i − 1)Ui(s

′′
i , t
′′
i ))) if s′′i > +1,

(Ts′′, γi(ti)) if − 1 ≤ s′′i ≤ +1,

(Ts′′i + β(−s′′i − 1)η′(s′′i , t
′′
i ), expγi(ti)(β(−s′′i − 1)Vi(s

′′
i , t
′′
i ))) if s′′i < −1,
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where β : R → [0, 1] be a smooth function such that β(s) = 0 if s < 0, β(s) = 1 if

s > 1 and 0 ≤ β′(s) ≤ 2.

Note that, if we vary ũ and ṽ, this pregluing map varies smoothly with the matching

Reeb orbits γi ∈ S−s−+1−i = S
′+
i .

We want to show that the glued map ũ]Rṽ is approximately J-holomorphic, or more

precisely that ∂J(ũ]Rṽ) is small in Lp,dk−1(Λ0,1(ũ]Rṽ)). Note that on Lp,dk−1(Λ0,1(ũ]Rṽ)),

we will not use the Banach norm introduced in section 5.1, but rather the Banach

norm ‖ ·‖R, with the usual exponential weights near the punctures and the additional

weights ed(
R−R0
T
−|s′′i |) in the necks.

Lemma 5.5. With the above Banach structure on Lp,dk−1(Λ0,1(ũ]Rṽ)), if ũ and ṽ are

J-holomorphic, then

lim
R→∞

‖∂J(ũ]Rṽ)‖ = 0.

Proof. Since ∂J ũ = 0 and ∂J ṽ = 0, it follows from the definition of the glued map

that ∂J(ũ]Rṽ) = 0 except in the necks when s′′i ∈ [−2,+2]. Therefore, we have the

estimate

‖∂J(ũ]Rṽ)‖ ≤ C
∑

i

(‖(∇Ui,∇η)‖
[−

R+a0
ũ

T
,−

R+a0
ũ

T
+2]

+ ‖(∇Vi,∇η′)‖
[
R−a0

ṽ
T
−2,

R−a0
ṽ

T
]
).

But since ũ and ṽ are maps in Bp,dk with k ≥ 1, the right hand side converges to zero

when R→∞.

Let Vũ be the vector space generated by the sections ρi(s)v
(−,i)
j (t) ∈ C∞(ũ) for j =

1, . . . , dimS−
s−+1−i + 2 and i = 1, . . . , t, and Vṽ be the vector space generated by the

sections ρi(s)v
(+,i)
j (t) ∈ C∞(ũ) for j = 1, . . . , dimS

′+
i +2 and i = 1, . . . , t. The vector

space Vũ is naturally a summand of TũB̃. Let ∆ be the diagonal in Vũ ⊕ Vṽ.

Consider the linearized Cauchy-Riemann operators ∂ũ : Vũ⊕Lp,dk (ũ)→ Lp,dk−1(Λ0,1(ũ))

and ∂ ṽ : Vṽ ⊕ Lp,dk (ṽ) → Lp,dk−1(Λ0,1(ṽ)). Pick a finite dimensional subspace W of

C∞0 (Λ0,1(ũ))⊕ C∞0 (Λ0,1(ṽ)) ⊂ Lp,dk−1(Λ0,1(ũ))⊕ Lp,dk−1(Λ0,1(ṽ)), such that

W + ∂ũ(L
p,d
k (ũ)) + ∂ ṽ(L

p,d
k (ṽ)) + (∂ũ ⊕ ∂ ṽ)(∆) = Lp,dk−1(Λ0,1(ũ)) + Lp,dk−1(Λ0,1(ṽ)).
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We define the stabilization of ∂ũ ⊕ ∂ ṽ by

∂
W

ũ,ṽ : W ⊕∆⊕ Lp,dk (ũ)⊕ Lp,dk (ṽ) → Lp,dk−1(Λ0,1(ũ))⊕ Lp,dk−1(Λ0,1(ṽ))

(w, (v, v), ξũ, ξṽ) → w + ∂ũ(v + ξũ) + ∂ ṽ(v + ξṽ).

With such a choice of W , the operator ∂
W

ũ,ṽ is surjective and has a bounded right

inverse Q∞.

Note that, on Lp,dk (ũ]Rṽ), we will not use the Banach norm introduced in section 5.1,

but a modified norm. For ξ ∈ Lp,dk (ũ]Rṽ), we define ξ̄i =
∫
s′′i =0

πiξ dt
′′
i , where πi is the

orthonormal projection to R × Ni. We then multiply the vector ξ̄i by the function

ρ−i ]Rρ
+
i having support near the neck i; we denote by ξ̄ the sum of these sections. We

define the norm of ξ to be ‖ξ− ξ̄‖R +
∑t

i=1 |ξ̄i|, where the Banach norm ‖ · ‖R has the

usual exponential weights near the punctures and additional weights ed(
R−R0
T
−|s′′i |) in

the necks.

Proposition 5.6. Assume that W is chosen so that the operator ∂
W

ũ,ṽ is surjective.

Then the operator

∂R = ∂
W

ũ]Rṽ
: W ⊕ Lp,dk (ũ]Rṽ)→ Lp,dk−1(Λ0,1(ũ]Rṽ))

has a uniformly bounded right inverse QR, if R is sufficiently large.

In order to prove this proposition, we adapt the gluing construction of McDuff and

Salamon [25].

Let γR : R → [0, 1] be a smooth function such that γR(s) = 1 for s ≥ R/2−R0

T
,

γR(s) = 0 for s ≤ 1 and 0 ≤ d
ds
γR(s) ≤ 2T

R/2−R0−T for 1 ≤ s ≤ R/2−R0

T
.

Let us define the gluing map

gR : ∆⊕ Lp,dk (ũ)⊕ Lp,dk (ṽ) → Lp,dk (ũ]Rṽ)

((
∑

i

vi(t)ρ
−
i (s),

∑

i

vi(t)ρ
+
i (s)), ξũ, ξṽ) → ξ = ξ0 +

∑

i

vi(t)ρ
−
i ]Rρ

+
i (s)
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where, in the neck with coordinates (s′′i , t
′′
i ),

ξ0(s′′i , t
′′
i ) =






ξũ(s
′′
i , t
′′
i ) + γR(s′′i )ξṽ(s

′′
i , t
′′
i ) if s′′i > +1,

ξũ(s
′′
i , t
′′
i ) + ξṽ(s

′′
i , t
′′
i ) if − 1 ≤ s′′i ≤ +1,

γR(−s′′i )ξũ(s, t) + ξṽ(s
′′
i , t
′′
i ) if s < −1,

and ξ0 coincides with ξũ (resp. ξṽ) on the rest of Σũ (resp. Σṽ).

Let us define the splitting map

sR : Lp,dk−1(Λ0,1(ũ]Rṽ)) → Lp,dk−1(Λ0,1(ũ))⊕ Lp,dk−1(Λ0,1(ṽ))

η → (ηũ, ηṽ)

where, near the puncture x−
s−+1−i (resp. y

′+
i ),

{
ηũ(si, ti) = β(s′′i )η(s′′i , t

′′
i ),

ηṽ(s
′
i, t
′
i) = (1− β(s′′i ))η(s′′i , t

′′
i ),

and ηũ, ηṽ coincide with η away from these punctures.

Note that the operators gR and sR are uniformly bounded in R.

Let us define an approximate right inverse Q̃R for ∂R using the following commutative

diagram :

Lp,dk−1(Λ0,1(ũ]Rṽ))
Q̃R−−−→ W ⊕W ′ ⊕ Lp,dk (ũ]Rṽ)

sR

y
xgR

Lp,dk−1(Λ0,1(ũ))⊕ Lp,dk−1(Λ0,1(ṽ))
Q∞−−−→ W ⊕W ′ ⊕∆⊕ Lp,dk (ũ)⊕ Lp,dk (ṽ).

Note that Q̃R is uniformly bounded in R, since gR and sR are.

Proof of proposition 5.6. By construction, ∂RQ̃Rη = η away from the necks. On the
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other hand, in the neck i, we have

∂RQ̃Rη = ∂Rξ

= ∂R(vi(t) + γR(s′′i )ξũ + γR(−s′′i )ξṽ)

= γR(s′′i )∂ũξũ + γR(−s′′i )∂ ṽξṽ +
d

ds
γR(s′′i )ξũ −

d

ds
γR(−s′′i )ξṽ

+γR(s′′i )(∂R − ∂ũ)ξũ + γR(−s′′i )(∂R − ∂ ṽ)ξṽ.

But

γR(s′′i )∂ũξũ + γR(−s′′i )∂ ṽξṽ = γR(s′′i )ηũ + γR(−s′′i )ηṽ
= ηũ + ηṽ

= η

because γR(s) = 1 (resp. γR(−s) = 1) when ηũ (resp. ηṽ) is not zero.

Therefore,

|∂RQ̃Rη − η| ≤
2T

R/2−R0 − T
(|ξũ|+ |ξṽ|) + ‖Aũ‖|ξũ|+ ‖Aṽ‖|ξṽ|

where Aũ = ∂R − ∂ũ and Aṽ = ∂R − ∂ ṽ are matrices. Note that, because of the

(exponential) convergence of ũ and ṽ to closed Reeb orbits, the norms of these matrices

uniformly converge to zero when R→∞.

Hence, we can rewrite the above pointwise estimate as

|∂RQ̃Rη − η| ≤ C(R)(γR(s′′i )|ξũ|+ γR(−s′′i )|ξṽ|)

where C(R) is a constant depending only on R such that limR→∞C(R) = 0.

We now have to integrate this estimate on the neck i, using the appropriate weight

ed(
R−R0
T
−|s′′i |) for norm ‖ · ‖R. We obtain

‖∂RQ̃Rη − η‖ ≤ C(R)(‖ξũ‖+ ‖ξṽ‖).
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Therefore, if R is sufficiently large, then

‖∂RQ̃R − I‖ ≤
1

2
.

Hence, the operator ∂RQ̃R is invertible. Let QR = Q̃R(∂RQ̃R)−1. By construction,

QR is a right inverse for ∂R, and it is uniformly bounded in R.

We now turn to the Fredholm section defined by the linearized Cauchy-Riemann

operators over the extended spaces B̃, including changes in the conformal structure.

Let us denote by S the subspace of Vũ ' Vṽ spanned by the sections ρi(s)v
(±,i)
j (t)

that are tangent to the orbit spaces. Then we have natural maps πũ : TũB → S and

πṽ : TṽB → S.

Corollary 5.7. Suppose that the operators ∂
W

ũ : W ⊕ TũB̃ → Lp,dk−1(Λ0,1(ũ)) and

∂
W ′

ṽ : W ′⊕TṽB̃ → Lp,dk−1(Λ0,1(ṽ)) are surjective, and that πũ(ker ∂
W

ũ )+πṽ(ker ∂
W ′

ṽ ) = S.

Then, the operator

∂
W⊕W ′
ũ]Rṽ

: W ⊕W ′ ⊕ Tũ]RṽB̃ → Lp,dk−1(Λ0,1(ũ]Rṽ))

has a uniformly bounded right inverse QR, if R is sufficiently large.

Proof. In view of proposition 5.6, we just have to show that the restriction of the

operator ∂
W

ũ ⊕ ∂
W ′

ṽ to W ⊕W ′ ⊕ N ⊕ (TũB̃ ⊕V TṽB̃) is surjective, where N denotes

the orthogonal complement to TũT ⊕ TṽT in Tũ]RṽT .

The summand N has 2 real dimensions for each glued pair of punctures. Those

degrees of freedom correspond to varying the radius ε and the angle of identification

when gluing Σũ and Σṽ.

The angular degree of freedom amounts to replace the complex structure jṽ on Σṽ

with φµ∗jṽ, where φµ(s, t) = (s, t+µρ(s)) and ρ is a decreasing function that vanishes
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for s large and is equal to 1 for s small. We then compute

d

dµ
|µ=0(J ◦ dṽ ◦ φµ∗ ◦ j∂s + dṽ∂s) = J ◦ dṽ ◦ (Lρ∂tj)∂s

= −J ◦ dṽ ◦ j[ρ∂t, ∂s]

= ρ′J ◦ dṽ ◦ j∂t
= −ρ′Rα.

The radial degree of freedom amounts to replace the complex structure jṽ on Σṽ with

ψµ∗jṽ, where ψµ∗(s, t) = (s+ µρ(s), t). We compute

d

dµ
|µ=0(J ◦ dṽ ◦ ψµ∗ ◦ j∂s + dṽ∂s) = J ◦ dṽ ◦ (Lρ∂sj)∂s

= −J ◦ dṽ ◦ j[ρ∂s, ∂s]

= ρ′J ◦ dṽ ◦ j∂s
= −ρ′∂t.

These computations show that the cokernel of ∂
W

ũ ⊕ ∂
W ′

ṽ does not increase when we

replace the span of (0, ρiRα) and (0, ρi∂t) with N in the domain.

On the other hand, the restriction of the domain relative to S decreases, by as-

sumption, the dimension of the kernel by dimS. Therefore, it does not increase the

dimension of the cokernel, so the above operator is surjective.

5.3.2 Generalized holomorphic maps

We now turn to generalized holomorphic maps, including fragments of gradient flow

trajectories on the orbit spaces when λ→ 0. We first need to understand the asymp-

totic behavior of these maps, in order to introduce the appropriate Banach structures.

Proposition 5.8. Let ũ be a Jλ-holomorphic map with finite energy. Suppose that ũ

converges, near a puncture, to a closed Reeb orbit γ corresponding to a critical point
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of fT in ST . Then there exists r > 0 sufficiently small and independent of λ so that

|∂I(a(s, t)− Ts− a0)| ≤ CIe
−rs,

|∂I(ϑ(s, t)− t− ϑ0)| ≤ CIe
−rs,

|∂Izout(s, t)| ≤ CIe
−rs,

|∂I(zin(s, t)− ϕfT /(1+λfT )
λs (z0

in))| ≤ CIe
−λrs,

for every multi-index I and for some constants CI > 0.

Proof. The first three inequalities follow from lemma 4.17 applied to a half-cylinder

mapping to a small tubular neighborhood of the Reeb orbit γ.

The last inequality follows from the proof of lemma 4.18 after replacing the hyperbolic

cosine with a negative exponential.

Let Bp,d,λk (g; γ+
1 , . . . , γ

+
s+

; γ−1 , . . . , γ
−
s−) be the Banach manifold of maps ũ : Σũ →

R×M with the prescribed asymptotics at the punctures, which are locally in Lpk and

so that, near each puncture, a(s, t)−T (1+λfT )s−a0, ϑ(s, t)−t−ϑ0, zout(s, t), zin(s, t)−
ϕ
fT /(1+λfT )
λs (z0

in) ∈ Lp,dk .

Let γ : R → ST be a gradient trajectory for fT
1+λfT

. Note that this is just a

reparametrized gradient trajectory of fT . Let βa,b : R → R be a smooth increas-

ing function such that βa,b(s) = s for s ∈ [a + 1, b − 1], βa,b(s) = a for s ≤ a and

βa,b(s) = b for s ≥ b. We choose a family of such functions depending smoothly on

a < b ∈ R.

Let ũλ,γ,a,b : R× S1 → R×M be the map characterized by

aλ,γ,a,b(s, t) = T (1 + λfT )s,

uλ,γ,a,b(s, t) ∈ NT ,

πT ◦ uλ,γ,a,b(R× S1) = γ([a, b]),

∂

∂s
uλ,γ,a,b(s, t) = λβ′a

λ
, b
λ

(s)
∇fT

(1 + λfT )2
,

∂

∂t
uλ,γ,a,b(s, t) = TRα.
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First consider the case a = −∞ and b = +∞; we abbreviate the corresponding

map by ũλ,γ. This is the case of a holomorphic cylinder degenerating into a gradient

trajectory. We denote by Dγ the linearized operator in Morse theory corresponding to

this trajectory. We want to show that this map ũλ,γ is approximately Jλ-holomorphic

for small λ.

Lemma 5.9. The map ũλ,γ ∈ Bp,d,λk (γ(+∞); γ(−∞)) and

lim
λ→0
‖∂Jλũλ,γ‖ = 0.

Proof. Note that

−Jλ(TRα) = T (1 + λfT )
∂

∂t
+

λ

1 + λfT
∇fT .

Therefore,

∂Jλũλ,γ =
λ

(1 + λfT )2
∇fT .

But since ‖∇fT‖ =
∫ +∞
−∞ |∇fT (γ(s))|ped|s|ds <∞ for d > 0 sufficiently small, we have

‖∂Jλũλ,γ‖ ≤ Cλ‖∇fT‖

and the latter clearly converges to zero as λ→ 0.

Consider now the linearized Cauchy-Riemann operator ∂ũλ,γ,a,b at the maps ũλ,γ,a,b.

We will use the following Banach structures :

∂ũλ,γ,a,b : Lp,dk (ũ)⊕ V− ⊕ V+ → Lp,dk−1(Λ0,1(ũ)).

The finite dimensional vector spaces V− and V+ are defined as follows : if a = −∞, V−

is spanned by ρ−(s) ∂
∂t
, ρ−(s)Rα and ρ−(s)vi−(s), i = 1, . . . , dimW u(γ(−∞)), where

the functions vi−(s) span the tangent space of the stable manifold of γ(−∞) along γ

and satisfy Dγv
i
−(s) = 0.

If a is finite, V− is spanned by ρ−(s) ∂
∂t
, ρ−(s)Rα and ρ−(s)wi, i = 1, . . . , dimST , where

the vectors wi span TST . The space V+ is defined similarly, distinguishing between
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b = +∞ and b finite, and using the unstable manifold of γ(+∞).

Proposition 5.10. The Fredholm index of ∂ũλ,γ,a,b is given by

indexfT (γ(+∞))− indexfT (γ(−∞)) + 2 if a = −∞, b = +∞,
indexfT (γ(+∞)) + 2 if a > −∞, b = +∞,
dimST − indexfT (γ(−∞)) + 2 if a = −∞, b < +∞,
dimST + 2 if a > −∞, b < +∞.

Proof. The index of the operator ∂ũλ,γ,a,b restricted to Lp,dk (ũ) is always equal to

− dimS + 2. This is proved as before by conjugating with multiplication by e±|d|s.

The perturbation terms due to the Morse functions fT do not contribute since λ > 0

is very small.

Then, the above index formulas follow from adding to − dimS + 2 the dimension of

V− ⊕ V+ in the various cases.

We now want to glue holomorphic maps and gradient trajectories. Consider maps

ũ ∈ Bp,dk (g;S+
1 , . . . , S

+
s+

;S−1 , . . . , S
−
s−) and ṽ ∈ Bp,dk (g′;S

′+
1 , . . . , S

′+
s
′+ ; S

′−
1 , . . . , S

′−
s
′−)

such that ũ is asymptotic to the Reeb orbits γ+
i ∈ S+

i for i = 1, . . . , s+ and γ−i ∈
S−i for i = 1, . . . , s−; similarly, ṽ is asymptotic to the Reeb orbits γ

′+
i ∈ S

′+
i for

i = 1, . . . , s
′+ and γ

′−
i ∈ S

′−
i for i = 1, . . . , s

′−. Assume that there exists t′ > 0 for

i = 1, . . . , t ≤ min(s−, s
′+), such that ϕfTt′ (γ−

s−−i+1) = γ
′+
i .

We denote limt→±∞ ϕ
fT
t (γ±i ) by γ̃±i and similarly limt→±∞ ϕ

fT
t (γ

′±
i ) by γ̃

′±
i .

We then construct a map

ũ]λṽ ∈ Bp,d,λk (g + g′ + t− 1; γ̃+
1 , . . . , γ̃

+
s+
, γ̃
′+
t+1, . . . , γ̃

′+
s
′+ ; γ̃−1 , . . . , γ̃

−
s−−t, γ̃

′−
1 , . . . , γ̃

′−
s
′−)

by gluing ũ and ṽ with fragment of gradient trajectories.

We construct the map ũ]λṽ by gluing ũ and ṽ with the trajectories ũλ,γ,a,b and ṽλ,γ,a,b.

Therefore, we just need to know how to glue a holomorphic map ũ to a gradient

trajectory ũλ,γ,a,b with b finite.

Assume that R = 1√
λ

is sufficiently large, so that ũ is very close to vertical cylinders

for t ≤ −R, and we can cut the map at t = −R. On the other hand, the map
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ũλ,γ,a,b will be cut at s = b
λ
. We glue the corresponding Riemann surfaces along the

boundary circles, and we define as in the previous section the glued map ũ]λũλ,γ,a,b

using a cutoff function.

Lemma 5.11. We have

lim
λ→0
‖∂Jλ(ũ]λṽ)‖ = 0.

Proof. Since ∂J ũ = 0, we have

‖∂Jλũ‖ ≤ |J − Jλ|‖∇ũ‖

where the norms are computed on Σũ with disks removed aroud the punctures. Since

R = 1√
λ

and the factor ‖∇ũ‖ grows proportionally to R near the punctures, the right

hand size is estimated by C
√
λ for some constant C > 0.

On the other hand, the map ũλ,γ,a,b is approximately Jλ-holomorphic between s = a
λ
+1

and s = b
λ
− 1, by lemma 5.9.

Finally, in the finite portion of cylinder where the maps are glued, the glued map

converges to a vertical cylinder as λ→ 0 and R→∞.

Note that the vector spaces Vũ for ũ and V+ for ũλ,γ,a,b are isomorphic. Let ∆ be the

diagonal in Vũ ⊕ V+.

Consider the linearized Cauchy-Riemann operators ∂ũ : Vũ⊕Lp,dk (ũ)→ Lp,dk−1(Λ0,1(ũ))

and ∂ũλ,γ,a,b : V+ ⊕ Lp,dk (ũλ,γ,a,b) → Lp,dk−1(Λ0,1(ũλ,γ,a,b)). Pick a finite dimensional

subspace W of C∞0 (Λ0,1(ũ))⊕C∞0 (Λ0,1(ũλ,γ,a,b)) ⊂ Lp,dk−1(Λ0,1(ũ))⊕Lp,dk−1(Λ0,1(ũλ,γ,a,b)),

such that

W+ ∂ũ(L
p,d
k (ũ)) + ∂ũλ,γ,a,b(L

p,d
k (ũλ,γ,a,b)) + (∂ũ ⊕ ∂ũλ,γ,a,b)(∆)

= Lp,dk−1(Λ0,1(ũ)) + Lp,dk−1(Λ0,1(ũλ,γ,a,b)).

We define the stabilization ∂
W

ũ,ũλ,γ,a,b
of ∂ũ ⊕ ∂ũλ,γ,a,b by

W ⊕∆⊕ Lp,dk (ũ)⊕ Lp,dk (ũλ,γ,a,b) → Lp,dk−1(Λ0,1(ũ))⊕ Lp,dk−1(Λ0,1(ũλ,γ,a,b))

(w, (v, v), ξũ, ξũλ,γ,a,b) → w + ∂ũ(v + ξũ) + ∂ũλ,γ,a,b(v + ξũλ,γ,a,b).
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With such a choice of W , the operator ∂
W

ũ,ũλ,γ,a,b
is surjective and has a bounded right

inverse Q∞.

On Lp,dk (ũ]λũλ,γ,a,b), we will use a modified Banach norm : the norm of an element

ξ is given by ‖ξ − ξ̄‖λ +
∑t

i=1 |ξ̄i|, where ξ̄i is defined as in the last section, and the

Banach norm ‖ · ‖λ has exponential weights e
d( 1√

λ
−|s′′i |) in the necks.

Proposition 5.12. Assume that W is chosen so that the operator ∂
W

ũ,ũλ,γ,a,b
is sur-

jective. Then the operator

∂λ = ∂
W

ũ]λũλ,γ,a,b
: W ⊕ Lp,dk (ũ]λũλ,γ,a,b)→ Lp,dk−1(Λ0,1(ũ]λũλ,γ,a,b))

has a uniformly bounded right inverse Qλ, if λ is sufficiently small.

Proof. This is just proposition 5.6 applied to R = 1√
λ
. It is indeed clear that both

operators ∂ũ and ∂ũλ,γ,a,b converge, on the cylinders [−R,+R]×S1 in the center of the

necks, to the linearized operator of a vertical cylinder over a closed Reeb orbit.

Next, we want to show that realizing transversality for these Cauchy-Riemann oper-

ators, and obtaining a uniformly bounded right inverse, is not harder than realizing

transversality for the corresponding gradient flow.

Lemma 5.13. If the pair (fT , gT ) is Morse-Smale and λ > 0 is sufficiently small,

then the linearized Cauchy-Riemann operator

∂ũλ,γ,a,b : Lp,dk (ũ)⊕ V− ⊕ V+ → Lp,dk−1(Λ0,1(ũ))

is surjective.

Proof. First, the linearized Cauchy-Riemann operator will be of the form

∂ũλ,γ,a,bξ =
∂

∂s
ξ + J0

∂

∂t
ξ + S(λs)ξN + λA(λs)ξT

where ξT (resp. ξN) is the tangent (resp. normal) component of ξ with respect to the

submanifold R × NT . Moreover, the operator Dγ◦βa,b = ∂
∂s

+ A(s) is the linearized



66 CHAPTER 5. FREDHOLM THEORY

gradient flow equation for fT
1+λfT

on NT .

Claim. If ξ ∈ ker ∂ũλ,γ,a,b then ξN = 0.

Let F (s) = J0
∂
∂t

+ S(λs) + λA(λs). If ξ ∈ ker ∂ũλ,γ,a,b , we have

∂2

∂s2
ξ − F 2(s)ξ + [

∂

∂s
, F (s)]ξ = 0.

Taking the scalar product with ξN , we obtain

〈ξN ,
∂2

∂s2
ξN〉 − ‖F (s)ξN‖2 + 〈ξN ,

∂

∂s
S(λs)ξN〉 = 0

since 〈ξN , A(s)ξT 〉 = 0.

By the Morse-Bott assumption, we have ‖F (s)ξN‖ ≥ k‖ξN‖. Therefore, after rear-

ranging, we obtain
∂2

∂s2
‖ξN‖2 ≥ 1

2
k2‖ξN‖2

if λ is sufficiently small. Suppose that ξN does not vanish. Then, since ξN must

vanish for s → ±∞, it must have a maximum for some s. But this contradicts the

above inequality, therefore ξN = 0.

Claim. If ξ = ξT ∈ ker ∂ũλ,γ,a,b then ∂
∂t
ξT = 0.

This is a variant of a proposition due to Salamon and Zehnder [31].

Note that, since ξN = 0, we can replace S(λs) with 0. Let us denote the resulting

operator by ∂T , so that we have ∂T ξ = 0.

Next, if ξ ∈ ker ∂ũλ,γ,a,b , then ξ0(s) =
∫ 1

0
ξ(s, t) dt ∈ ker ∂ũλ,γ , and ξ − ξ0 ∈ ker ∂ũλ,γ .

Therefore, we can assume without loss of generality that ξ0 = 0. We have

ξ(s, t′)− ξ(s, t) =

∫ t′

t

∂

∂t
ξ(s, θ) dθ.
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After integrating with respect to t, we obtain

|ξ(s, t′)| =
∣∣∣
∫ 1

0

∫ t′

t

∂

∂t
ξ(s, θ) dθdt

∣∣∣

≤
∫ 1

0

| ∂
∂t
ξ(s, θ)| dθ

≤
(∫ 1

0

| ∂
∂t
ξ(s, θ)|2 dθ

) 1
2
.

Therefore, after integrating with respect to s and t′, with appropriate exponential

weights,

‖ξ‖L2,d ≤ ‖ ∂
∂t
ξ‖L2,d .

Hence,

‖ ∂
∂t
ξ‖ ≤ ‖∇ξ‖

= ‖ ∂
∂s
ξ + J0

∂

∂t
ξ‖

≤ ‖∂T ξ‖+ ‖λA(λs)ξT‖

≤ Cλ‖ξ‖

≤ Cλ‖ ∂
∂t
ξ‖.

If λ is sufficiently small, this inequality forces ∂
∂t
ξ = 0 and therefore ξ = 0. Hence, in

general ξ(s, t) = ξ0(s).

When a = −∞ and b = +∞, we conclude that ker ∂ũλ,γ = kerDγ⊕ span(Rα, ∂t). The

second summand corresponds to reparametrization of the cylinder and is not counted

in the index formula. Hence, the Fredholm operators ∂ũλ,γ and Dγ have the same

index, therefore ∂ũλ,γ is surjective if (fT , gT ) is Morse-Smale.

When a and b are finite, the Cauchy-Riemann operator is approximated, for λ small,

by
∂

∂s
ξ + J0

∂

∂t
ξ + S(λs)ξN .

The kernel of this operator is isomorphic to R× TNT . Hence, by the index formula,
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this operator is surjective. When λ is sufficiently small, the operator ∂ũλ,γ,a,b is sur-

jective as well.

When exactly one of a and b is finite, we can approximate the Cauchy-Riemann op-

erator by cutting off the term λA(λs) near the corresponding end. The kernel of the

approximate operator is then spanned by the stable or unstable manifold of γ(±∞),
∂
∂t

and Rα. Again, it follows that ∂ũλ,γ,a,b is surjective.

Proposition 5.14. Under the assumptions of lemma 5.13, the linearized Cauchy-

Riemann operator

∂ũλ,γ,a,b : Lp,dk (ũ)⊕ V− ⊕ V+ → Lp,dk−1(Λ0,1(ũ))

has a right inverse that is bounded uniformly in λ.

Proof. When S is independent of s and t, lemma 5.13 shows that the corresponding

linear Cauchy-Riemann operator has a right inverse QS. This is true for all opera-

tors ∂S obtained as linearized Cauchy-Riemann operator at a vertical cylinder over a

closed orbit in the gradient trajectory γ. Since the image of that trajectory is com-

pact, there is a uniform bound for the norm of all right inverses QS.

Consider now a linear Cauchy-Riemann operator ∂ with matrix S(s) such that ‖S(s)−
S‖ +

∑k
i=1 ‖

di

dsi
S(s)‖ ≤ 1

2‖QS‖
, then ∂ has a right inverse Q satisfying ‖Q‖ ≤ 2‖QS‖.

Indeed, the assumption implies that ‖∂ − ∂S‖ ≤ 1
2‖QS‖

. Then, we have ‖∂QS − I‖ =

‖∂QS − ∂SQS‖ ≤ 1
2
, so that ∂QS is invertible and ‖(∂QS)−1‖ ≤ 2. We can define the

right inverse as Q = QS(∂QS)−1.

This assumption is certainly satisfied by S(λs) when λ > 0 is sufficiently small and if

we restrict ourselves to a sufficiently small portion of the gradient trajectory γ. We

therefore subdivide γ into a finite number of small enough portions, obtain a uni-

form bound in λ for the right inverses of the corresponding operators, and glue these

Cauchy-Riemann operators. In order to glue trajectories ũλ,γ,a,b and ũλ,γ′,a′,b′ with a

and b′ finite, we cut the first map at s = a
λ

and the second map at s = b′

λ
. Then, we

can apply the estimates of proposition 5.12 to see that the glued operator has a right

inverse that is uniformly bounded in λ as well. Since only trajectories are involved,

the Banach structures have no exponential weights in the necks. Moreover, by lemma
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5.13, the kernels of the operators to be glued are transversal in TS. Therefore, we

can choose W = 0 in proposition 5.12.

Finally, the glued operator can be made arbitrarily close to the actual operator

∂ũλ,γ,a,b , by choosing λ sufficiently small. Therefore, we also obtain a uniformly

bounded right inverse for that operator.

We now return to the holomorphic maps ũ and ṽ and the corresponding glued map

ũ]λṽ.

Let S =
⊕s+

i=1 Tγ+
i
S+

⊕s
′+

i=t+1 Tγ′+i
S+

⊕s−

i=1 Tγ−i
S+

⊕s
′−

i=1 Tγ′−i
S. We define the projec-

tion πũ : TũB → S by restriction to the punctures of Σũ. We also define the projection

π′ṽ : TṽB → S by restriction to the punctures of Σṽ, followed by the linearized gradient

flow ϕfTt′∗ : T
γ
′+
i
S → Tγ−

s−+1−i
S, when i = 1, . . . , t.

Combining propositions 5.12 and 5.14, we obtain the following result.

Corollary 5.15. Let ũ and ṽ be as above. Suppose that the operators ∂
W

ũ : W ⊕
TũB̃ → Lp,dk−1(Λ0,1(ũ)) and ∂

W ′

ṽ : W ′ ⊕ TṽB̃ → Lp,dk−1(Λ0,1(ṽ)) are surjective, and that

πũ(ker ∂
W

ũ ) + π′ṽ(ker ∂
W ′

ṽ ) +
∑s+

i=1 Tγ+
i
W u(γ̃+

i ) +
∑s

′+

i=t+1 Tγ+
i
W u(γ̃

′+
i )

+
∑s−−t

i=1 Tγ−i
W s(γ̃−i ) +

∑s
′−

i=1 Tγ′−i
W s(γ̃

′−
i ) +

∑t
i=1∇fT (γ−

s−+1−i) = S.

Then, for λ sufficiently small, the operator

∂
W⊕W ′
ũ]λṽ

: W ⊕W ′ ⊕ Tũ]λṽB̃ → Lp,dk−1(Λ0,1(ũ]λṽ))

has a uniformly bounded right inverse Qλ.

Proof. By proposition 5.14, it is not necessary to stabilize the linearized operators

corresponding to gradient trajectories. Therefore, only W and W ′ are needed.

Moreover, lemma 5.13 and the above transversality assumption on the evaluation

maps show that the cokernel does not grow when we restrict ourselves to the diagonal

∆ of the space of sections not vanishing at a puncture where we glue.

Therefore, we can apply proposition 5.12 with stabilization by W ⊕W ′.
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5.3.3 Implicit function theorem

In this section, we show how to use the gluing estimates from the previous sections

in order to glue holomorphic curves. We need the following result, used in [21], that

is a consequence of the Banach fixed point theorem.

Proposition 5.16. Assume that a smooth map f : E → F of Banach spaces has a

Taylor expansion

f(ξ) = f(0) +Df(0)ξ +N(ξ)

such that Df(0) has a finite dimensional kernel and a right inverse Q satisfying

‖QN(ξ)−QN(η)‖ ≤ C(‖ξ‖+ ‖η‖)‖ξ − η‖

for some constant C. Let δ = 1
8C

. If ‖Qf(0)‖ ≤ δ
2
, then f−1(0) ∩ Bδ(ξ) is a smooth

manifold of dimension equal to dim kerDf(0).

More precisely, there exists a smooth function

φ : kerDf(0) ∩Bδ(ξ)→ Q(F )

such that f(ξ + φ(ξ)) = 0 and all zeroes of f in Bδ(ξ) are of the form ξ + φ(ξ).

We want to apply this proposition to the section ∂J : B̃ → Ẽ . By proposition 5.2, the

differential ∂ũ of ∂J is Fredholm. By propositions 5.6 and 5.12, this linear operator

has a uniformly bounded right inverse Q.

It follows from standard results [6] that the remainder N of the Taylor expansion

satisfies an estimate

‖Q(ξ)−Q(η)‖ ≤ C ′(‖ξ‖+ ‖η‖)‖ξ − η‖.

Indeed, the operators ∂J and ∂ũ have the same form as in Floer homology, and this

result is independent of the nature of the asymptotics.

The constant C is then given by ‖Q‖C ′ <∞. By lemmata 5.5, 5.9 and 5.11, we can

find glued maps with f(0) as small as we want. Therefore, we can apply proposition

5.16 in order to find nearby holomorphic maps.



Chapter 6

Transversality

6.1 Transversality conditions

In order to realize our moduli spaces as nice geometric objects with the virtual di-

mension predicted by the Fredholm index, we have to make sure that the Fredholm

operators obtained by linearizing the Cauchy-Riemann equation are surjective.

Using the results of the previous chapter, we can write sufficient conditions to ensure

that ∂J : B → E is everywhere transverse to the zero section. LetM = ∂
−1

J (0) be the

set of J-holomorphic curves in B.

The following properties must hold for every moduli space of level k (generalized)

holomorphic maps.

(i) For every level 1 map ũ ∈ M, the linearized Cauchy-Riemann operator ∂ũ is

surjective.

(ii) The pair (fT , g) is Morse-Smale.

(iii) For every M and M′, for every collection S1, . . . , Sk of orbit spaces in the

negative asymptotics ofM and in the positive asymptotics ofM′, the evaluation

maps ev− :M→ S1 × . . .× Sk and ev+ :M′ → S1 × . . .× Sk are transverse.

(iv) For everyM, its positive (resp. negative) evaluation map to the product of its

71
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positive (resp. negative) asymptotic orbit spaces is transverse to any product

of unstable (resp. stable) manifolds for fT .

(v) For every M and M′, for every collection S1, . . . , Sk of orbit spaces in the

negative asymptotics ofM and in the positive asymptotics ofM′, the evaluation

map ev− :M→ S1 × . . .× Sk and the generalized evaluation map ϕfT ◦ ev+ :

R+ ×M′ → S1 × . . .× Sk : (t, ũ)→ ϕfTt ◦ ev+(ũ) are transverse.

When these conditions are satisfied, we can construct the moduli spacesMfT of gen-

eralized holomorphic maps, using the moduli spacesM with degenerate asymptotics

and the gradient flow of fT , in the following way :

MfT (S+
1 , . . . , S

+
s+

;S−1 , . . . , S
−
s−)

= M(S+
1 , . . . , S

+
s+

;S−1 , . . . , S
−
s−)

∪ M(S+
1 , . . . , S

+
s+

;S ′1, . . . , S
′
s′)×S′1×...×S′s′ R

+ ×M(S ′1, . . . , S
′
s′ ;S

−
1 , . . . , S

−
s−)

∪ . . .

where we use ev− and ϕfT ◦ ev+ in the fibered products, and we take the union over

any number of successive fibered products. Note that this union is finite, since the

action spectrum is discrete.

Then, we make the transition to non-degenerate asymptotics using the stable and

unstable manifolds of fT :

MfT (γ+
1 , . . . , γ

+
s+

; γ−1 , . . . , γ
−
s−)

= (W u(γ+
1 )× . . .×W u(γ+

s+
))×S+

1 ×...×S
+

s+

MfT (S+
1 , . . . , S

+
s+

;S−1 , . . . , S
−
s−)×S−1 ×...×S−s− (W s(γ−1 )× . . .×W s(γ−

s−)).

If the above transversality conditions are not automatically satisfied, we have to mod-

ify the section ∂J : B → E so that the perturbed section satisfies these properties.

In order to construct the moduli spaces with degenerate asymptotics, we choose to

keep the almost complex structure J fixed and perturb the right hand side of the

Cauchy-Riemann equation. Indeed, the greatest benefit of this Morse-Bott setup is
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to work with symmetric Reeb dynamics and symmetric almost complex structures.

Therefore, we prefer to keep this symmetry during all steps of the construction of the

moduli spaces : it is probably much easier to solve the Cauchy-Riemann equations

for a natural J , and then understand the obstruction bundle in this natural setup,

than to solve those equations for generic J .

Moreover, a generic J is generally not enough in contact homology to guarantee

transversality, because of multiply covered cylinders, for example. The almost com-

plex structure would have to depend on the points of the Riemann surface as well,

which would make things even harder for computations.

Therefore, we will use the virtual cycle techniques developed in [20] and in [21], for

example, in order to obtain a branched, labeled pseudo-manifold with corners, as

explained in [24].

6.2 Virtual neighborhood

6.2.1 Holomorphic maps

We now describe the space B in which we will construct the virtual cycle.

Bp,dk (g,m;S+
1 , . . . , S

+
s+

;S−1 , . . . , S
−
s−) = {stable maps of genus g

with m marked points and the given asymptotics, each level in Bp,dk }/ ∼

where (Σ, j, ũ) ∼ (Σ′, j′, ũ′) if and only if they have the same number k of levels, and

for each level i, i = 1, . . . , k, there is δi ∈ R and a biholomorphism φi : (Σi, j) →
(Σ′i, j

′) preserving the marked points such that ui = u′i ◦ φi and ai + δi = a′i ◦ φi.

The space B can be described as the union of finitely many strata : B = ∪DB
D

, where

D are the patterns corresponding to holomorphic maps in B.

The pattern of a stable holomorphic map (Σ, j, ũ) consists of the following data :

the intersection pattern of the domain Σ, with its labeling by levels, the number of

marked points on each component of Σ, and the orbit space corresponding to each
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node or puncture of Σ.

Lemma 6.1. There exists a neighborhood W of the set of holomorphic maps in B
admitting the structure of a stratified Banach orbifold.

Proof. Fix a pattern D; for each holomorphic map (Σ, j, ũ) ∈ BD, let us construct a

uniformization chart πDU : ŨD → UD containing it.

First consider the domain Σ. We can add finitely many points x1, . . . , xl to make it a

stable curve. Let Hj (j = 1, . . . , l) be a small piece of real codimension 2 hypersurface

in R×M that is transversal to ũ(Σ) at ũ(xl). Such hypersurfaces Hj, j = 1, . . . , l, can

always be found, provided the corresponding marked points are chosen generically.

We add in each level Σi one more marked point x̃i; let H̃i be a small piece of real

codimension 3 hypersurface in R ×M that is transversal to R × ũ(Σ) at ũ(x̃i). For

this, we need to choose x̃i so that ∂
∂t

is not tangent to ũ(Σ) at ũ(x̃i). If this cannot

be achieved in level i, then this level consists of one or more vertical cylinders over a

closed Reeb orbit. By the stability condition, there is at least one marked point on

each cylinder. We then choose one of these points, call it x̃i, and let H̃i be a small

piece of real codimension 1 hypersurface in R×M that is transversal to R at ũ(x̃i).

Each component of Σ with its marked points is represented by a point in Mg,n for

appropriate g and n. Pick a uniformization chart ofMg,n centered at this point, and

let πDV : Ṽ D → V D be their product.

We define

ŨD = {(Σ′, j′, ũ′) ∈ BD | (Σ′, j′) ∈ Ṽ D, ‖ũ− ũ′‖ ≤ ε,

ũ′(xj) ∈ Hj, ũ
′(x̃i) ∈ H̃i}.

We work with k ≥ 2 so that that the Lp,dk norm is stronger than the C1 norm. In par-

ticular, if ε > 0 is sufficiently small, all maps in ŨD keep the transversality properties

as above with respect to the hypersurfaces Hj, j = 1, . . . , l, and H̃i, i = 1, . . . , k.

Let Γ be the automorphism group of (Σ, j, ũ). We define an action of σ ∈ Γ on ŨD

by σ(Σ′, j′, ũ′) = (Σ′′, j′′, ũ′′) where Σ′′ = σ(Σ′), j′′ = σ∗j
′, ũ′′ = ũ′ ◦ σ−1. If ε > 0 is

chosen sufficiently small, then for j = 1, . . . , l, there is a unique point pj in a small

neighborhood of σ(xj) such that ũ′′(pj) ∈ Hj. We define x′j = pj and we proceed
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similarly to define x̃′i, i = 1, . . . , k.

Let UD = ŨD/Γ and let πDU : ŨD → UD be the corresponding projection map.

Next, let us construct a uniformization chart πU : Ũ → U across the strata.

First, we need to take care of the nodes inside each stratum. For each node qi,

i = 1, . . . , v, we introduce a complex coordinate ci that is used to glue (Σ, j) near

qi : on the 2 components of Σ adjacent to pi, we cut out small disks centered on qi

of radius |ci| and identify the boundaries with relative angle arg ci. We denote the

obtained Riemann surface by (Σc̄, j). Given (Σ, j, ũ) ∈ B, we define the glued map ũc̄

on (Σc̄, j) in the standard way using the exponential map at pi and a cutoff function.

Now, suppose that (Σ, j, ũ) ∈ B has two levels (Σ1, j, ũ1) and (Σ2, j, ũ2), and t

ends need to be glued together. We now define the twisted map τθ̄,l̄ũ1, where

θ̄ = (θ1, . . . , θt) and l̄ = (l1, . . . , lt) ∈ Rt. Near puncture x−i , the map τθ̄,l̄ũ1 is

given by

τθ̄,l̄a(s, t) = a(s, t) + liρi(s),

τθ̄,l̄ϑ(s, t) = ϑ(s, t) + θiρi(s),

τθ̄,l̄z(s, t) = z(s, t).

We define the map ũR,θ̄,l̄ =
(
τθ̄,l̄ũ1

)
]Rũ2. We denote the domain of this map by

(ΣR,θ̄,l̄, j).

We define

Ũ = {(Σ′R,θ̄,l̄,c̄, j
′, ũ′) ∈ B | (Σ′, j′) ∈ Ṽ , R > R0, θ̄, l̄ ∈ Bt

ε, c̄ ∈ B2t
ε ,

‖ũ′ − ũR,θ̄,l̄,c̄‖ ≤ ε, ũ′(xj) ∈ Hj, ũ
′(x̃i) ∈ H̃i}

where Bk
ε is the ball of radius ε centered on the origin of Rk.

We then extend the action of the automorphism group Γ to Ũ in the following way.

For every element (Σ′
R,θ̄,l̄,c̄

, j′, ũ′) of Ũ , the Riemann surface (Σ′
R,θ̄,l̄,c̄

, j′) is in a small

uniformization chart Ṽ around (Σ, j) in Mg,n. Since Γ consists of automorphisms of

(Σ, j) and the latter act on Ṽ , we can define the action of σ ∈ Γ as : σ(Σ′, j′, ũ′) =

(Σ′′, j′′, ũ′′) where Σ′′ = σ(Σ′), j′′ = σ∗j
′, ũ′′ = ũ′ ◦ σ−1. The images of the additional
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marked points, associated to pieces of hyperplanes, are defined as before.

Finally, we let U = Ũ/Γ and let πU : Ũ → U be the corresponding projection map.

For holomorphic curves in a symplectic cobordism, the same constructions can be

used. The only difference is that no marked point x̃ is introduced in the level corre-

sponding to the cobordism itself.

There is a bundle E → B that is obtained from the vector bundles Ẽ → B̃ introduced

in the previous chapter, over each stratum BD. There is no topology on E across

the strata. All we need for the virtual cycle construction is the natural way to glue

sections of Ẽ vanishing in a neighborhood of the nodes.

6.2.2 Generalized holomorphic maps

We now describe the space B that is appropriate for generalized holomorphic maps.

BfT ,p,dk (g,m; γ+
1 , . . . , γ

+
s+

; γ−1 , . . . , γ
−
s−) = {generalized stable maps of genus g

with m marked points and the given asymptotics, each sublevel in Bp,dk }/ ∼

where the equivalence relation ∼ is defined as in the last section.

As before, we have a stratification of this space according to the pattern D of a

generalized stable map. In addition to the information of the last section, the pattern

D also contains the labeling of the sublevels.

Lemma 6.2. There exists a neighborhood WfT of the set of generalized holomorphic

maps in BfT admitting the structure of a stratified Banach orbifold.

Proof. This is just a variant of lemma 6.1, and we just have to take care of the extra

variables ti,j, for j = 1, . . . , li−1 and i = 1, . . . , k, where li is the number of sublevels

in level i and k is the number of levels.

We stabilize each sublevel of a stable map as before, and we let

Ũ fT ,D = {(Σ′, j′, t′i,j, ũ′) ∈ B
fT ,D | (Σ′, j′) ∈ Ṽ D, t′i,j ∈ R+, |t′i,j − ti,j| ≤ ε,

‖ũ− ũ′‖ ≤ ε, ũ′(xj) ∈ Hj, ũ
′(x̃i) ∈ H̃i}
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so that Ũ fT ,D has codimension k−1 in BfT ,D, independently of the number of sublevels.

The quotient by the automorphism group Γ is defined as before.

For the uniformization charts πfTU : Ũ fT → U fT across the strata, we need to glue

gradient trajectories of fT at critical points, between adjacent levels. We use a large

gluing parameter Ri between level i and level i + 1, so that all glued trajectories

have length Ri. The result is a generalized level 1 stable curve with
∑k

i=1 li sublevels.

Therefore, when all ti,j > 0, we define

Ũ fT = {(Σ′c̄, j′, t′i,j, Ri, ũ
′) ∈ BfT | (Σ′, j′) ∈ Ṽ , c̄ ∈ B2t

ε ,

t′i,j ∈ R+, |t′i,j − ti,j| ≤ ε, Ri > R0,i, ‖ũ′ − ũc̄‖ ≤ ε,

ũ′(xj) ∈ Hj, ũ
′(x̃i) ∈ H̃i}.

On the other hand, when some variable ti,j = 0, we must allow for 2 types of defor-

mation : ti,j can become positive, and the sublevels j and j+1 in level i can be glued

into a single sublevel, with a large gluing parameter Ri,j. This degree of freedom can

be parametrized by a single variable τi,j ∈ R, given by τi,j = ti,j when τi,j ≥ 0 and

τi,j = − 1
Ri,j

when τi,j < 0.

We will construct the open set Ũ fT in the case of one variable ti,j = 0, the general

case being analogous. Then, we have Ũ fT = Ũ fT
ti,j
∪ Ũ fT

Ri,j
, where Ũ fT

ti,j
is defined as Ũ fT

above, with the restriction ti,j ≥ 0, and Ũ fT
Ri,j

is defined as Ũ in lemma 6.1, with the

additional variables ti′,j′ .

Ũ fT
Ri,j

= {(Σ′Ri,j ,θ̄,l̄,c̄, j
′, t′i′,j′ , ũ

′) ∈ BfT | (Σ′, j′) ∈ Ṽ , Ri,j > R0, θ̄, l̄ ∈ Bt
ε, c̄ ∈ B2t

ε ,

t′i′,j′ ∈ R+, |t′i′,j′ − ti′,j′ | ≤ ε, ‖ũ′ − ũRi,j ,θ̄,l̄,c̄‖ ≤ ε,

ũ′(xj) ∈ Hj, ũ
′(x̃i) ∈ H̃i}

where the vectors θ̄ and l̄ correspond to the nodes between sublevels j and j + 1 in

level i only.

The quotient by the automorphism group is defined as before.
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Next, we describe the space B for Jλ-holomorphic maps, 0 < λ ≤ λ0.

B(0,λ0],p,d

k (g,m; γ+
1 , . . . , γ

+
s+

; γ−1 , . . . , γ
−
s−) = {(λ, ũ) | 0 < λ ≤ λ0, ũ stable maps

of genus g with m marked points and the given asymptotics,

each level in Bp,d,λk }/ ∼

with the equivalence relation ∼ as before.

We want to construct the relative virtual cycle in the following compactification of

that space :

B[0,λ0],p,d

k = B(0,λ0],p,d

k ∪ BfT ,p,dk .

Lemma 6.3. There exists a neighborhood W [0,λ0] of the set of Jλ-holomorphic maps

in B[0,λ0]
admitting the structure of a stratified Banach orbifold.

Proof. The definition of the uniformization charts ŨD when λ = 0 is identical to

lemma 6.2. When λ > 0, we use the uniformization charts ŨD and Ũ from lemma

6.1, multiplied by a small interval in λ.

Therefore, we just have to construct uniformization charts π
[0,λ0]
U : Ũ [0,λ0] → U [0,λ0]

near a stable map with λ = 0. Note that we must have Ũ [0,λ0] ∩ {λ = 0} = Ũ fT .

Then, for any ũ′ ∈ Ũ fT , we have to glue its adjacent sublevels using ũ′i,j+1]λũ
′
i,j. We

denote the result of this operation by ũ′λ, with domain Σ′λ.

We then define

Ũ [0,λ0] = {(λ,Σ′′, j′′, ũ′′) ∈ B[0,λ0] | 0 ≤ λ ≤ ε,Σ′′ = Σ′λ,

‖ũ′′ − ũ′λ‖ ≤ ε for some ũ′ ∈ Ũ fT }.

Since Σ′λ is obtained by gluing Σ′ with long cylinders at some of the nodes, it is still

true that Σ′λ is in a small uniformization chart around (Σ, j) in Mg,n. Therefore, we

can extend the action of the automorphism group Γ as before, and define U [0,λ0] =

Ũ [0,λ0]/Γ.
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6.3 Relative virtual cycle

We now want to use virtual cycle techniques to obtain the following results.

Proposition 6.4. There exists a relative cycle Mvir in Bp,dk of dimension equal to

the Fredholm index of ∂J and such that

∂Mvir =
⋃
Mvir ×SMvir

where all fibered products are transverse. The isotopy class of these relative virtual

cycles depends only on (M,α, J).

Proposition 6.5. There exists a relative virtual cycle Mvir
[0,λ0] in B[0,λ0],p,d

k of dimen-

sion equal to the Fredholm index of ∂J and such that

Mvir
[0,λ0] ∩ {λ = 0} =Mvir

and

Mvir
[0,λ0] ∩ {λ = λ0} =Mvir

λ0
.

The isotopy class of these relative virtual cycles depends only on (M, {αλ, Jλ}λ∈[0,λ0]).

These results will be proved using the same techniques.

First, for each holomorphic map ũ, we can choose a finite dimensional subspace Wũ

of the target space of ∂J , consisting of smooth functions with support away from

the nodes, in order to make the linear operator ∂ũ surjective. There exists a small

neighborhood UD
ũ of ũ in WD such that, for all ṽ ∈ UD

ũ , the stabilized operator ∂
Wũ

ṽ

is surjective.

By propositions 5.6 and 5.12, there exists a small neighborhood Uũ of ũ in W such

that, for all ṽ ∈ Uũ, the stabilized operator ∂
Wũ

ṽ is surjective.

On the other hand, for each holomorphic map ũ, there exists a finite dimensional

subspace W ′
ũ of TũB, consisting of smooth functions with support away from the

nodes, such that the differential at ũ of the evaluation map ev+ × ev− maps W ′
ũ sur-

jectively to the direct sum of the tangent spaces of the asymptotic orbit spaces of ũ.
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If the neighborhood Uũ is sufficiently small, the same will hold for any ṽ ∈ Uũ. Let

W̃ũ = ∂ũ(W
′
ũ).

We define Rũ = Wũ ⊕ W̃ũ. By the compactness results 4.4 and 4.16, we can extract

from the collection Uũ a finite covering Ui of the set of holomorphic maps in W .

Let R = ⊕iRi be the corresponding finite dimensional space. By proposition 5.16,

the set Mvir
Ũ ,R

= (∂J)−1(R) of maps ũ in a uniformization chart Ũ for W satisfying

∂J ũ ∈ R is a smooth manifold with corners, of dimension index ∂J + dimR. In order

to obtain a local virtual cycle, we need to choose a generic element ν ∈ R and define

Mvir
Ũ

= (∂J + ν)−1(0) ∩ Ũ .

We are now in position to use the construction of multi-sections from [21] in order

to construct the relative virtual cycle. Indeed, this construction is purely topological

and is based on the stratified Banach orbifold structures that we obtained in lemmata

6.1, 6.2 and 6.3. Each element of R corresponds to a multi-section on W . We now

explain how to choose a generic element of R in order to obtain relative virtual cycles

satisfying the propositions 6.4 and 6.5.

Let E and A be the energy and the area of the stable curves, as in lemma 3.9. Each

virtual neighborhood W with given asymptotics has a well-defined pair (E,A). We

use the lexicographic ordering on these pairs : (E1, A1) < (E2, A2) if E1 < E2 or if

E1 = E2 and A1 < A2. Note that if ũ is a stable map consisting of several adjacent

levels in a stable map ṽ, then (Eũ, Aũ) < (Eṽ, Aṽ).

We construct relative virtual cycles in the virtual neighborhoods W in the lexico-

graphic order for the pairs (E,A). Therefore, when we construct Mvir, the relative

virtual cycles that should appear in its boundary ∂Mvir are already constructed. In

other words, we already have a generic multi-section ν on the strata D corresponding

to stable maps with several levels. Note that there exist generic multi-sections in W
extending the given multi-section ν. Indeed, by propositions 5.6 and 5.12, we keep

surjectivity of the linearized operator if we extend ν in the natural way on glued

holomorphic curves.

Hence, by Sard’s theorem it is possible to choose a generic element ν̄ ∈ R extending

ν and such that, for each Ũi, the preimage of ν̄ under the natural evaluation map



6.4. FREE ACTIONS ON VIRTUAL NEIGHBORHOOD 81

Mvir
Ũi,R
→ R is a branched manifold with corners, of dimension index ∂J .

On the other hand, we want to choose ν̄ ∈ R so that the evaluation maps to the orbit

spaces satisfy the transversality conditions (iii), (iv) and (v) from section 6.1. When

constructing the virtual cycleMvir, we need to enforce these conditions with respect

to the finite number of virtual cycles we already constructed. Hence, each evaluation

map ev :Mvir → S must be transverse to finitely many given maps f : X → S. By

construction of R, it is clear that the map evR :Mvir
R → S is transverse to any map

f : X → S. Therefore, we just need to find a regular value of the natural evaluation

mapMvir
R ×S X → R. By Sard’s theorem, we can achieve this if we choose ν̄ outside

a set of measure zero in R. Therefore, we can find ν̄ ∈ R satisfying all the above

requirements simultaneously.

Finally, once the virtual cycles Mvir are constructed, we can also construct the vir-

tual cycles MfT ,vir as explained in section 6.1. Then, we extend the corresponding

multi-sections from W [0,λ0] ∩{λ = 0} to W [0,λ0] as above. This way, we can construct

all the virtual cycles Mvir
[0,λ0].

In what follows, we will refer to the moduli spaces of holomorphic maps or the virtual

cycles as M, in order to keep the notation simple.

6.4 Free actions on virtual neighborhood

In this section, we assume that a compact Lie group G acts on the contact manifold

M , preserving the contact form α and the almost complex structure J . We also

assume that this action on M induces a free action on the virtual neighborhoodW of

(a connected component of) the set of J-holomorphic maps to R×M .

Proposition 6.6. Under the above assumptions, if dimG > indexW(∂J), then the

relative virtual cycle in W is empty.

Proof. We adapt the construction of section 6.2 to construct a stratified Banach orb-

ifold structure on W/G. In addition to the marked points x̃i, i = 1, . . . , k, designed

to eliminate the free action of R by translation, we introduce marked points to eli-

matinate the free action of G. Let v1, . . . , vh be a basis for the Lie algebra G of G.
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Let vM1 , . . . , v
M
h be the corresponding vector fields on M . Choose marked points x̃Gj ,

j = 1, . . . , h on Σ, and small pieces of real codimension 3 hyperplanes HG
j passing

through ũ(x̃Gj ) in such a way that ũ∗(Tx̃Gj Σ)⊕RvMj ⊕HG
j = Tũ(x̃Gj )M . Since the action

of G on W is free, it is always possible to find these marked points and hyperplanes.

We then define the uniformization charts ŨD,G and ŨG as before, with the additional

requirement that ũ′(xGj ) ∈ HG
j for j = 1, . . . , h. The action of the automorphism

group Γ of ũ is extended to ŨD,G and ŨG as before, and we define the quotients UD,G

and UG. Note that, if those local slices near ũ are chosen sufficiently small, then 2

distincts points are not in the same G-orbit, because the action of G on W is free.

Hence, UD,G and UG are neighborhoods of ũ in W/G, and they induce as before a

stratified Banach orbifold structure.

Since the almost complex structure J is preserved by the action of G, the Fred-

holm section ∂J descends to W/G. We are therefore in the same situation as in

the previous section, and we can construct a relative virtual cycle for the Fredholm

section in W/G. Moreover, the relative virtual cycle in W is the preimage under

the natural projection π : W → W/G of the relative virtual cycle in W/G. But

indexW/G(∂J) = indexW(∂J) − dimG < 0, hence both relative virtual cycles are

empty.



Chapter 7

Coherent orientations

7.1 Nondegenerate asymptotics

The construction of a set of coherent orientations for the moduli spaces in Symplectic

Field theory has been carried out in a joint work with Klaus Mohnke [1].

This abstract construction is done at the level of Fredholm operators. Therefore, we

will consider the space O(γ+
1 , . . . , γ

+
s+

; γ−1 , . . . , γ
−
s−) of Fredholm operators with ana-

lytical expression near the punctures corresponding to the given closed Reeb orbits.

For fixed asymptotics, this space is contractible.

Moreover, O carries a natural real line bundle L, the determinant line bundle of the

Fredholm operators, defined as the top external power of the index bundle of these

operators. Since O is contractible, L is trivial and has a global nonvanishing section.

The choice of such a section (up to homotopy) is equivalent to the choice of an ori-

entation on the corresponding moduli spaceM, because π∗L is naturally isomorphic

to ΛtopTM, where π : M → O associates to every holomorphic map its linearized

Cauchy-Riemann operator.

It is important to realize that the abstract construction in O is independent of the

construction of the moduli spacesM, and in particular of the specific way we achieve

transversality.

Coherent orientations satisfy the following axioms :

(i) The coherent orientation of O(γ+
1 , . . . , γ

+
k , γ

+
k+1, . . . , γ

+
s+

; γ−1 , . . . , γ
−
s−) and the

83
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coherent orientation of O(γ+
1 , . . . , γ

+
k+1, γ

+
k , . . . , γ

+
s+

; γ−1 , . . . , γ
−
s−) coincide up to

a factor (−1)|γ
+
k |.|γ

+
k+1|, where |γ±i | = µCZ(γ±i ) + n− 3.

A similar statement holds for reordering of negative punctures.

(ii) The disjoint union map u

O(γ+
1 , . . . , γ

+
s+

; γ−1 , . . . , γ
−
s−)×O(γ′+1 , . . . , γ

′+
s′+ ; γ′−1 , . . . , γ

′−
s′−)

→ O(γ+
1 , . . . , γ

+
s+
, γ′+1 , . . . , γ

′+
s′+ ; γ−1 , . . . , γ

−
s− , γ

′−
1 , . . . , γ

′−
s′−)

preserves coherent orientations up to a factor

(−1)
(|γ−1 |+...+|γ

−
s−
|)(|γ′+1 |+...+|γ′

+

s′+
|)
.

(iii) The gluing map φ

O(γ+
1 , . . . , γ

+
s+

; γ−1 , . . . , γ
−
s−)×O(γ′+1 , . . . , γ

′+
s′+ ; γ′−1 , . . . , γ

′−
s′−)

→ O(γ+
1 , . . . , γ

+
s+
, γ′+t+1, . . . , γ

′+
s′+ ; γ−1 , . . . , γ

−
s−−t, γ

′−
1 , . . . , γ

′−
s′−)

that is defined when γ−
s−+1−i = γ′+i for i = 1, . . . , t, preserves coherent orienta-

tions up to a factor

(−1)
(|γ′+t+1|+...+|γ′

+

s′+
|)(|γ−1 |+...+|γ

−
s−−t

|)
.

7.2 Degenerate asymptotics

We now explain how to generalize the construction of coherent orientations to the

Morse-Bott case.

First, the definition of coherent orientations requires that the orbit spaces Si are

orientable. Indeed, in order to induce an orientation on A×S B from orientations on

A and B, we also need an orientation on S. Then, we define an orientation of A×SB
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so that the isomorphism

T(a,b)(A×S B)⊕ TsS ' TaA⊕ TbB

changes the orientations by a sign (−1)dimB dimS. This sign is necessary to make the

fibered product associative.

Then, note that the moduli spaces are not always orientable. Indeed, when the asymp-

totic expression of the linearized Cauchy-Riemann operator is not fixed, theorem 2

of [7] shows that the determinant line bundle over the space O of Cauchy-Riemann

operators is not trivial. Therefore, a non contractible loop in NT may induce a “dis-

orienting loop” of asymptotic linearized Cauchy-Riemann operators that makes the

determinant line bundle non orientable.

If the projection of that disorienting loop to ST is contractible, then the original loop

in NT is homotopic to a closed Reeb orbit with period dividing T . That Reeb orbit

is then bad in the following sense :

Definition 7.1. A Reeb orbit γ is said to be bad if it is the 2m-cover of a simple

orbit γ′ ∈ ST and if (µ(S2T )± 1
2

dimS2T )− (µ(ST )± 1
2

dimST ) is odd. If a Reeb orbit

γ is not bad, then we say it is good.

This definition extends the definition of bad orbits in the non-degenerate case that

was formulated in [1].

Note that there are no bad orbits if and only if there are no orbits γ ∈ ST so that

(µ(S2T )− 1
2

dimS2T )− (µ(ST )− 1
2

dimST ) is odd and if dimS2T − dimST is even. If

dimS2T − dimST is odd, then the Poincaré return map of a Reeb orbit contained in

NT is orientation reversing in N2T . This implies that N2T is not orientable.

Assume that there are no bad orbits. Then a disorienting loop in NT for the de-

terminant line bundle of the linearized Cauchy-Riemann operator projects to a non-

contractible loop in ST . Therefore, in order to guarantee that the moduli spaces are

orientable, we also have to assume that π1(ST ) has no disorienting loops.

Summing up, we have
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Lemma 7.2. Assume that, for all T ∈ σ(α), NT and ST are orientable, π1(ST ) has

no disorienting loop, and all elements of ST are good. Then the moduli spaces M of

holomorphic maps are orientable.

We now assume that the moduli spaces are orientable. Let us define a gluing map for

the kernel of linearized Cauchy-Riemann operators with degenerate asymptotics. Let

O and O′ be spaces of such operators such that some orbit spaces S in the negative

asymptotics of O are also present in the positive asymptotics of O′. Then we can

define O]SO′ to be the space of operators ∂]S∂
′
, where ∂ ∈ O and ∂

′ ∈ O′. Clearly,

the choice of an orientation on O]SO′ is equivalent to the choice of an orientation on

M×SM′, where M and M′ are the corresponding moduli spaces. Indeed, if the

operators ∂ and ∂
′

are surjective (for example after stabilization), then the kernel of

O]SO′ is isomorphic to ker ∂ ⊕S ker ∂
′
.

We want to define a gluing map φ inducing from this an orientation on the space

O′′ of operators obtained by gluing operators in O and operators in O′ at punctures

asymptotic to orbit spaces S.

Proposition 7.3. There is a natural isomorphism

φ : ker ∂ ⊕S ker ∂
′ → ker(∂]∂

′
)

that is defined up to homotopy.

Proof. Let QR be the uniformly bounded right inverse for the glued operator ∂R ∈ O′′,
as in proposition 5.6. We define φ to be the composition of the map gR, as in section

5.3, and the projection map I −QR∂R from the domain of ∂R to its kernel, along the

image of QR. In other words, φ = (I −QR∂R) ◦ gR.

We claim that the restriction of φ to ker ∂ ⊕S ker ∂
′

is an isomorphism. By the index

formula, the dimensions of both spaces agree, and it is enough to show that φ is

injective.

By contradiction, assume that for any large R, we can find ξR ∈ ker ∂ and ξ′R ∈ ker ∂
′

such that ‖ξR‖ + ‖ξ′R‖ = 1 and gR(ξR, ξ
′
R) = QRηR, for some ηR. Applying ∂R

to the last equation, we see that limR→∞ ∂RgR(ξR, ξ
′
R) = 0. But since ∂RQR = I,
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it follows that ηR → 0 when R → ∞. Using this in the original equation gives

limR→∞ gR(ξR, ξ
′
R) = 0. But this contradicts ‖ξR‖+ ‖ξ′R‖ = 1.

With this definition of the gluing map, we can construct, as in [1], a set of coherent

orientations on the moduli spaces.

Coherent orientations satisfy the following axioms :

(i) The coherent orientation of O(S+
1 , . . . , S

+
k , S

+
k+1, . . . , S

+
s+

;S−1 , . . . , S
−
s−) and the

coherent orientation of O(S+
1 , . . . , S

+
k+1, S

+
k , . . . , S

+
s+

;S−1 , . . . , S
−
s−) coincide up

to a factor (−1)|S
+
k |.|S

+
k+1|, where |S±i | = µ(S±i )± 1

2
dimS±i + n− 3.

A similar statement holds for reordering of negative punctures.

(ii) The disjoint union map u

O(S+
1 , . . . , S

+
s+

;S−1 , . . . , S
−
s−)×O(S ′+1 , . . . , S

′+
s′+ ;S ′−1 , . . . , S

′−
s′−)

→ O(S+
1 , . . . , S

+
s+
, S ′+1 , . . . , S

′+
s′+ ;S−1 , . . . , S

−
s− , S

′−
1 , . . . , S

′−
s′−)

preserves coherent orientations up to a factor

(−1)
(|S−1 |+...+|S

−
s−
|)(|S′+1 |+...+|S′

+

s′+
|)
.

(iii) The gluing map φ

O(S+
1 , . . . , S

+
s+

;S−1 , . . . , S
−
s−)]

S
′+
1 ×...×S

′+
t
O(S ′+1 , . . . , S

′+
s′+ ;S ′−1 , . . . , S

′−
s′−)

→ O(S+
1 , . . . , S

+
s+
, S ′+t+1, . . . , S

′+
s′+ ;S−1 , . . . , S

−
s−−t, S

′−
1 , . . . , S

′−
s′−)

that is defined when S−
s−+1−i = S ′+i for i = 1, . . . , t, preserves coherent orien-

tations up to a factor

(−1)
(|S′+t+1|+...+|S′

+

s′+
|)(|S−1 |+...+|S

−
s−−t

|)
(−1)

∑t
i=1(dimS−

s−−t+i
∑t
j=i+1 |S

−
s−−t+j

|)
.

Lemma 7.4. Under the assumptions of lemma 7.2, the moduli spaces of holomorphic

maps can be equipped with coherent orientations.
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We construct coherent orientations following the same steps as in [1].

Step 0. Operators on closed Riemann surfaces are oriented using their natural

complex orientation.

Step 1. Operators on spheres with one positive puncture corresponding to asymp-

totics in the orbit space S are given an arbitrary orientation.

Step 2. Operators on spheres with one negative puncture corresponding to asymp-

totics in the orbit space S are given the orientation so that the induced orientation

on O(∅;S)]SO(S; ∅) is the complex orientation of step 0.

Step 3. Operators on general Riemann surfaces with positive and negative punc-

tures are given the orientation so that the induced orientation on

O(∅;S+
s+

)]S+

s+
. . . O(∅;S+

1 )]S+
1

O(S+
1 , . . . , S

+
s+

;S−1 , . . . , S
−
s−)]S−

s−
O(S−

s− ; ∅) . . . ]S−1 O(S−1 ; ∅)

is the complex orientation of step 0.

From now on, we will use directly the moduli spaces in our notation, since that makes

it easier to see the fibered products, keeping in mind that our construction is actually

at the level of operators in O.

Proof of lemma 7.4. We need to check that the orientations constructed above satisfy

the 3 axioms for coherent orientations.

First, for reordering punctures, we use the identity

A×S1 B1 ×S2 B2 = A×S2 B2 ×S1 B1(−1)(dimS1+dimB1)(dimS2+dimB2)

and apply it to A = M and Bi moduli spaces of holomorphic spheres with one

positive puncture. Since dimBi = n − 3 + 1
2

dimSi + µ(Si), the parity of a negative

puncture is given by |S−| = n − 3 − 1
2

dimS− + µ(S−). For a positive puncture,

we use Bi moduli spaces of holomorphic spheres with one positive puncture, with

dimBi = n − 3 + 1
2

dimSi − µ(Si), so that |S+| = n − 3 + 1
2

dimS− + µ(S−), after
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changing the sign and adding 2(n− 3).

Next, for disjoint union, we use the identity

A× (B ×S A′) = B ×S (A× A′)(−1)(dimS+dimB) dimA

and apply it to A = M(∅;S+) ×S+ M(S+;S−), A′ = M(S
′+;S

′−) ×S′−M(S
′−; ∅),

S = S
′+ and B =M(∅;S ′+). The corresponding exponent is given by |S ′+|.|S−|, as

desired. The case of multiple punctures is completely similar.

Finally, for gluing, we use the first identity to deduce that, if S−2 = S ′+1 = S,

B′+2 ×S′+2
B+ ×S+ M(S+;S−1, S−2)×S (M(S ′+1, S

′
+2;S ′−)×S′− B

′
−)×S−1 B−1

= B′+2 ×S′+2
B+ ×S+ M(S+;S−1, S−2)×S−1 B−1 ×S (M(S ′+1, S

′
+2;S ′−)×S′− B

′
−)

(−1)|S−1|(|S′+1|+|S′+2|)

= B′+2 ×S′+2
B+ ×S+ M(S+;S−2, S−1)×S−1 B−1 ×S (M(S ′+1, S

′
+2;S ′−)×S′− B

′
−)

(−1)|S−1|.|S′+2|.

In the last line, B+ ×S+ M(S+;S−2, S−1) ×S−1 B−1 has by definition the same ori-

entation as B′+1, therefore, the last line has the complex orientation up to sign

(−1)|S−1|.|S′+2|. This is the desired result, and the case of multiple punctures is again

completely similar.

7.3 Generalized holomorphic maps

First, we need to determine whether the perturbed orbits γpkT ′ are good or bad. This

is one of the reasons we chose to extend the Morse functions fT using a positive

definite Hessian on the normal bundle of ST .

Lemma 7.5. Under the assumptions of lemma 7.4, all perturbed Reeb orbits γpkT ′ are

good.

Proof. The orbit γpkT ′ is bad if and only if k is even and µCZ(γp2T ′) − µCZ(γpT ′) is

odd. By lemma 2.4, the last condition reads : (µ(S2T ′)− 1
2

dimS2T ′ + indexp(f2T ′))−
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(µ(ST ′) − 1
2

dimST ′ + indexp(fT ′)) is odd. But indexp(f2T ′) = indexp(fT ′), since the

normal bundle to ST ′ in S2T ′ does not contribute to the Morse index of f2T ′ . Hence,

γpkT ′ is bad if and only if the non perturbed orbit p ∈ SkT ′ is bad. There are no such

orbits under the assumptions of lemma 7.4.

Lemma 7.6. A coherent set of orientations on M, as in section 7.2, induces a co-

herent set of orientations for the moduli spaces with non-degenerate asymptotics by

W u(p+
1 )×S+

1
. . . W u(p+

s+
)×S+

s+

MfT (S+
1 , . . . S

+
s+

;S−1 , . . . , S
−
s−)×S−1 W

s(p−1 ) . . .×S−
s−
W s(p−

s−)

multiplied with the sign (−1)δ
++δ−, where

δ+ =
s+∑

i=1

(
(index(p+

i ) + dimS+
i )

i−1∑

j=1

|S+
j |
)
,

δ− =
s−∑

i=1

(
index(p−i )

s−∑

j=i+1

|S−j |
)
.

Proof. In order to make the transition from degenerate asymptotics in S+
i to non-

degenerate asymptotics at critical point p+
i ∈ S+

i , we need to consider linear Cauchy-

Riemann operators on cylinders corresponding to the moduli space M(γp+
i

;S+
i ). By

proposition 5.14, these operators are surjective and their kernel is given by W u(p+
i )⊕

span( ∂
∂t
, Rα). The second summand is canonically oriented by the complex orienta-

tion. Note that choosing an orientation for the first summand is equivalent to choosing

an orientation for the operator on a sphere with one negative puncture corresponding

to the asymptotics at p+
i . Choosing such an orientation is equivalent to extend step

1 of the construction of coherent orientations to non-degenerate asymptotics.

For negative asymptotics, we consider similarly M(S−i ; γp−i ). In this case, the corre-

sponding operator is surjective and its kernel is W s(p−i )⊕span( ∂
∂t
, Rα). This time, the

orientation must be chosen so that the orientation on M(S; γp) ×M(γp;S) induces

the positive orientation on M(S;S) ' S. In other words, we choose the orientation

of W s(p) so that TpW
s(p) ⊕ TpW u(p) ' TpS as oriented vector spaces. This is the
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convention we use in Morse theory.

Gluing those cylinders at the positive punctures, we obtain

W u(p+
1 ) ×S+

1
. . .W u(p+

s+
)×S+

s+
MfT (S+

1 , . . . S
+
s+

;S−1 , . . . , S
−
s−)

= M(γp+
1

;S+
1 )×S+

1
. . .M(γp+

i
;S+

i )×S+

s+
MfT (S+

1 , . . . S
+
s+

;S−1 , . . . , S
−
s−)

= M(γp+
1

;S+
1 )×S+

1
. . .M(γp+

s+
;S+

s+
)×S+

s+

MfT (S+
s+
, S+

1 , . . . S
+
s+−1;S−1 , . . . , S

−
s−)(−1)|S

+

s+
|(
∑s+−1
j=1 |S+

j |)

= M(γp+
1

;S+
1 )×S+

1
. . .M(γp+

s+−1

;S+
s+−1)×S+

s+−1

MfT (γp+

s+
, S+

1 , . . . S
+
s+−1;S−1 , . . . , S

−
s−)(−1)|S

+

s+
|(
∑s+−1
j=1 |S+

j |)

= M(γp+
1

;S+
1 )×S+

1
. . .M(γp+

s+−1

;S+
s+−1)×S+

s+−1

MfT (S+
1 , . . . S

+
s+−1, γp+

s+
;S−1 , . . . , S

−
s−)(−1)(index(p+

s+
)+dimS+

s+
)(
∑s+−1
j=1 |S+

j |)

and we proceed similarly for the remaining punctures. The sign we finally obtain

corresponds to the exponent
∑s+

i=1

(
(index(p+

i )+dimS+
i )
∑i−1

j=1 |S
+
j |
)

= δ+ as desired.

The case of negative punctures is completely similar.



Chapter 8

Proof of the main theorems

8.1 Cylindrical homology

We now want to use the results of the previous chapters to prove theorem 1.9.

The Morse-Bott chain complex C ā
∗ is the graded vector space generated by the nonde-

generate periodic orbits γpkT , in homotopy class ā with grading µ(SkT )− 1
2

dimSkT +

index(p) + n− 3.

On the other hand, the chain complex C
′ā
∗ for cylindrical homology, with contact form

αλ, generally contains additional generators, corresponding to closed Reeb orbits we

might have created as a result of the perturbation. We need to check that these

‘extra’ orbits do not contribute to cylindrical homology, so that we can compute it

using the Morse-Bott chain complex.

If ā 6= 0, the arguments of lemma 2.7 show that we can choose λ > 0 sufficiently

small so that all ‘extra’ orbits have homotopy class very close to a large multiple of

ā. Therefore, they are not contained in C
′ā
∗ .

If ā = 0, fix k ∈ Z; by lemma 2.7, we can choose λ > 0 sufficiently small so that all

‘extra’ orbits have grading much larger than k. Hence the following part of the chain

complex

C
′ā
k+1

d′k+1−−−→ C
′ā
k

d′k−−−→ C
′ā
k−1

92
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does not contain any ‘extra’ generator and does not involve any J-holomorphic cylin-

der converging to an ‘extra’ orbit, when t = 0.

If t 6= 0, the multiplication by cohomological variables t can lower the grading of an

‘extra’ orbit. But there are only 2 types of t variables having negative grading : the

variable t0 with grading −2, corresponding to the positive generator of H0(M,Q),

and the variables tj1 with grading −1, for j = 1, . . . , b1(M), corresponding to the

generators of H1(M,Q).

On one hand, note that the differential d does not involve variable t0, because no

non-constant holomorphic curve with a free marked point is rigid. Therefore, we

can simply omit variable t0 from the coefficient ring of cylindrical homology. Alter-

natively, since this variable cannot be destroyed by d, we can keep it and observe

that cylindrical homology with t0 is just the tensor product of cylindrical homology

without t0 and Q[t0]. In particular, we see that this variable does not bring new

information.

On the other hand, the variables tj1 are odd, hence each of them can appear at most

once in a non-vanishing product. Therefore, these variables can lower the degree of

an ‘extra’ orbit by at most b1(M). Then, we just need to choose λ > 0 sufficiently

small so that the ‘extra’ orbits have grading much larger than k + b1(M).

From this we deduce that homology of the Morse-Bott chain complex in degree k

agrees with HF ā
k (M, ξ). But since k was arbitrary, we deduce that homology of the

Morse-Bott chain complex is isomorphic to contact homology.

Next, we want to rewrite the differential d for cylindrical homology with contact form

αλ using moduli spaces of generalized J-holomorphic curves instead.

In order to do this, let us consider the moduli spaceM(0,λ0]
0,1,1,k(γ

+; γ−) of Jλ-holomorphic

cylinders, 0 < λ ≤ λ0, with the prescribed asymptotics. The restriction of this moduli

space to λ = λ0 is used to compute cylindrical homology with the perturbed contact

form αλ0 and almost complex structure Jλ0 . On the other hand, by the results of the

previous chapters, the compactification of this moduli space at λ = 0 is given by the

moduli space of generalized holomorphic cylinders W u(γ+)×SMfT (S;S ′)×S′W s(γ−)



94 CHAPTER 8. PROOF OF THE MAIN THEOREMS

with the same asymptotics.

In general, the moduli space M(0,λ0]

0,1,1,s0(γ+; γ−) can have additional boundary com-

ponents at λ ∈ (0, λ0), if holomorphic cylinders split in several cylinders, with at

least one cylinder of index 0. But if we choose λ0 > 0 sufficiently small, the gluing

estimates of section 5.3 show that the linearized Cauchy-Riemann operators will be

surjective (after stabilization at λ = 0) and this cannot happen. Therefore, we obtain

a cobordism between the moduli spaces at λ = 0 and λ = λ0.

We deduce that the algebraic number of elements in

M(0,λ0]

0,1,1,s0(γ+; γ−)×M θ̄ . . .×M θ̄

agrees with the algebraic number of elements in

W u(γ+)×SMfT (S;S ′)×S′ W s(γ−)×M θ̄ . . .×M θ̄.

Hence, the differential d can be computed in terms of the Morse-Bott data.

In order to facilitate practical computations, it is convenient to consider separately

the moduli spaces of Jλ-holomorphic cylinders converging to critical points p and q

of fT in the same orbit space S and with no marked points.

In that case, we obtain for λ→ 0 the moduli space

W u(p)×SMfT
0,1,1,0(S;S)×S W s(q) = W u(p) ∩W s(q)

of gradient trajectories of the Morse function fT on S, joining critical points p and

q. Hence, the contribution of these trajectories to the differential d is exactly the

Morse-Witten differential ∂ of the Morse functions fT .

Therefore, the differential d for cylindrical homology can be expressed as

dp = ∂p+
∑

q

nq,t q
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where nq,t is the sum over s0 of the polynomials in t given by the 0-dimensional part

of the fibered products

(
W u(p)×SMfT

0,1,1,s0(S;S ′)×S′ W s(q)×M
)
×M θ̄ . . .×M θ̄/R

for s0 = 0, 1, 2, . . . and s0 6= 0 if S = S ′.

8.2 Contact homology

We now generalize the arguments of the previous section to compute contact homology

and prove theorem 1.8.

The Morse-Bott chain complex C∗ is the free supercommutative algebra with unit

generated by the critical points p of all Morse functions fT , or equivalently by the

nondegenerate periodic orbits γpkT , with grading µ(SkT )− 1
2

dimSkT +index(p)+n−3.

On the other hand, the chain complex C ′∗ for contact homology, with contact form

αλ, generally contains additional generators, corresponding to closed Reeb orbits we

might have created as a result of the perturbation. We need to check that these

‘extra’ orbits do not contribute to contact homology, so that we can compute it using

the Morse-Bott chain complex.

As in the previous section, we consider the chain complex at a fixed degree k ∈ Z.

By lemma 2.7, we can choose λ > 0 small to make the grading of the ‘extra’ orbits

much larger than k.

This grading can be lowered by some of the t variables, and we can handle them as

before : the variable t0 contains no information, so we can omit it or include it using

a slightly more refined argument as in the last section. The variables t1 contribute to

a bounded shift only.

However, the grading of the ‘extra’ orbits can also be lowered by multiplication with

closed Reeb orbits with negative grading. Let γ be an ‘extra’ orbit, with grading |γ|
and action T , both very large, and assume that the product γγ1 . . . γl has grading less
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or equal than k + 1. Note that the grading of closed Reeb orbits is bounded below

by −1
2
(dimM + 1), hence l is bounded below by a multiple of |γ|. Since the action

spectrum is bounded away from zero and |γ| > c
2
T , the total action of the product

γγ1 . . . γl is bounded below by (1 + ε)T , where 0 < ε < 1 is a constant independent

of λ > 0.

Hence, the action of each term in d(γγ1 . . . γl) is bounded below by εT . Let us

introduce some notation

CT
∗ = {x ∈ C∗ | Aλ(x) < εT},

ZT
∗ = {x ∈ CT

∗ | dx = 0},

B∗ = {x ∈ C∗ |x = dy for some y ∈ C∗},

HT
∗ =

ZT
∗

B∗ ∩ CT
∗
,

and analogous definitions for the chain complex C ′∗.

Then the above conclusions can be reformulated as H
′T
∗ = HT

∗ , for ∗ ≤ k. On the

other hand, note that

H
′T
∗ = {x ∈ HCk(M, ξ) |x has a representative in C

′T
∗ } = HCT

∗ (M,αλ).

In particular, it follows that ∪T>0H
′T
∗ = HC∗(M, ξ). We would like to deduce from

this that the homology of the Morse-Bott chain complex is isomorphic to contact

homology, but we have to decrease λ > 0 in order to increase T , and the action

filtering is not invariant under a general change of contact form for ξ.

Note that we can assume fT > 0, after adding a large positive constant, that does not

change the gradient dynamics. In particular, if 0 < λ′ < λ, then 1 + λ′fT < 1 + λfT .

Hence, there exists a smooth function

gλ′,λ : [0, 1]×M → R : (t, p)→ gtλ′,λ(p)
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such that gtλ′,λ = 1 + λ′fT if t = 0, gtλ′,λ = 1 + λfT if t = 1 and ∂
∂t
gtλ′,λ > 0.

According to [5], the symplectic cobordism ([0, 1]×M,d(gtλ′,λα)) induces an isomor-

phism φλ′,λ : HC∗(M,αλ) → HC∗(M,αλ′) by counting holomorphic curves in the

completed cobordism. Since d(gtλ′,λα) ≥ 0 on holomorphic curves, it follows that

Aλ(x) ≥ Aλ′(φλ,λ′(x)), for all x ∈ C ′∗(M,αλ).

Hence, φλ,λ′(HC
T
∗ (M,αλ′)) ⊃ HCT

∗ (M,αλ). In particular, we can conclude that the

homology of the Morse-Bott chain complex coincides with contact homology, as a

vector space.

It is easy to check that the product structure is recovered as well : note that if

x, y ∈ CT
∗ , then xy ∈ C2T

∗ . Hence, it follows that the isomorphism between HT
∗ and

HCT
∗ preserves the product of elements in H

T/2
∗ .

Next, we rewrite the differential d for contact homology with contact form αλ using

moduli spaces of generalized J-holomorphic curves instead.

As in the previous section, we use the moduli space M(0,λ0]
0,1,r,k(γ

+; γ−1 , . . . , γ
−
r ) of Jλ-

holomorphic curves, 0 < λ ≤ λ0, with the prescribed topology and asymptotics. For

λ0 > 0 sufficiently small, this is a cobordism between the moduli spaces

M0,1,r,k(γ
+; γ−1 , . . . , γ

−
r )

at λ = λ0 and

W u(p)×SMfT (S;S1, . . . , Ss)×S1 W
s(p1) . . .×Ss W s(ps)

at λ = 0.

As before, we consider separately the holomorphic cylinders without marked points

and with asymptotics in the same orbit space. Their contribution to d is the Morse-

Witten differential ∂ for the Morse function fT .

By the graded Leibniz rule, the differential d for contact homology is characterized
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by its value on a critical point p ∈ S; it is given by

dp = ∂p+
∑

n(i1,... ,is),t
pi11
i1!

. . .
piss
is!

where we sum over all unordered monomials pi11 . . . p
is
s and n(i1,... ,is),t is the sum over

s0 of the polynomials in t given by the 0-dimensional part of the fibered product

(−1)δ
−
(
W u(p)×SMfT (S;S1, . . . , Ss)×S1 W

s(p1) . . .×Ss W s(ps)
)
×M θ̄ . . .×M θ̄/R

for s0 = 0, 1, 2, . . . and s0 6= 0 if s = 1 and S = S1.



Chapter 9

Examples

9.1 Case of a circle bundle

Let (M,ω) be a compact symplectic manifold of dimension 2n− 2, and assume that

[ω] ∈ H2(M,Z). Let π : L→M be the complex line bundle over M with c1(L) = [ω].

For any choice of hermitian metric on L, the unit circle bundle π : V → M is a

contact manifold. A contact form is obtained by choosing a connection form iα on

V so that 1
2π
dα = π∗ω. For such a choice of α, the Reeb field Rα is tangent to the

S1 fibers of V . Therefore, every Reeb orbit is closed, and the space of Reeb orbits in

every multiplicity k = 1, 2, . . . is naturally identified with M .

The symplectization of (V, α) is, as a manifold, the line bundle L with its zero section

removed; we will denote it by L∗. An almost complex structure J̃ on ξ = kerα

compatible with dα induces an almost complex structure π∗J̃ on M compatible with

ω. The extension J of J̃ on L∗ is compatible with the standard complex structure on

the fibers of L.

Let ∆1, . . . ,∆r be a basis of H∗(M). Pick a basis of H∗(V ) of the form π∗∆i1 , . . . ,

π∗∆ir′ , ∆̃1, . . . , ∆̃s where the elements π∗∆i1 , . . . , π
∗∆ir′ span π∗H∗(M). Introduce

variables ti1 , . . . , tir′ , t̃1, . . . , t̃s corresponding to these basis elements of H∗(V ), and

introduce variables pk,i and qk,i (i = 1, . . . , r) corresponding to the basis elements of

99
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H∗(M), for every positive integer k.

Let β1, . . . , βu be a basis of H2(M,Z), so that ω(β2) = . . . = ω(βu) = 0 and l =

ω(β1) > 0. Introduce variables z1, . . . , zu corresponding to these basis elements. Let

z̃i (i = 2, . . . , u) be the variable corresponding to the image of βi in H2(L) under the

inclusion of M into L as the zero section. Those homology classes generate exactly

H2(V )/R.

The grading of these variables is defined as follows :

|ti| = deg(∆i)− 2, |t̃j| = deg(∆̃j)− 2,

|pk,i| = deg(∆i)− 2− 2 c
l
k, |qi,k| = deg(∆i)− 2 + 2 c

l
k,

|z̃i| = −2〈c1(TM), βi〉,

where c = 〈c1(TM), β1〉. Note that this grading is fractional if l 6= 1, because in that

case H1(L∗) contains torsion elements.

The grading of variables qi,k coincides with the grading of contact homology. Indeed,

a tubular neighborhood of the closed orbit of multiplicity l above p ∈M has the form

U ×S1, where U is a neighborhood of p in M . With the product framing, the Maslov

index vanishes. On the other hand, in order to obtain a capping disk for that orbit,

consider a sphere C homologous to β1 passing through p. The disk is realized by a

section of L over C with a zero of order l at p and no pole. The Maslov index in that

trivialization will be 2c, so we obtain 2c
l
k for an orbit of multiplicity k.

Define

ū =
r′∑

j=1

tij∆ij + ε

s∑

i=1

t̃iπ∗∆̃i +
∞∑

k=1

(
p̄ke

ikx + q̄ke
−ikx)

where ε is an odd variable, π∗ is the integration along the fiber of V , p̄k =
∑r

i=1 pk,i∆i

and q̄k =
∑r

i=1 qk,i∆i.

Let

F (v̄, z) =
∑

d

∞∑

n=0

zd1
1 . . . zduu
n!

〈v̄, . . . , v̄〉0,n,d

be the Gromov-Witten potential (for genus 0) of (M,ω).
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Proposition 9.1. Let (M,ω) be a symplectic manifold with [ω] ∈ H2(M,Z) and sat-

isfying c1(TM) = τ [ω] for some τ ∈ R. Assume that M admits a perfect Morse

function and that only one of the t̃ variables is nonzero and has odd parity. Then

contact homology HC∗(V, ξ) is the homology of the chain complex generated by in-

finitely many copies of H∗(M,R), with degree shifts 2 c
l
k − 2, k = 1, 2, . . . and with

differential d, given by

dqk,i = k

r∑

j=1

(g−1)ij
∂

∂pk,j
H(p, q, t, t̃, z̃)|p=0

where

H(p, q, t, t̃, z̃) =

∫
dε

1

2π

∮
dxF (ū(x), z̃e−i〈c1(L),β〉x)

and where gij =
∫
M

∆i ∪∆j.

Recall that the effect of integrating with respect to an odd variable ε is to pick the

coefficient B of ε in the integrand A+Bε.

Proof. First observe that c1(ξ) = p∗c1(TM) = τp∗ω = 0. Next, since M admits

a perfect Morse function, the chain complex for contact homology involves directly

homology of the orbit spaces, all diffeomorphic to M .

Since the projection p is holomorphic, it is clear that holomorphic curves in L∗ are

equivalent to the data of a closed holomorphic sphere C in M , with a holomorphic

section of L over C. The zeroes and poles of that section correspond to the positive

and negative punctures in L∗ respectively, and their multiplicities match.

Note that, once the position and multiplicities of zeroes and poles of a section have

been chosen, the only remaining degree of freedom is the phase of the section. Then,

pulling back a single class ∆̃j to the moduli space amounts to fix the phase of the

section, and then require an extra constraint at that marked point, corresponding to

the class π∗∆̃j.

After the phase is fixed, by proposition 6.6, the virtual neighborhood of level 1 holo-

morphic curves in L∗ is isomorphic to an open set in the virtual neighborhood of

holomorphic spheres in M . Hence, we can compactify the moduli space of holo-

morphic curves in L∗ by adding strata of codimension at least 2, the result being
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isomorphic to the virtual cycle of holomorphic spheres in M . This explains the rela-

tionship between d and F .

Moreover, generalized holomorphic curves (including pieces of gradient flow trajecto-

ries between several components) do not contribute to the differential, because the

unique t̃ variable can kill the S1 degree of freedom for only one component of the

generalized holomorphic curve. Therefore, the differential of the Morse-Bott chain

complex is given by the above formula.

9.2 Standard 3-sphere

We can apply the results of the previous section to compute explicitly contact homol-

ogy of the standard contact 3-sphere. In this case, the base M is CP 1, and we obtain

variables qk,0 and qk,1 (k = 1, 2, . . . ) corresponding to the generators of H0(CP 1) and

H2(CP 1) respectively. It is convenient to reindex these variables in the following

way : {
q2i = qi,1,

q2i−1 = qi,0,
and

{
p2i = pi,0,

p2i−1 = pi,1.

Proposition 9.2. Contact homology HC∗(S
3, ξ0) of the standard contact 3-sphere

is isomorphic to the free supercommutative algebra with unit generated by t0 and qi,

(i = 2, 3, . . . ), where |t0| = −2 and |qi| = 2i.

Proof. In this case, M = CP 1 with its standard Kähler structure. Its Gromov-Witten

potential is given by

F (v, z) =
1

2
v2

0v1 + z

∞∑

n=0

vn1
n!

where v0 generates H0(CP 1), v1 generates H2(CP 1) and z generates H2(CP 1) so that

ω(z) = 1. Using proposition 9.1, we obtain

H =
1

2
t20t̃+ t̃

∞∑

i=1

p2iq2i−1 + t̃

∞∑

n=0

1

n!

∑
∑n
l=1 jl=i

p2i+1q2j1 . . . q2jn +O(p2)

where t̃ is the variable corresponding to the volume form on S3. From this we deduce
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the formula for the differential :

dq2i = it̃q2i−1

and

dq2i+1 = (i+ 1)t̃
∞∑

n=0

1

n!

∑
∑n
l=1 jl=i

q2j1 . . . q2jn .

Claim 1. Every expression containing a t̃ factor is exact.

Let us prove this by induction on the largest index of the q present in the expression,

and on the exponent of that variable. First note that t̃qk1 = 1
k+1

d(qk+1
1 ). Then, let us

assume that the expression has the form t̃qknF , where F involves only variables t0 and

qi (i = 1, . . . , n − 1). By the induction hypothesis, t̃F has a primitive B involving

variables t0 and qi (i = 1, . . . , n− 1) only as well. We have

d(qknB) = t̃qknF + kqk−1
n dqnB.

Since dqn is an expression containing only variables with index lower than n, by the

induction hypothesis kqk−1
n dqnB is exact.

Claim 2. For every monomial qkn (n ≥ 2), there exists an expression C containing

only variables t0 and qi (i = 1, . . . , n− 1) and qn up to power k− 1, such that qkn +C

is closed.

Such a C would have to satisfy

dC = −kqk−1
n dqn.

But since dqn contains a factor t̃, the right hand size is exact and we can find a

solution C.

Note that the above claim is not true for n = 1, since dq1 = t̃. Moreover, an expression

without a t̃ factor cannot be exact. The proposition now clearly follows.
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9.3 Brieskorn spheres

We now turn to a more general example involving the Brieskorn spheres. Let V (a) =

V (a0, . . . , an) = {(z0, . . . , zn) ∈ Cn+1 | za0
0 + . . .+ zann = 0} and Σ(a) = V (a)∩ S2n+1.

Theorem 9.3. (Brieskorn) When n = 2m + 1 and p = ±1(mod 8), a0 = p, a1 =

2, . . . , an = 2, then Σ(a) is diffeomorphic to S4m+1.

On Cn+1, consider the 1-form αp = i
8

∑n
j=0 aj(zjdzj − zjdzj). Its restriction to Σ(a)

is a contact form, with Reeb field Rαp = 4i( z0
a0
, . . . , zn

an
). Denote the corresponding

contact structure by ξp. These are distinguished by contact homology. This result is

originally due to Ustilovsky [35], and was proved by perturbing contact form αp in

order to have non-degenerate closed Reeb orbits.

Note that the quotient of S2n+1 ↪→ Cn+1 by the flow of Rαp is a weighted projective

space CP n
w , i.e. an orbifold. The quotient of Σ(a) = S2n−1 by this Reeb flow is the

zero locus of the polynomial zp0 + z2
1 + . . .+ z2

n in CP n
w , i.e. a complete intersection in

a toric orbifold. Σ(a) is a principal circle orbi-bundle over this orbifold.

Theorem 9.4. (Ustilovsky) Under the assumptions of theorem 9.3, the contact

homology for cylindrical curves HFk(Σ, ξp) = Qck where

ck =






0 if k is odd or k < 2n− 4,

2 if k = 2b2N
p
c+ 2(N + 1)(n− 2), for N ∈ Z, N ≥ 1, 2N + 1 /∈ pZ,

1 otherwise.

Here, we will prove this theorem using the contact form αp and the Morse-Bott

formalism, instead of perturbing αp to obtain nondegenerate Reeb orbits.

Let us first study the periodic orbits of Rαp and their Maslov indices. The Reeb flow

is given by

ϕt(z0, . . . , zn) = (e4it/pz0, e
2itz1, . . . , e

2itzn).

Hence, all Reeb orbits are periodic, and there are 2 values of the action for simple

orbits :
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(i) Action = π (when z0 = 0).

In that case, the orbit space is

Sπ = {[z1, . . . , zn] ∈ CP n−1 | z2
1 + . . .+ z2

n = 0},

i.e. the nondegenerate quadric Qn−2 in CP n−1.

Lemma 9.5. If n is odd, then H∗(Qn−2) ' H∗(CP n−2).

Proof. Note that Qn−2 is the Grassmannian of oriented 2-planes in Rn. Indeed,

the manifold Nπ = {(z1, . . . , zn) ∈ Cn | z2
1 + . . . , z2

n = 0} is the unit tangent

bundle of the sphere Sn−1, and the Reeb flow coincides with the geodesic flow

on Sn−1. The computation of the homology is then standard and gives, for n

odd, the announced result.

Let us compute the Maslov index of these periodic orbits. The linearized Reeb

flow splits into the tangential and normal bundles to Sπ. For the tangential

part, the linearized flow is e2itIn−2 for 0 ≤ t ≤ π, so we obtain contribution

2(n − 2)N , where N is the multiplicity of the orbit, and for the normal part,

the linearized flow is just multiplication by e4it/p, so we obtain contribution

1 + 2b2N
p
c. Hence, the Maslov index is :

µ = 2N(n− 2) + 1 + 2b2N
p
c.

(ii) Action = pπ (when z0 6= 0).

In that case, the orbit space incorporates the p-covered orbits of case (i) as a

singularity with group Zp.

Lemma 9.6. Spπ is homeomorphic to CP n−1.

Proof. We follow the arguments of [33]. Consider the projection φ : Σ(a) →
S2n−1 : (z0, . . . , zn) → (z1,... ,zn)

‖(z1,... ,zn)‖ . Clearly, this map is surjective, and equivari-

ant with respect to the Reeb flow on Σ(a) and multiplication by a phase on
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S2n−1. Moreover, any two points in Σ(a) projecting to the same point in S2n−1

lie on the same Reeb orbit. Hence, the orbit spaces are homeomorphic. But the

one of S2n−1 is clearly CP n−1.

The Maslov index is very easy to compute, since the Reeb flow is now completely

periodic. For the tangential part to Sπ, we obtain p times the previous result,

and for the normal part, we obtain 2 (one complete turn). Hence

µ = 2N((n− 2)p+ 2).

Proof of Theorem 9.4. Note that all holomorphic cylinders come in S1 families, since

they can be pushed along the Reeb field. Therefore, the differential coincides with the

Morse-Witten differential of the orbit spaces. Hence, cylindrical homology is just the

direct sum of the homology of all orbit spaces, with the appropriate degree shiftings.

The grading corresponding to the homology classes in SNπ, for N /∈ pZ, is given by :

2N(n− 2) + 2b2N
p
c+ 2k k = 0, . . . n− 2.

Hence, we obtain one generator in each even degree, starting at degree 2n− 4 corre-

sponding to N = 1 and k = 0. Moreover, there is an overlap between N (k = n− 2)

and N + 1 (k = 0) at

2(N + 1)(n− 2) + 2b2N
p
c

when the integral part of 2N
p

does not jump between N and N + 1. We get exactly

two generators for these degrees. However, there will be a jump when N + 1 ∈ pZ
or 2N + 1 ∈ pZ. In the first case, N + 1 = mp, and we actually have to use the

generators of case (ii) above. The degrees of the generators corresponding to the

homology classes in Smpπ are given by

2mp(n− 2) + 4m− 2 + 2k k = 0, . . . , n− 1.
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For N = mp− 1 and k = n− 2, we obtain a generator in degree

2(mp− 1)(n− 2) + 2(2m− 1).

But the generator for mp and k = 0 has degree

2mp(n− 2) + 4m− 2− 2(n− 2).

So we still have 2 generators in that degree, despite the jump. However, when 2N+1 ∈
pZ, there is nothing to compensate for the jump, and we do not have an overlap.

Therefore, we obtain exactly the ranks given in theorem 9.4.

9.4 Unit cotangent bundle of torus

Let M = ST ∗T n be the unit cotangent bundle of T n, with respect to the standard flat

metric. M is equipped with a natural contact form α, which is obtained by restricting

the Liouville 1-form θ =
∑n

i=1 pidqi on M .

The Reeb flow on M coincides with the geodesic flow on T n, so we obtain closed Reeb

orbits when the coordinates pi (i = 1, . . . , n) are rationally dependent 2 by 2. Each

connected component of NT corresponds to a nonzero element ā = (a1, . . . , an) ∈
π1(T n) = Zn, where T =

√
a2

1 + . . .+ a2
n = ‖ā‖, and is a copy of the torus T n.

The symplectization of M is isomorphic to T ∗T n minus its zero section. The symplec-

tic form is the standard ω =
∑n

i=1 dpi ∧ dqi if we substitute et = r =
√∑n

i=1 p
2
i . We

can equip the symplectization with almost complex structure J , preserving ξ, defined

by J ∂
∂pi

= 1
r
∂
∂qi

. Note that this almost complex structure is not integrable.

The linearized Reeb flow along a periodic Reeb orbit is given, in the qi, pj coordinates,

by

Ψ(t) =

(
I tI

0 I

)

.
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Therefore, all the periodic orbits have Maslov index n−1
2

, since we have to restrict

ourselves to the unit cotangent bundle. Subtracting half the dimension of the orbit

space and adding n− 3, we get grading n− 3.

Since there are no contractible periodic orbits, cylindrical homology is well defined,

and we can even restrict ourselves to a fixed homotopy class ā of closed Reeb orbits.

On the other hand, holomorphic cylinders have zero energy, since the period of a

Reeb orbit depends only on its homotopy class. Hence, all holomorphic cylinders

are vertical cylinders over a Reeb orbit. Therefore, the differential d of our chain

complex coincides exactly with the Morse-Witten complex of the orbit space T n−1 in

homotopy class ā. Gathering our results, we have shown

Proposition 9.7. Cylindrical homology HF ā
∗ (ST ∗T n, ξ) in homotopy class ā is iso-

morphic to the standard homology H∗+n−3(T n−1) of T n−1, shifted by degree n− 3.

As a corollary of this result, we can reprove a theorem originally due to Giroux [10].

On T 3, let αk = cos 2πkz dx + sin 2πkz dy and denote the corresponding contact

structure by ξk. Then ξ1 is the contact structure considered above, when n = 2. The

contact structure ξk is obtained from ξ1 by a k-fold covering of T 3.

Corollary 9.8. (Giroux) Contact structures ξk on T 3 are pairwise non isomorphic.

Proof. The computation of HF ā
∗ (T 3, ξk) is analogous to the above computation, ex-

cept that we now have k copies of the orbit space S1 in homotopy class ā. Therefore,

cylindrical homology is the direct sum of k copies of H∗−1(S1). In particular, we

obtain different results for different values of k.

The proof of corollary 9.8 using cylindrical homology was already mentioned in [5],

but its proof relies on the techniques developed in this thesis.

9.5 Unit cotangent bundle of Klein bottle

This last example is a little more exotic. It will turn out that theorem 1.9 does not

apply to this case. However, we will see that our Morse-Bott techniques still allow us
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to compute cylindrical homology without working out an explicit perturbation of the

contact form.

As in our previous example, the contact form is the Liouville 1-form restricted to the

cotangent bundle of K2. The Reeb flow on ST ∗K2 coincides with the geodesic flow.

We choose of course to work with the flat metric of K2.

We see the Klein bottle K2 as the quotient of R2 under the discrete group generated

by (x, y)→ (x+ 1, 1− y) and (x, y)→ (x, y+ 1). The homotopy class ā = (a1, a2) of

loops in K2 contains the projection of the line y = a2

a1
x in R2.

Let us determine the orbit spaces in homotopy class (a1, a2) :

(i) a1 6= 0, a2 odd.

There are no periodic orbits, because the projection of the line y = a2

a1
x to K2

closes with an angle.

(ii) a1 6= 0, a2 even.

This time, the projection of the line y = a2

a1
x to K2 closes smoothly. Therefore,

the closed orbits foliate a torus, and the orbit space is S1.

(iii) a1 = 0, a2 odd.

The projection of the line y = y0 to K2 is closed if and only if y0 ∈ 1
2
Z.

Therefore, there are exactly 2 closed orbits.

(iv) a1 = 0, a2 6= 0 even.

This time, the projection of the line y = y0 is always closed. Therefore, the

closed orbits foliate K2, and the orbit space is a closed interval. The endpoints

are a2-covers of the 2 simple orbits in homotopy class (0, 1).

As in the previous example, the period of a closed Reeb orbit in homotopy class

ā = (a1, a2) is given by T =
√
a2

1 + a2
2.

When a2 is even, the Reeb dynamics are identical to the case of ST ∗T 2, therefore the

corresponding closed Reeb orbits have grading n− 3 = −1.

When a1 = 0 and a2 is odd, the pull-back of the contact distribution to a closed Reeb
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orbit is not trivial. Therefore, we have to trivialize ξ along a double cover of that

orbit and use fractional grading as explained in [5].

On the other hand, for a1 = 0, a2 6= 0 even, the submanifold NT is not orientable,

so lemma 7.5 does not apply and we have to check for bad orbits. Use a Morse

function fT on the closed interval with 2 minima at the endpoints and a maximum

in the middle. Clearly, the perturbed Reeb orbits at the maximum is good, because

its index is independent of the multiplicity.

Claim. The perturbed Reeb orbits corresponding to the endpoints are bad.

Consider a linear Cauchy-Riemann operator on a rank 2 vector bundle E over a 1-

punctured sphere, with the asymptotics of those perturbed Reeb orbits. Since the

asymptotics of that operator will be invariant under rotation, we can choose the linear

operator to be invariant under rotation as well. The change of trivialization of such

a double Reeb orbit corresponds to a Z2 action on E : (z, x1, x2)→ (−z,−x1,−x2).

Clearly, (z, x1, x2) → (−z, x1, x2) induces the identity on the kernel and cokernel,

because that induced map is homotopic to the identity via (z, x1, x2)→ (eiθz, x1, x2),

0 ≤ θ ≤ π.

On the other hand, (z, x1, x2) → (z,−x1,−x2) clearly induces −I on the kernel and

cokernel. Since the index of the Cauchy-Riemann operator is odd (it is −1, see

above), this action reverses the orientation of the determinant line. Therefore, the

corresponding perturbed Reeb orbits are bad.

Summing up, we have

Proposition 9.9. Cylindrical homology HF ā
k (ST ∗K2, ξ) = Qck , where the non-zero

ranks ck are given by






c−1 = 1, c0 = 1 if a1 6= 0, a2 even,

c−1 = 2 if a1 = 0, a2 odd,

c0 = 1 if a1 = 0, a2 6= 0 even.
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Applications

10.1 Invariant contact structures

Lutz [22] studied contact structures that are invariant under the action of a Lie

group G. In particular, he obtained a general construction method for T k-invariant

contact structures on manifolds T k × Bk+1 such that B admits a knotted fibration

B \ Σ→ Sk−1.

Definition 10.1. A knotted fibration along the knot N , over the sphere Sk−1, is a

triplet (E, π,N) such that

(i) E is a connected, compact, orientable manifold.

(ii) N is either empty or a closed submanifold of codimension k in E.

(iii) π : E \N → Sk−1 is a locally trivial fibration.

(iv) If N is non-empty, there is an open neighborhood W of N and a diffeomorphism

h : N ×Dk → W such that h(z, 0) = z and the following diagram commutes :

N × (Dk \ {0}) h−−−→ W \N
p2

y
yπ

Dk \ {0} −−−→
n

Sk−1

111
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where p2 is the projection on the second factor and n is the normalization map.

A knotted fibration can also be described by certain maps ϕ : E → Rk. The corre-

spondence is given by N = ϕ−1(0) and π = n ◦ ϕ.

The existence result for invariant contact structures can be stated as follows.

Proposition 10.2. (Lutz) Let M = T k × Bk+1, where B is a closed, orientable

manifold. Let (B, π,Σ) be a knotted fibration over Sk−1. Then there exists a T k-

invariant contact structure on M , corresponding to the given knotted fibration.

We now describe the contact structure corresponding to a knotted fibration given by

a map ϕ : B → Rk, following Lutz [22].

We construct a contact form α on M of the form

α =
k∑

i=1

ϕidθi + p∗2β

where (θ1, . . . , θk) are the coordinates on T k and p2 : M → B is the natural projection.

The 1-form β on B is obtained as follows. In a small open neighborhood W of Σ ⊂ B,

pick a closed 1-form β0 such that β0 ∧ dϕ1 ∧ . . . ∧ dϕk > 0.

Choose trivialization charts Uj × F for π : B \ Σ→ Sk−1 such that the open sets Uj

cover Sk−1. On the Riemann surface with boundary F , choose a symplectic form ω

and a primitive αj. Let gj be a partition of unity on Sk−1 with respect to covering

Uj. We define β1 =
∑

j gjαj.

Let f : R+ → R be a smooth decreasing function such that f(t) = 1 if t < ε
2

and

f(t) = 0 if t > ε. Let g : R+ → R be a smooth, C1 small, decreasing function with

support slightly larger than f−1(1) and limt→0
g′(t)
t

= 0.

Then, we define β = (f(‖ϕ‖) + g(‖ϕ‖))β0 + (1− f(‖ϕ‖))β1.

It turns out that the 1-form α is a contact form, for any such choice of β. The

isomorphism class of the corresponding contact structure ξ = kerα is independent of

the choices made in that construction.

In what follows, it will be convenient to multiply the function ϕ by a small positive

constant δ, in order to obtain simpler Reeb dynamics.
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10.2 Computation of cylindrical homology

We first want to find the closed Reeb orbits of the contact form constructed in the

previous section. Let p1 : T k × B → T k be the natural projection. If γ is a closed

Reeb orbit in M , then we define its reduced homotopy class to be the homotopy class

ā = (a1, . . . , ak) of p1(γ) in π1(T k).

We will denote the connected components of ∂F by ∂jF , j = 1, . . . , f . For each

component, we introduce a rotation number lj = l(∂jF ) : there are 2 natural triv-

ializations of the tangent bundle along ∂jF . The first one is the fixed trivialization

of that closed Reeb orbit, coming from a capping disk or a homotopy to a represen-

tative with fixed trivialization. The second one corresponds to the basis formed by

the vectors ∂
∂θi

, i = 1, . . . , k, followed by the vectors J ∂
∂θi

, i = 1, . . . , k. The second

trivialization is related to the first one by a loop of unitary matrices. We define li to

be the corresponding element in π1(U(k)) = Z.

Lemma 10.3. The closed Reeb orbits in the reduced homotopy class ā = (a1, . . . , ak)

lie all on the fibre Fā = π−1( ā
‖ā‖); there are 2 families of orbit spaces :

(i) in the jth connected component of f−1(1), orbit spaces S1
i,j = T k with µ(S1

i,j)−
1
2

dimS1
i,j = 2ilj, for i = 1, 2, . . . and j = 1, . . . , f .

(ii) in f−1(0), orbit spaces S2
p = T k−1 with µ(S2

p) − 1
2

dimS2
p = index(p) − 1, for

each critical point p of ‖ϕ‖2 on Fā.

Proof. First note that the Reeb field satisfies dϕ(Rα) = 0 everywhere. Otherwise,

ı(Rα)dα would contain some terms in dθ that cannot be canceled. Therefore, the

Reeb field has the form

Rα =
k∑

i=1

ci
∂

∂θi
+ cX

where X is tangent to the level curves of ‖ϕ‖ on each fiber F .

Hence, in f−1(0), we can choose X to be the Hamiltonian vector field on F of the
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function ‖ϕ‖2 with respect to the symplectic form
∑

i gidαi. We then have

ı(Rα)dα = −
k∑

i=1

cidϕi + ı(X)
∑

i

gidαi + c
∑

i

αi(X)dgi

= −
k∑

i=1

cidϕi + cd‖ϕ‖2 + c
∑

i

αi(X)dgi.

Therefore, we deduce that ci = 2c(ϕi+
∑

j αj(X)
∂gj
∂ϕi

). The value of c is then computed

using the condition α(Rα) = 1.

Note that
∑k

i=1 ϕi
∂
∂θi

scales like δ and X scales like δ2. Hence, for δ > 0 small enough,

the only closed orbits in reduced homotopy class ā are obtained when X = 0, i.e. at

critical points of ‖ϕ‖2. There, the Reeb field is given by Rα = 2c
∑k

i=1 ϕi
∂
∂θi

, so we

must be in Fā to obtain an orbit in the reduced homotopy class ā. These orbits foliate

the T k factor in M , hence form orbit spaces T k−1.

The linearized Reeb flow splits in 2 summands : on the complex subspace generated

by the complementary of
∑k

i=1 ϕi
∂
∂θi

on the T k factor, we obtain

(
Ik−1 0

tIk−1 Ik−1

)

with a single crossing at t = 0 giving contribution k−1
2

. On TFā, if the Morse index

of p is 0 or 2, we obtain a rotation by a very small angle, positive for index 2 and

negative for index 0. Hence, we get contribution index(p)− 1. If the Morse index of

p is 1, the linearized flow is hyperbolic, giving contribution 0.

Next, we can always choose δ > 0 small enough so that there are no closed Reeb

orbits when 0 < f(‖ϕ‖) < 1, for the same reason as above.

Finally, in f−1(1), we can choose X so that β0(X) = 1. Since β0 is closed, we have

ı(Rα)dα = −
k∑

i=1

cidϕi − cg′(‖ϕ‖)d‖ϕ‖.

Therefore, we must have ci = −c g′

‖ϕ‖ϕi. All integral curves of −c g′

‖ϕ‖
∑k

i=1 ϕi
∂
∂θi

are
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closed in T k, and the period to attain reduced homotopy class ā is diverging to +∞
as ‖ϕ‖ → 0. On the other hand, all integral curves of X on F are closed and their

period is bounded when ‖ϕ‖ → 0. Hence, in each connected component of f−1(1),

we obtain an orbit space S1
i,j = T k when the ratio of the 2 periods is an integer

i = 1, 2, . . . This time, the linearized flow is given by

(
Ik 0

tIk Ik

)

with a single crossing at t = 0 giving contribution k
2
. However, the trivialization we

used for this index computation does not necessarily agree with the fixed trivialization

of ∂jF . Hence, we must add correction term 2lj to take this into account.

Using the orbit spaces and the T k symmetry, we can now compute cylindrical homol-

ogy for a non-zero reduced homotopy class ā.

Proposition 10.4. The cylindrical homology HF ā
∗ (M, ξ) is isomorphic to

(H∗−1(F )⊗H∗+n−3(T k−1))⊕ ((

f⊕

j=1

ujQ[uj])⊗H∗+n−3(T k))

where uj is a variable of degree 2lj.

Proof. First, let us find all holomorphic cylinders that are invariant under the T k

action. Note that, in this case, we must have ∂u
∂t

(s, t) =
∑k

i=1 ai
∂
∂θi

. Therefore, we

have

∂u

∂s
(s, t) = −J ∂u

∂t
(s, t)

= −J
k∑

i=1

ai
∂

∂θi

= −J(
1

c
Rα −X)

=
1

c

∂

∂t
+ JX.
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Moreover, we have dα(X, JX) =
∑

i gidαi(X, JX) = d‖ϕ‖2(JX) ≥ 0. Therefore,

JX is a gradient-like vector field for ‖ϕ‖2, and counting its trajectories [26] gives the

Morse-Witten differential for the homology of F .

Note that the linearized Cauchy-Riemann operator at these holomorphic cylinders is

invariant under t→ t + c, and if δ > 0 is small, it depends very slowly on s. Hence,

using the arguments of proposition 5.14, this operator is surjective. Therefore, these

holomorphic cylinders are generic and isolated elements in the set of all holomorphic

cylinders.

Therefore, if there are holomorphic cylinders that are not invariant under the T k

action, then T k acts freely on their virtual neighborhood. Their index is given by

k− 1 + ∆index− 1, which is strictly less than k for Morse index difference 1. Hence,

by proposition 6.6, these cylinders do not contribute to the differential d. For a Morse

index difference of 2, it is not possible to obtain a rigid cylinder using the evaluation

maps ev±.

On the other hand, there are no rigid cylinders joining two orbits in the orbit spaces

S2, since their gradings differ by at least 2. Indeed, the index of such cylinders is

then at least k+ 2− 1, and the use of evaluation maps ev± can reduce this dimension

by k only. Hence, the differential of cylindrical homology coincides with the Morse-

Witten differential of ‖ϕ‖ on Fā, for each generator of H∗(T
k−1), and we obtain the

announced result.

10.3 Contact structures on T 2 × S3

In this section, we consider T 2-invariant contact structures ξp,q on T 2 × S3, corre-

sponding to the knotted fibrations given by

ϕ : S3 ⊂ C2 → C : (z1, z2)→ zp1 + zq2

where the integers p, q ≥ 2 are relatively prime. Such a function clearly defines a

knotted fibration, by standard results on singularities of complex hypersurfaces [27].

Classical methods cannot distinguish this infinite family of contact structures.
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Proposition 10.5. The formal homotopy class of ξp,q is trivial, for all p, q ≥ 2

relatively prime.

Proof. We can equip ξp,q with a T 2-invariant CR structure J . Therefore, the com-

plex vector bundle (ξp,q, J) is the pull-back of a complex vector bundle over S3.

These bundles are classified by the homotopy class of their clutching function, that

is π2(U(2)) = 0. Therefore, the complex bundle is trivial and the formal homotopy

class of ξp,q is the reduction of the structure group to the trivial group. Any two such

reductions are homotopic.

However, contact homology can distinguish infinitely many contact structures in this

family.

Corollary 10.6. There are infinitely many pairwise non-isomorphic contact struc-

tures on T 2 × S3 in the trivial formal homotopy class.

Proof. Let us compute the genus g of F . Since F has exactly one boundary com-

ponent, corresponding to the single component of Σ, we have F '
∨2g
i=1 S

1. Hence,

the genus of F can be computed using the Milnor number [27] : µ = 2g. This num-

ber can be computed as the dimension of the vector space C[z1, z2]/( ∂
∂z1
ϕ, ∂

∂z2
ϕ) =

C[z1, z2]/(zp−1
1 , zq−1

2 ). Hence, we obtain g = (p−1)(q−1)
2

. Since HF ā
1 (T 2 × S3, ξp,q)

depends on this value, we obtain infinitely many different results.

10.4 Contact structures on T 5

In this section, we consider T 2-invariant contact structures ξa,b,c on T 5. The contact

structure ξ1,1,1 was constructed explicitly by Lutz [22]. It corresponds to the knotted

fibration given by ϕ : T 3 → R2 where

ϕ1 = sin θ1 cos θ3 − sin θ2 sin θ3,

ϕ2 = sin θ1 sin θ3 + sin θ2 cos θ3,
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and it admits the following invariant contact form :

α = ϕ1dθ4 + ϕ2dθ5 + sin θ2 cos θ2dθ1 − sin θ1 cos θ1dθ2 + cos θ1 cos θ2dθ3.

Then, we define ξa,b,c, for integers a, b, c ≥ 1, as π∗a,b,cξ1,1,1, where πa,b,c : T 5 → T 5 :

(θ1, . . . , θ5)→ (aθ1, bθ2, cθ3, θ4, θ5).

Again, classical methods cannot distinguish this infinite family of contact structures.

Proposition 10.7. The formal homotopy class of ξa,b,c is trivial, for all a, b, c ≥ 1.

Proof. According to a result of Geiges [8], the formal homotopy class of a contact

structure in dimension 5 is determined by its first Chern class. Therefore, we just have

to show that c1(ξ1,1,1) = 0, because it will follow that c1(ξa,b,c) = π∗a,b,cc1(ξ1,1,1) = 0.

We rather compute c1(T (R × M), J) = c1(ξ ⊕ C) = c1(ξ), where J is an almost

complex structure on the symplectization of M , compatible with the symplectic form

d(etα). An explicit choice of such a J is given by

J
∂

∂θ4

= −∇ϕ1 − ϕ1
∂

∂t
,

J
∂

∂θ5

= −∇ϕ2 − ϕ2
∂

∂t
,

JX =
1

2
∇‖ϕ‖2 − β(X)

∂

∂t
.

The first two equations give two trivial summands in (T (R×M), J). The last equation

shows that the last summand is isomorphic to (TT 2, j), which is trivial as well. Hence

c1 = 0.

However, contact homology can distinguish infinitely many contact structures in this

family.

Corollary 10.8. There are infinitely many pairwise non-isomorphic contact struc-

tures on T 5 in the trivial formal homotopy class.

Proof. Let us determine the homotopy type of the fibre F for the contact structure
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ξ1,1,1. Since we have

ϕ =

(
cos θ3 − sin θ3

sin θ3 cos θ3

)(
sin θ1

sin θ2

)

,

it is clear that the projection T 3 → T 2 : (θ1, θ2, θ3) → (θ1, θ2) induces a homeomor-

phism between F and T 2\{(0, 0), (0, π), (π, 0), (π, π)}. Hence, F is a torus with 4 disks

removed. After the finite cover πa,b,c, the projection T 3 → T 2 : (θ1, θ2, θ3) → (θ1, θ2)

induces a branched cover with 4ab completely branched points and c branches. Hence,

there are 4ab components and the genus is given by the Riemann-Hurwitz formula :

2− 2g = c.0− (c− 1)4ab. Hence, g = 2ab(c− 1) + 1.

On the other hand, the natural trivialization along Σ is simply given by (θ1, θ2). Since

the corresponding branch points have multiplicity c, we deduce that l(∂Σ) = c.

Therefore, HF ā
i (M, ξa,b,c) depends on ab and on c.
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