Equivariant Analytic Torsion for K3 Surfaces with Involution

"Control, index, traces and determinants" in honor of Professor Jean-Michel Bismut

Ken-Ichi Yoshikawa

Kyoto University

May 28, 2013

Contents

(1) Determinant of the Laplacian for elliptic curves
(2) K3 surfaces with involution
(3) Invariant of 2-elementary K3 surfaces via analytic torsion
(4) Borcherds products and a formula for τ_{M} for general M
(5) Double Del Pezzo surfaces

Determinant of Laplacian for elliptic curves

Consider the elliptic curve

$$
E_{\tau}:=\mathbb{C} / \mathbb{Z}+\tau \mathbb{Z}, \quad \tau \in \mathfrak{H}=\{x+\sqrt{-1} y \in \mathbb{C} ; y>0\}
$$

Determinant of Laplacian for elliptic curves

Consider the elliptic curve

$$
E_{\tau}:=\mathbb{C} / \mathbb{Z}+\tau \mathbb{Z}, \quad \tau \in \mathfrak{H}=\{x+\sqrt{-1} y \in \mathbb{C} ; y>0\}
$$

Consider the flat Kähler metric of volume 1 on E_{τ} :

$$
g_{\tau}=d z \otimes d \bar{z} / \Im \tau
$$

Determinant of Laplacian for elliptic curves

Consider the elliptic curve

$$
E_{\tau}:=\mathbb{C} / \mathbb{Z}+\tau \mathbb{Z}, \quad \tau \in \mathfrak{H}=\{x+\sqrt{-1} y \in \mathbb{C} ; y>0\}
$$

Consider the flat Kähler metric of volume 1 on E_{τ} :

$$
g_{\tau}=d z \otimes d \bar{z} / \Im \tau
$$

The Laplacian of $\left(E_{\tau}, g_{\tau}\right)$ is the differential operator defined as

$$
\square_{\tau}=-\Im \tau \frac{\partial^{2}}{\partial z \partial \bar{z}}=-\frac{\Im \tau}{4}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)
$$

Determinant of Laplacian for elliptic curves

Consider the elliptic curve

$$
E_{\tau}:=\mathbb{C} / \mathbb{Z}+\tau \mathbb{Z}, \quad \tau \in \mathfrak{H}=\{x+\sqrt{-1} y \in \mathbb{C} ; y>0\}
$$

Consider the flat Kähler metric of volume 1 on E_{τ} :

$$
g_{\tau}=d z \otimes d \bar{z} / \Im \tau
$$

The Laplacian of $\left(E_{\tau}, g_{\tau}\right)$ is the differential operator defined as

$$
\square_{\tau}=-\Im \tau \frac{\partial^{2}}{\partial z \partial \bar{z}}=-\frac{\Im \tau}{4}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)
$$

Definition (Spectral Zeta Function)

The spectral zeta function of $\left(E_{\tau}, g_{\tau}\right)$ is defined as

$$
\zeta_{\tau}(s):=\sum_{\lambda \in \sigma\left(\square_{\tau}\right) \backslash\{0\}} \lambda^{-s}=\sum_{(m, n) \in \mathbb{Z}^{2} \backslash\{(0,0)\}}\left(\frac{\pi^{2}|m \tau+n|^{2}}{\Im \tau}\right)^{-s}
$$

Definition (analytic torsion)

Definition (analytic torsion)

The analytic torsion of $\left(E_{\tau}, g_{\tau}\right)$ is defined as

$$
\tau\left(E_{\tau}\right):=\exp \left(\zeta_{\tau}^{\prime}(0)\right)
$$

Definition (analytic torsion)

The analytic torsion of $\left(E_{\tau}, g_{\tau}\right)$ is defined as

$$
\tau\left(E_{\tau}\right):=\exp \left(\zeta_{\tau}^{\prime}(0)\right) .
$$

Theorem (Kronecker, Ray-Singer)

Definition (analytic torsion)

The analytic torsion of $\left(E_{\tau}, g_{\tau}\right)$ is defined as

$$
\tau\left(E_{\tau}\right):=\exp \left(\zeta_{\tau}^{\prime}(0)\right)
$$

Theorem (Kronecker, Ray-Singer)

The analytic torsion of the flat elliptic curve $\left(E_{\tau}, g_{\tau}\right)$ is given by the the Petersson norm of the Dedekind η-function

$$
\tau\left(E_{\tau}\right)=4\|\eta(\tau)\|^{-4}=4(\Im \tau)^{-1}\left|e^{2 \pi i \tau} \prod_{n>0}\left(1-e^{2 \pi i n \tau}\right)^{24}\right|^{-1 / 6}
$$

Definition (analytic torsion)

The analytic torsion of $\left(E_{\tau}, g_{\tau}\right)$ is defined as

$$
\tau\left(E_{\tau}\right):=\exp \left(\zeta_{\tau}^{\prime}(0)\right)
$$

Theorem (Kronecker, Ray-Singer)

The analytic torsion of the flat elliptic curve $\left(E_{\tau}, g_{\tau}\right)$ is given by the the Petersson norm of the Dedekind η-function

$$
\tau\left(E_{\tau}\right)=4\|\eta(\tau)\|^{-4}=4(\Im \tau)^{-1}\left|e^{2 \pi i \tau} \prod_{n>0}\left(1-e^{2 \pi i n \tau}\right)^{24}\right|^{-1 / 6}
$$

Goal of talk

Definition (analytic torsion)

The analytic torsion of $\left(E_{\tau}, g_{\tau}\right)$ is defined as

$$
\tau\left(E_{\tau}\right):=\exp \left(\zeta_{\tau}^{\prime}(0)\right)
$$

Theorem (Kronecker, Ray-Singer)

The analytic torsion of the flat elliptic curve $\left(E_{\tau}, g_{\tau}\right)$ is given by the the Petersson norm of the Dedekind η-function

$$
\tau\left(E_{\tau}\right)=4\|\eta(\tau)\|^{-4}=4(\Im \tau)^{-1}\left|e^{2 \pi i \tau} \prod_{n>0}\left(1-e^{2 \pi i n \tau}\right)^{24}\right|^{-1 / 6}
$$

Goal of talk

Extension of the Kronecker-Ray-Singer theorem to $K 3$ surfaces with involution.

K3 surfaces with involution

Definition (K3 surface)

K3 surfaces with involution

Definition (K3 surface)

A compact connected complex surface X is $K 3 \Longleftrightarrow$

K3 surfaces with involution

Definition (K3 surface)

A compact connected complex surface X is $K 3 \Longleftrightarrow$

- $H^{1}\left(X, \mathcal{O}_{X}\right)=0$

K3 surfaces with involution

Definition (K3 surface)

A compact connected complex surface X is $K 3$

$$
\text { - } H^{1}\left(X, \mathcal{O}_{X}\right)=0 \quad \text { - } K_{X}:=\Omega_{X}^{2} \cong \mathcal{O}_{X}
$$

K3 surfaces with involution

Definition (K3 surface)

A compact connected complex surface X is $K 3$

$$
\text { - } H^{1}\left(X, \mathcal{O}_{X}\right)=0 \quad \text { - } K_{X}:=\Omega_{X}^{2} \cong \mathcal{O}_{X}
$$

Fact (Kodaira)

Every K3 surface is diffeomorphic to a Kummer surface

$$
\widetilde{T^{4} / \pm 1}=\frac{T^{4}-\{\text { points of order } 2\}}{ \pm 1} \amalg E_{1} \amalg \ldots \amalg E_{16}, \quad E_{i} \cong \mathbb{P}^{1}
$$

Fact (Basic properties of K3 surfaces)

Fact (Basic properties of K3 surfaces)

- Every K3 surface is Kähler. (Siu)

Fact (Basic properties of K3 surfaces)

- Every K3 surface is Kähler. (Siu)
- Each Kähler class contains a unique Ricci-flat Kähler form. (Yau)

Fact (Basic properties of K3 surfaces)

- Every K3 surface is Kähler. (Siu)
- Each Kähler class contains a unique Ricci-flat Kähler form. (Yau)
- \exists an isometry of lattices

$$
\alpha:\left(H^{2}(K 3, \mathbb{Z}),\langle\cdot, \cdot\rangle_{\operatorname{cup}}\right) \cong \mathbb{L}_{K 3}:=\mathbb{U} \oplus \mathbb{U} \oplus \mathbb{U} \oplus \mathbb{E}_{8} \oplus \mathbb{E}_{8}
$$

Fact (Basic properties of K3 surfaces)

- Every K3 surface is Kähler. (Siu)
- Each Kähler class contains a unique Ricci-flat Kähler form. (Yau)
- \exists an isometry of lattices

$$
\alpha:\left(H^{2}(K 3, \mathbb{Z}),\langle\cdot, \cdot\rangle_{\operatorname{cup}}\right) \cong \mathbb{L}_{K 3}:=\mathbb{U} \oplus \mathbb{U} \oplus \mathbb{U} \oplus \mathbb{E}_{8} \oplus \mathbb{E}_{8},
$$

\mathbb{E}_{8} : negative-definite even unimodular lattice of rank 8
$\mathbb{U}=\left(\mathbb{Z}^{2},\binom{01}{10}\right)$: the hyperbolic plane

Fact (Basic properties of K3 surfaces)

- Every K3 surface is Kähler. (Siu)
- Each Kähler class contains a unique Ricci-flat Kähler form. (Yau)
- \exists an isometry of lattices

$$
\alpha:\left(H^{2}(K 3, \mathbb{Z}),\langle\cdot, \cdot\rangle_{\operatorname{cup}}\right) \cong \mathbb{L}_{K 3}:=\mathbb{U} \oplus \mathbb{U} \oplus \mathbb{U} \oplus \mathbb{E}_{8} \oplus \mathbb{E}_{8},
$$

\mathbb{E}_{8} : negative-definite even unimodular lattice of rank 8
$\mathbb{U}=\left(\mathbb{Z}^{2},\binom{01}{10}\right)$: the hyperbolic plane

Notation

Fact (Basic properties of K3 surfaces)

- Every K3 surface is Kähler. (Siu)
- Each Kähler class contains a unique Ricci-flat Kähler form. (Yau)
- \exists an isometry of lattices

$$
\alpha:\left(H^{2}(K 3, \mathbb{Z}),\langle\cdot, \cdot\rangle_{\operatorname{cup}}\right) \cong \mathbb{L}_{K 3}:=\mathbb{U} \oplus \mathbb{U} \oplus \mathbb{U} \oplus \mathbb{E}_{8} \oplus \mathbb{E}_{8}
$$

\mathbb{E}_{8} : negative-definite even unimodular lattice of rank 8 $\mathbb{U}=\left(\mathbb{Z}^{2},\binom{01}{10}\right)$: the hyperbolic plane

Notation

lattice : free \mathbb{Z}-module of finite rank equipped with a non-degenerate, symmetric, integral, bilinear form

Fact (Basic properties of K3 surfaces)

- Every K3 surface is Kähler. (Siu)
- Each Kähler class contains a unique Ricci-flat Kähler form. (Yau)
- \exists an isometry of lattices

$$
\alpha:\left(H^{2}(K 3, \mathbb{Z}),\langle\cdot, \cdot\rangle_{\operatorname{cup}}\right) \cong \mathbb{L}_{K 3}:=\mathbb{U} \oplus \mathbb{U} \oplus \mathbb{U} \oplus \mathbb{E}_{8} \oplus \mathbb{E}_{8}
$$

\mathbb{E}_{8} : negative-definite even unimodular lattice of rank 8 $\mathbb{U}=\left(\mathbb{Z}^{2},\binom{01}{10}\right)$: the hyperbolic plane

Notation

lattice : free \mathbb{Z}-module of finite rank equipped with a non-degenerate, symmetric, integral, bilinear form $r(L)$: rank of a lattice L

Fact (Basic properties of K3 surfaces)

- Every K3 surface is Kähler. (Siu)
- Each Kähler class contains a unique Ricci-flat Kähler form. (Yau)
- \exists an isometry of lattices

$$
\alpha:\left(H^{2}(K 3, \mathbb{Z}),\langle\cdot, \cdot\rangle_{\operatorname{cup}}\right) \cong \mathbb{L}_{K 3}:=\mathbb{U} \oplus \mathbb{U} \oplus \mathbb{U} \oplus \mathbb{E}_{8} \oplus \mathbb{E}_{8}
$$

\mathbb{E}_{8} : negative-definite even unimodular lattice of rank 8
$\mathbb{U}=\left(\mathbb{Z}^{2},\binom{01}{10}\right)$: the hyperbolic plane

Notation

lattice : free \mathbb{Z}-module of finite rank equipped with a non-degenerate, symmetric, integral, bilinear form
$r(L)$: rank of a lattice L
$\ell(L)$: minimal number of the generators of the discriminant group L^{\vee} / L

Definition (2-elementary K3 surface)

Definition (2-elementary K3 surface)
 X : K3 surface

Definition (2-elementary K3 surface)

$X: K 3$ surface
$\iota: X \rightarrow X:$ anti-symplectic holomorphic involution

```
Definition (2-elementary K3 surface)
X : K3 surface
\iota : X \rightarrow X ~ : ~ a n t i - s y m p l e c t i c ~ h o l o m o r p h i c ~ i n v o l u t i o n
M\subset\mp@subsup{\mathbb{L}}{K3}{}: primitive 2-elementary Lorentzian sublattice
```


Definition (2-elementary K3 surface)

$X: K 3$ surface
$\iota: X \rightarrow X$: anti-symplectic holomorphic involution
$M \subset \mathbb{L}_{K 3}$: primitive 2-elementary Lorentzian sublattice

$$
\operatorname{Tors}\left(\mathbb{L}_{K 3} / M\right)=0, \quad M^{\vee} / M \cong\left(\mathbb{Z}_{2}\right)^{\ell(M)}, \quad \ell(M)=\operatorname{dim}_{\mathbb{Z}_{2}} M^{\vee} / M
$$

Definition (2-elementary K3 surface)

$X: K 3$ surface
$\iota: X \rightarrow X$: anti-symplectic holomorphic involution
$M \subset \mathbb{L}_{K 3}$: primitive 2-elementary Lorentzian sublattice

$$
\operatorname{Tors}\left(\mathbb{L}_{K 3} / M\right)=0, \quad M^{\vee} / M \cong\left(\mathbb{Z}_{2}\right)^{\ell(M)}, \quad \ell(M)=\operatorname{dim}_{\mathbb{Z}_{2}} M^{\vee} / M
$$

The pair (X, ι) is a 2-elementary $K 3$ surface of type $M \Longleftrightarrow$

Definition (2-elementary K3 surface)

$X: K 3$ surface
$\iota: X \rightarrow X$: anti-symplectic holomorphic involution
$M \subset \mathbb{L}_{K 3}$: primitive 2-elementary Lorentzian sublattice

$$
\operatorname{Tors}\left(\mathbb{L}_{K 3} / M\right)=0, \quad M^{\vee} / M \cong\left(\mathbb{Z}_{2}\right)^{\ell(M)}, \quad \ell(M)=\operatorname{dim}_{\mathbb{Z}_{2}} M^{\vee} / M
$$

The pair (X, ι) is a 2-elementary $K 3$ surface of type $M \Longleftrightarrow$

- ι is anti-symplectic

Definition (2-elementary K3 surface)

$X: K 3$ surface
$\iota: X \rightarrow X$: anti-symplectic holomorphic involution
$M \subset \mathbb{L}_{K 3}$: primitive 2-elementary Lorentzian sublattice

$$
\operatorname{Tors}\left(\mathbb{L}_{K 3} / M\right)=0, \quad M^{\vee} / M \cong\left(\mathbb{Z}_{2}\right)^{\ell(M)}, \quad \ell(M)=\operatorname{dim}_{\mathbb{Z}_{2}} M^{\vee} / M
$$

The pair (X, ι) is a 2-elementary $K 3$ surface of type $M \Longleftrightarrow$

- ι is anti-symplectic i.e., $\iota^{*}=-1$ on $H^{0}\left(X, \Omega_{X}^{2}\right)$

Definition (2-elementary K3 surface)

$X: K 3$ surface
$\iota: X \rightarrow X$: anti-symplectic holomorphic involution
$M \subset \mathbb{L}_{K 3}$: primitive 2-elementary Lorentzian sublattice
$\operatorname{Tors}\left(\mathbb{L}_{K 3} / M\right)=0, \quad M^{\vee} / M \cong\left(\mathbb{Z}_{2}\right)^{\ell(M)}, \quad \ell(M)=\operatorname{dim}_{\mathbb{Z}_{2}} M^{\vee} / M$
The pair (X, ι) is a 2-elementary $K 3$ surface of type M \qquad

- ι is anti-symplectic i.e., $\iota^{*}=-1$ on $H^{0}\left(X, \Omega_{X}^{2}\right)$
- \exists an isometry of lattices $\alpha:\left(H^{2}(X, \mathbb{Z}),\langle\cdot, \cdot\rangle_{\text {cup }}\right) \cong \mathbb{L}_{K 3}$ such that

$$
\alpha\left(H_{+}^{2}(X, \mathbb{Z})\right)=M
$$

where $H_{+}^{2}(X, \mathbb{Z})$ is the invariant sublattice w.r.t. ι

Definition (2-elementary K3 surface)

$X: K 3$ surface
$\iota: X \rightarrow X$: anti-symplectic holomorphic involution
$M \subset \mathbb{L}_{K 3}$: primitive 2-elementary Lorentzian sublattice
$\operatorname{Tors}\left(\mathbb{L}_{K_{3}} / M\right)=0, \quad M^{\vee} / M \cong\left(\mathbb{Z}_{2}\right)^{\ell(M)}, \quad \ell(M)=\operatorname{dim}_{\mathbb{Z}_{2}} M^{\vee} / M$
The pair (X, ι) is a 2-elementary $K 3$ surface of type M \qquad

- ι is anti-symplectic i.e., $\iota^{*}=-1$ on $H^{0}\left(X, \Omega_{X}^{2}\right)$
- \exists an isometry of lattices $\alpha:\left(H^{2}(X, \mathbb{Z}),\langle\cdot, \cdot\rangle_{\text {cup }}\right) \cong \mathbb{L}_{K 3}$ such that

$$
\alpha\left(H_{+}^{2}(X, \mathbb{Z})\right)=M
$$

where $H_{+}^{2}(X, \mathbb{Z})$ is the invariant sublattice w.r.t. ι

$$
H_{+}^{2}(X, \mathbb{Z}):=\left\{v \in H^{2}(X, \mathbb{Z}) ; \iota^{*} v=v\right\} .
$$

Fact (Deformation types of 2-elementary K3 surfaces, Nikulin)

Fact (Deformation types of 2-elementary K3 surfaces, Nikulin)

- $\exists 75$ distinct deformation types of (X, ι) :

Fact (Deformation types of 2-elementary K3 surfaces, Nikulin)

- $\exists 75$ distinct deformation types of (X, ι) :

$$
\begin{aligned}
& \# \frac{\{(X, \iota)\}}{\text { deformation equivalence }} \\
& =\# \frac{\left\{\text { primitive, 2-elementary, Lorentzian } M \subset \mathbb{L}_{K 3}\right\}}{O\left(\mathbb{L}_{K 3}\right)} \\
& =75
\end{aligned}
$$

Fact (Deformation types of 2-elementary K3 surfaces, Nikulin)

- $\exists 75$ distinct deformation types of (X, ι) :

$$
\begin{aligned}
& \# \frac{\{(X, \iota)\}}{\text { deformation equivalence }} \\
& =\# \frac{\left\{\text { primitive, 2-elementary, Lorentzian } M \subset \mathbb{L}_{K 3}\right\}}{O\left(\mathbb{L}_{K 3}\right)} \\
& =75
\end{aligned}
$$

- \exists one-to-one correspondence:

Fact (Deformation types of 2-elementary K3 surfaces, Nikulin)

- $\exists 75$ distinct deformation types of (X, ι) :

$$
\begin{aligned}
& \# \frac{\{(X, \iota)\}}{\text { deformation equivalence }} \\
& =\# \frac{\left\{\text { primitive, 2-elementary, Lorentzian } M \subset \mathbb{L}_{K 3}\right\}}{O\left(\mathbb{L}_{K 3}\right)} \\
& =75
\end{aligned}
$$

- \exists one-to-one correspondence:
$\left\{\right.$ isometry classes of primitive, 2-elementary, Lorentzian $\left.M \subset \mathbb{L}_{K 3}\right\}$

$$
\Uparrow
$$

$\left\{(r(M), \ell(M), \delta(M)) ; M \subset \mathbb{L}_{K 3}\right.$ primitive, 2-elementary, Lorentzian $\}$ where $\delta(M) \in\{0,1\}$ is the "parity" of M.

Definition (Domain of type IV)

Definition (Domain of type IV)

For a lattice Λ with $\operatorname{sign}(\Lambda)=(2, r(\Lambda)-2)$, define

$$
\Omega_{\Lambda}=\Omega_{\Lambda}^{+} \amalg \Omega_{\Lambda}^{-}:=\left\{[\eta] \in \mathbb{P}(\Lambda \otimes \mathbb{C}) ;\langle\eta, \eta\rangle_{\Lambda}=0, \quad\langle\eta, \bar{\eta}\rangle_{\wedge}>0\right\}
$$

Definition (Domain of type IV)

For a lattice Λ with $\operatorname{sign}(\Lambda)=(2, r(\Lambda)-2)$, define

$$
\Omega_{\Lambda}=\Omega_{\Lambda}^{+} \amalg \Omega_{\Lambda}^{-}:=\left\{[\eta] \in \mathbb{P}(\Lambda \otimes \mathbb{C}) ;\langle\eta, \eta\rangle_{\Lambda}=0, \quad\langle\eta, \bar{\eta}\rangle_{\wedge}>0\right\}
$$

$\Longrightarrow \Omega_{\Lambda}^{ \pm}$: bounded symmetric domain of type IV of $\operatorname{dim} \Omega_{\Lambda}=r(\Lambda)-2$.

Definition (Domain of type IV)

For a lattice Λ with $\operatorname{sign}(\Lambda)=(2, r(\Lambda)-2)$, define

$$
\Omega_{\Lambda}=\Omega_{\Lambda}^{+} \amalg \Omega_{\Lambda}^{-}:=\left\{[\eta] \in \mathbb{P}(\Lambda \otimes \mathbb{C}) ;\langle\eta, \eta\rangle_{\Lambda}=0, \quad\langle\eta, \bar{\eta}\rangle_{\wedge}>0\right\}
$$

$\Longrightarrow \Omega_{\Lambda}^{ \pm}$: bounded symmetric domain of type IV of $\operatorname{dim} \Omega_{\Lambda}=r(\Lambda)-2$.

Definition (Period of a 2-elementary K3 surface)

Definition (Domain of type IV)

For a lattice Λ with $\operatorname{sign}(\Lambda)=(2, r(\Lambda)-2)$, define

$$
\Omega_{\Lambda}=\Omega_{\Lambda}^{+} \amalg \Omega_{\Lambda}^{-}:=\left\{[\eta] \in \mathbb{P}(\Lambda \otimes \mathbb{C}) ;\langle\eta, \eta\rangle_{\Lambda}=0, \quad\langle\eta, \bar{\eta}\rangle_{\wedge}>0\right\}
$$

$\Longrightarrow \Omega_{\Lambda}^{ \pm}$: bounded symmetric domain of type IV of $\operatorname{dim} \Omega_{\Lambda}=r(\Lambda)-2$.

Definition (Period of a 2-elementary K3 surface)

(X, ι) : 2-elementary $K 3$ surface of type M

Definition (Domain of type IV)

For a lattice Λ with $\operatorname{sign}(\Lambda)=(2, r(\Lambda)-2)$, define

$$
\Omega_{\Lambda}=\Omega_{\Lambda}^{+} \amalg \Omega_{\Lambda}^{-}:=\left\{[\eta] \in \mathbb{P}(\Lambda \otimes \mathbb{C}) ;\langle\eta, \eta\rangle_{\Lambda}=0, \quad\langle\eta, \bar{\eta}\rangle_{\wedge}>0\right\}
$$

$\Longrightarrow \Omega_{\Lambda}^{ \pm}$: bounded symmetric domain of type IV of $\operatorname{dim} \Omega_{\Lambda}=r(\Lambda)-2$.

Definition (Period of a 2-elementary K3 surface)

$(X, \iota):$ 2-elementary $K 3$ surface of type $M \Longrightarrow H^{0}\left(X, \Omega_{X}^{2}\right) \subset H_{-}^{2}(X, \mathbb{C})$

Definition (Domain of type IV)

For a lattice Λ with $\operatorname{sign}(\Lambda)=(2, r(\Lambda)-2)$, define

$$
\Omega_{\Lambda}=\Omega_{\Lambda}^{+} \amalg \Omega_{\Lambda}^{-}:=\left\{[\eta] \in \mathbb{P}(\Lambda \otimes \mathbb{C}) ;\langle\eta, \eta\rangle_{\Lambda}=0, \quad\langle\eta, \bar{\eta}\rangle_{\wedge}>0\right\}
$$

$\Longrightarrow \Omega_{\Lambda}^{ \pm}$: bounded symmetric domain of type IV of $\operatorname{dim} \Omega_{\Lambda}=r(\Lambda)-2$.

Definition (Period of a 2-elementary K3 surface)

(X, ι) : 2-elementary K3 surface of type $M \Longrightarrow H^{0}\left(X, \Omega_{X}^{2}\right) \subset H_{-}^{2}(X, \mathbb{C})$ α : an isometry of lattices satisfying

$$
\alpha: H^{2}(X, \mathbb{Z}) \cong \mathbb{L}_{K 3}, \quad \alpha\left(H_{-}^{2}(X, \mathbb{Z})\right)=M^{\perp}
$$

Definition (Domain of type IV)

For a lattice Λ with $\operatorname{sign}(\Lambda)=(2, r(\Lambda)-2)$, define

$$
\Omega_{\Lambda}=\Omega_{\Lambda}^{+} \amalg \Omega_{\Lambda}^{-}:=\left\{[\eta] \in \mathbb{P}(\Lambda \otimes \mathbb{C}) ;\langle\eta, \eta\rangle_{\Lambda}=0, \quad\langle\eta, \bar{\eta}\rangle_{\wedge}>0\right\}
$$

$\Longrightarrow \Omega_{\Lambda}^{ \pm}$: bounded symmetric domain of type IV of $\operatorname{dim} \Omega_{\Lambda}=r(\Lambda)-2$.

Definition (Period of a 2-elementary K3 surface)

(X, ι) : 2-elementary K3 surface of type $M \Longrightarrow H^{0}\left(X, \Omega_{X}^{2}\right) \subset H_{-}^{2}(X, \mathbb{C})$ α : an isometry of lattices satisfying

$$
\alpha: H^{2}(X, \mathbb{Z}) \cong \mathbb{L}_{K 3}, \quad \alpha\left(H_{-}^{2}(X, \mathbb{Z})\right)=M^{\perp}
$$

The period of (X, ι) is defined by

$$
\begin{aligned}
\varpi(X, \iota):=\left[\alpha\left(H^{0}\left(X, \Omega_{X}^{2}\right)\right)\right] & \in \Omega_{M^{\perp}} / O\left(M^{\perp}\right) \\
& \subset \mathbb{P}\left(M^{\perp} \otimes \mathbb{C}\right) / O\left(M^{\perp}\right)
\end{aligned}
$$

Theorem (Piatetskii-Shapiro-Shafarevich, Nikulin, Dolgachev, Y.)

Theorem (Piatetskii-Shapiro-Shafarevich, Nikulin, Dolgachev, Y.)
$\mathcal{M}_{M^{\perp}}^{0}$: the moduli space of 2-elementary K3 surfaces of type M

Theorem (Piatetskii-Shapiro-Shafarevich, Nikulin, Dolgachev, Y.)
$\mathcal{M}_{M^{\perp}}^{0}$: the moduli space of 2-elementary K3 surfaces of type M
\Longrightarrow
the period map induces an isomorphism

$$
\varpi: \mathcal{M}_{M^{\perp}}^{0} \ni[(X, \iota)] \rightarrow \varpi(X, \iota) \in \frac{\Omega_{M^{\perp}} \backslash \mathcal{D}_{M^{\perp}}}{O\left(M^{\perp}\right)}
$$

Theorem (Piatetskii-Shapiro-Shafarevich, Nikulin, Dolgachev, Y.)

$\mathcal{M}_{M^{\perp}}^{0}$: the moduli space of 2-elementary K3 surfaces of type M \Longrightarrow
the period map induces an isomorphism

$$
\varpi: \mathcal{M}_{M^{\perp}}^{0} \ni[(X, \iota)] \rightarrow \varpi(X, \iota) \in \frac{\Omega_{M^{\perp}} \backslash \mathcal{D}_{M^{\perp}}}{O\left(M^{\perp}\right)}
$$

where $\mathcal{D}_{M^{\perp}}$ is the discriminant divisor of $\Omega_{M^{\perp}}$

$$
\begin{gathered}
\mathcal{D}_{M^{\perp}}:=\sum_{d \in M^{\perp}, d^{2}=-2} H_{d} \\
H_{d}:=\left\{[\eta] \in \Omega_{\left.M^{\perp} ;\langle\eta, d\rangle=0\right\}}\right.
\end{gathered}
$$

Invariant of 2-elementary K3 surfaces via analytic torsion

Invariant of 2-elementary K3 surfaces via analytic torsion

Definition (Equivariant analytic torsion)

Invariant of 2-elementary K3 surfaces via analytic torsion

Definition (Equivariant analytic torsion)

(X, g_{X}) : compact Kähler manifold

Invariant of 2-elementary K3 surfaces via analytic torsion

Definition (Equivariant analytic torsion)

$\left(X, g_{X}\right)$: compact Kähler manifold
$\iota: X \rightarrow X$: holomorphic involution preserving g_{X}

Invariant of 2-elementary K3 surfaces via analytic torsion

Definition (Equivariant analytic torsion)

$\left(X, g_{X}\right)$: compact Kähler manifold
$\iota: X \rightarrow X$: holomorphic involution preserving g_{X}
$\zeta_{q}(s, \iota)$: equivariant ζ-function of $\square_{q}=\left(\bar{\partial}+\bar{\partial}^{*}\right)^{2}$ acting on $A^{0, q}(X)$

Invariant of 2-elementary K3 surfaces via analytic torsion

Definition (Equivariant analytic torsion)

$\left(X, g_{X}\right)$: compact Kähler manifold
$\iota: X \rightarrow X$: holomorphic involution preserving g_{X}
$\zeta_{q}(s, \iota)$: equivariant ζ-function of $\square_{q}=\left(\bar{\partial}+\bar{\partial}^{*}\right)^{2}$ acting on $A^{0, q}(X)$

$$
\zeta_{q}(s, \iota):=\sum_{\lambda \in \sigma\left(\square_{q}\right) \backslash\{0\}} \lambda^{-s} \operatorname{Tr}\left[\left.\iota^{*}\right|_{E\left(\square_{q}, \lambda\right)}\right] .
$$

Invariant of 2-elementary K3 surfaces via analytic torsion

Definition (Equivariant analytic torsion)

$\left(X, g_{X}\right)$: compact Kähler manifold
$\iota: X \rightarrow X$: holomorphic involution preserving g_{X}
$\zeta_{q}(s, \iota)$: equivariant ζ-function of $\square_{q}=\left(\bar{\partial}+\bar{\partial}^{*}\right)^{2}$ acting on $A^{0, q}(X)$

$$
\zeta_{q}(s, \iota):=\sum_{\lambda \in \sigma\left(\square_{q}\right) \backslash\{0\}} \lambda^{-s} \operatorname{Tr}\left[\left.\iota^{*}\right|_{E\left(\square_{q}, \lambda\right)}\right] .
$$

The equivariant analytic torsion of $\left(X, g_{X}, \iota\right)$ is defined as

Invariant of 2-elementary K3 surfaces via analytic torsion

Definition (Equivariant analytic torsion)

$\left(X, g_{X}\right)$: compact Kähler manifold
$\iota: X \rightarrow X$: holomorphic involution preserving g_{X}
$\zeta_{q}(s, \iota)$: equivariant ζ-function of $\square_{q}=\left(\bar{\partial}+\bar{\partial}^{*}\right)^{2}$ acting on $A^{0, q}(X)$

$$
\zeta_{q}(s, \iota):=\sum_{\lambda \in \sigma\left(\square_{q}\right) \backslash\{0\}} \lambda^{-s} \operatorname{Tr}\left[\left.\iota^{*}\right|_{E\left(\square_{q}, \lambda\right)}\right] .
$$

The equivariant analytic torsion of $\left(X, g_{X}, \iota\right)$ is defined as

$$
\tau_{\mathbb{Z}_{2}}\left(X, g_{X}\right)(\iota):=\exp \left\{-\sum_{q \geq 0}(-1)^{q} q \zeta_{q}^{\prime}(0, \iota)\right\}
$$

Definition (Analytic torsion invariant)

Definition (Analytic torsion invariant)

(X, ι) : 2-elementary $K 3$ surface of type M

Definition (Analytic torsion invariant)

(X, ι) : 2-elementary $K 3$ surface of type M
η : nowhere vanishing holomorphic 2-form on X

Definition (Analytic torsion invariant)

(X, ι) : 2-elementary $K 3$ surface of type M
η : nowhere vanishing holomorphic 2-form on X
γ : ι-invariant Kähler form on X

Definition (Analytic torsion invariant)

(X, ι) : 2-elementary $K 3$ surface of type M
η : nowhere vanishing holomorphic 2-form on X
γ : ι-invariant Kähler form on X
$X^{\iota}=\{x \in X ; \iota(x)=x\}=\amalg_{i} C_{i}$: the fixed-point-set of $\iota \in \operatorname{Aut}(X)$

Definition (Analytic torsion invariant)

(X, ι) : 2-elementary $K 3$ surface of type M
η : nowhere vanishing holomorphic 2-form on X
γ : ι-invariant Kähler form on X
$X^{\iota}=\{x \in X ; \iota(x)=x\}=\amalg_{i} C_{i}$: the fixed-point-set of $\iota \in \operatorname{Aut}(X)$
$\Longrightarrow X^{\iota}=\emptyset$ or every C_{i} is a compact Riemann surface (Nikulin).

Definition (Analytic torsion invariant)

(X, ι) : 2-elementary $K 3$ surface of type M
η : nowhere vanishing holomorphic 2-form on X
γ : ι-invariant Kähler form on X
$X^{\iota}=\{x \in X ; \iota(x)=x\}=\amalg_{i} C_{i}$: the fixed-point-set of $\iota \in \operatorname{Aut}(X)$
$\Longrightarrow X^{\iota}=\emptyset$ or every C_{i} is a compact Riemann surface (Nikulin).

Define

$$
\begin{aligned}
\tau_{M}(X, \iota):= & \operatorname{Vol}(X, \gamma)^{\frac{r(M)-6}{4}} \tau_{\mathbb{Z}_{2}}(X, \gamma)(\iota) \prod_{i} \operatorname{Vol}\left(C_{i}, \gamma \mid c_{i}\right) \tau\left(C_{i}, \gamma \mid c_{i}\right) \\
& \times \exp \left[\left.\frac{1}{8} \int_{X^{\iota}} \log \left(\frac{\eta \wedge \bar{\eta}}{\gamma^{2} / 2!} \cdot \frac{\operatorname{Vol}(X, \gamma)}{\|\eta\|_{L^{2}}^{2}}\right)\right|_{X^{\iota}} c_{1}\left(X^{\iota}, \gamma \mid X^{\iota}\right)\right]
\end{aligned}
$$

Definition (Analytic torsion invariant)

(X, ι) : 2-elementary $K 3$ surface of type M
η : nowhere vanishing holomorphic 2-form on X
γ : ι-invariant Kähler form on X
$X^{\iota}=\{x \in X ; \iota(x)=x\}=\amalg_{i} C_{i}$: the fixed-point-set of $\iota \in \operatorname{Aut}(X)$
$\Longrightarrow X^{\iota}=\emptyset$ or every C_{i} is a compact Riemann surface (Nikulin).
Define

$$
\begin{aligned}
\tau_{M}(X, \iota):= & \operatorname{Vol}(X, \gamma)^{\frac{r(M)-6}{4}} \tau_{\mathbb{Z}_{2}}(X, \gamma)(\iota) \prod_{i} \operatorname{Vol}\left(C_{i}, \gamma \mid c_{i}\right) \tau\left(C_{i}, \gamma \mid c_{i}\right) \\
& \times \exp \left[\left.\frac{1}{8} \int_{X^{\iota}} \log \left(\frac{\eta \wedge \bar{\eta}}{\gamma^{2} / 2!} \cdot \frac{\operatorname{Vol}(X, \gamma)}{\|\eta\|_{L^{2}}^{2}}\right)\right|_{X^{\iota}} c_{1}\left(X^{\iota}, \gamma \mid X^{\iota}\right)\right]
\end{aligned}
$$

N.B.

$$
\gamma: \text { Ricci-flat } \Longleftrightarrow \frac{\eta \wedge \bar{\eta}}{\gamma^{2} / 2!}=\frac{\operatorname{Vol}(X, \gamma)}{\|\eta\|_{L^{2}}^{2}}
$$

Theorem (Y.)

Theorem (Y.)

- $\tau_{M}(X, \iota)$ is independent of γ. As a result, $\tau_{M} \in C^{\infty}\left(\mathcal{M}_{M^{\perp}}^{0}\right)$.

Theorem (Y.)

- $\tau_{M}(X, \iota)$ is independent of γ. As a result, $\tau_{M} \in C^{\infty}\left(\mathcal{M}_{M^{\perp}}^{0}\right)$.
- Let $J_{M}: \mathcal{M}_{M^{\perp}}^{0} \rightarrow \mathcal{A}_{g(M)}$ be the map

$$
J_{M}(X, \iota):=\left[\operatorname{Jac}\left(X^{\iota}\right)\right]
$$

where $g(M)=H^{1}\left(X^{\iota}, \mathcal{O}_{X^{\iota}}\right)$ and \mathcal{A}_{g} is the Siegel modular variety of degree g.

Theorem (Y.)

- $\tau_{M}(X, \iota)$ is independent of γ. As a result, $\tau_{M} \in C^{\infty}\left(\mathcal{M}_{M^{\perp}}^{0}\right)$.
- Let $J_{M}: \mathcal{M}_{M^{\perp}}^{0} \rightarrow \mathcal{A}_{g(M)}$ be the map

$$
J_{M}(X, \iota):=\left[\operatorname{Jac}\left(X^{\iota}\right)\right]
$$

where $g(M)=H^{1}\left(X^{\iota}, \mathcal{O}_{X^{\iota}}\right)$ and \mathcal{A}_{g} is the Siegel modular variety of degree g. Then the following equation of currents on $\Omega_{M^{\perp}}^{+}$holds
$(*) \quad d d^{c} \log \tau_{M}=\frac{r(M)-6}{4} \omega_{\Omega_{M \perp}}+J_{M^{*}}^{*} \omega_{\mathcal{A}_{g(M)}}-\frac{1}{4} \delta_{\mathcal{D}_{M \perp}}$

Theorem (Y.)

- $\tau_{M}(X, \iota)$ is independent of γ. As a result, $\tau_{M} \in C^{\infty}\left(\mathcal{M}_{M^{\perp}}^{0}\right)$.
- Let $J_{M}: \mathcal{M}_{M^{\perp}}^{0} \rightarrow \mathcal{A}_{g(M)}$ be the map

$$
J_{M}(X, \iota):=\left[\operatorname{Jac}\left(X^{\iota}\right)\right]
$$

where $g(M)=H^{1}\left(X^{\iota}, \mathcal{O}_{X^{\iota}}\right)$ and \mathcal{A}_{g} is the Siegel modular variety of degree g. Then the following equation of currents on $\Omega_{M^{\perp}}^{+}$holds
$(*) \quad d d^{c} \log \tau_{M}=\frac{r(M)-6}{4} \omega_{\Omega_{M \perp}}+J_{M^{*}}^{*} \omega_{\mathcal{A}_{g(M)}}-\frac{1}{4} \delta_{\mathcal{D}_{M \perp}}$
where $\omega_{\Omega_{M \perp}}$ and $\omega_{\mathcal{A}_{g(M)}}$ are the Kähler forms of the Bergman metrics on $\Omega_{M^{\perp}}$ and $\mathcal{A}_{g(M)}$, respectively.

Theorem (Y.)

- $\tau_{M}(X, \iota)$ is independent of γ. As a result, $\tau_{M} \in C^{\infty}\left(\mathcal{M}_{M^{\perp}}^{0}\right)$.
- Let $J_{M}: \mathcal{M}_{M^{\perp}}^{0} \rightarrow \mathcal{A}_{g(M)}$ be the map

$$
J_{M}(X, \iota):=\left[\operatorname{Jac}\left(X^{\iota}\right)\right]
$$

where $g(M)=H^{1}\left(X^{\iota}, \mathcal{O}_{X^{\iota}}\right)$ and \mathcal{A}_{g} is the Siegel modular variety of degree g. Then the following equation of currents on $\Omega_{M^{\perp}}^{+}$holds
$(*) \quad d d^{c} \log \tau_{M}=\frac{r(M)-6}{4} \omega_{\Omega_{M \perp}}+J_{M^{*}}^{*} \omega_{\mathcal{A}_{g(M)}}-\frac{1}{4} \delta_{\mathcal{D}_{M \perp}}$
where $\omega_{\Omega_{M \perp}}$ and $\omega_{\mathcal{A}_{g(M)}}$ are the Kähler forms of the Bergman metrics on $\Omega_{M^{\perp}}$ and $\mathcal{A}_{g(M)}$, respectively.

- There exist an "automorphic form" Φ_{M} on $\Omega_{M^{\perp}}^{+}$for $O^{+}\left(M^{\perp}\right)$ and an integer $\nu \in \mathbb{Z}_{>0}$ such that

$$
\tau_{M}=\left\|\Phi_{M}\right\|^{-1 / 2 \nu}, \quad \operatorname{div}\left(\Phi_{M}\right)=\nu \mathcal{D}_{M^{\perp}}
$$

- On the open part of the moduli space $\Omega_{M^{\perp}}^{+} \backslash \mathcal{D}_{M^{\perp}}$, the equation

$$
d d^{c} \log \tau_{M}=\frac{r(M)-6}{4} \omega_{\Omega_{M \perp}}+J_{M}^{*} \omega_{\mathcal{A}_{g(M)}}
$$

follows from the curvature formula for (equivariant) Quillen metrics, due to Bismut-Gillet-Soulé and Ma.

- On the open part of the moduli space $\Omega_{M^{\perp}}^{+} \backslash \mathcal{D}_{M^{\perp}}$, the equation

$$
d d^{c} \log \tau_{M}=\frac{r(M)-6}{4} \omega_{\Omega_{M \perp}}+J_{M}^{*} \omega_{\mathcal{A}_{g(M)}}
$$

follows from the curvature formula for (equivariant) Quillen metrics, due to Bismut-Gillet-Soulé and Ma.

- The logarithmic divergence of $\log \tau_{M}$ for ordinary singular families of 2-elementary K3 surfaces

$$
\left.\log \tau_{M}\left(X_{t}, \iota_{t}\right)=-\frac{1}{8} \log |t|^{2}+O(\log (-\log |t|))\right)
$$

can be obtained by applying the embedding formula for equivariant Quillen metrics due to Bismut.

- On the open part of the moduli space $\Omega_{M^{\perp}}^{+} \backslash \mathcal{D}_{M^{\perp}}$, the equation

$$
d d^{c} \log \tau_{M}=\frac{r(M)-6}{4} \omega_{\Omega_{M \perp}}+J_{M}^{*} \omega_{\mathcal{A}_{g(M)}}
$$

follows from the curvature formula for (equivariant) Quillen metrics, due to Bismut-Gillet-Soulé and Ma.

- The logarithmic divergence of $\log \tau_{M}$ for ordinary singular families of 2-elementary K3 surfaces

$$
\left.\log \tau_{M}\left(X_{t}, \iota_{t}\right)=-\frac{1}{8} \log |t|^{2}+O(\log (-\log |t|))\right)
$$

can be obtained by applying the embedding formula for equivariant Quillen metrics due to Bismut.
\Longrightarrow These two formulae yield the the equation of currents on $\Omega_{M^{\perp}}^{+}$
$(*) \quad d d^{c} \log \tau_{M}=\frac{r(M)-6}{4} \omega_{\Omega_{M} \perp}+J_{M^{*}}^{*} \omega_{\mathcal{A}_{g(M)}}-\frac{1}{4} \delta_{\mathcal{D}_{M^{\perp}}}$.

- \mathcal{F}_{g} : Hodge bundle on the Siegel modular variety $\mathcal{A}_{g}=\mathfrak{S}_{g} / S p_{2 g}(\mathbb{Z})$
- \mathcal{F}_{g} : Hodge bundle on the Siegel modular variety $\mathcal{A}_{g}=\mathfrak{S}_{g} / S p_{2 g}(\mathbb{Z})$
- $\lambda_{M}^{q}:=J_{M}^{*} \mathcal{F}_{g(M)}^{\otimes q}$: pullback of $\mathcal{F}_{g(M)}^{\otimes q}$ by the meromorphic map

$$
J_{M}: \Omega_{M^{\perp}} \ni \varpi(X, \iota) \rightarrow\left[\operatorname{Jac}\left(X^{\iota}\right)\right] \in \mathcal{A}_{g(M)}
$$

- \mathcal{F}_{g} : Hodge bundle on the Siegel modular variety $\mathcal{A}_{g}=\mathfrak{S}_{g} / S p_{2 g}(\mathbb{Z})$
- $\lambda_{M}^{q}:=J_{M}^{*} \mathcal{F}_{g(M)}^{\otimes q}$: pullback of $\mathcal{F}_{g(M)}^{\otimes q}$ by the meromorphic map

$$
J_{M}: \Omega_{M^{\perp}} \ni \varpi(X, \iota) \rightarrow\left[\operatorname{Jac}\left(X^{\iota}\right)\right] \in \mathcal{A}_{g(M)}
$$

- $\ell \in M^{\perp} \otimes \mathbb{R}$: a fixed vector with $\langle\ell, \ell\rangle \geq 0$
- \mathcal{F}_{g} : Hodge bundle on the Siegel modular variety $\mathcal{A}_{g}=\mathfrak{S}_{g} / S p_{2 g}(\mathbb{Z})$
- $\lambda_{M}^{q}:=J_{M}^{*} \mathcal{F}_{g(M)}^{\otimes q}$: pullback of $\mathcal{F}_{g(M)}^{\otimes q}$ by the meromorphic map

$$
J_{M}: \Omega_{M^{\perp}} \ni \varpi(X, \iota) \rightarrow\left[\operatorname{Jac}\left(X^{\iota}\right)\right] \in \mathcal{A}_{g(M)}
$$

- $\ell \in M^{\perp} \otimes \mathbb{R}$: a fixed vector with $\langle\ell, \ell\rangle \geq 0 \Longrightarrow \ell^{\perp}$: hyperplane at ∞
- \mathcal{F}_{g} : Hodge bundle on the Siegel modular variety $\mathcal{A}_{g}=\mathfrak{S}_{g} / S p_{2 g}(\mathbb{Z})$
- $\lambda_{M}^{q}:=J_{M}^{*} \mathcal{F}_{g(M)}^{\otimes q}$: pullback of $\mathcal{F}_{g(M)}^{\otimes q}$ by the meromorphic map

$$
J_{M}: \Omega_{M^{\perp}} \ni \varpi(X, \iota) \rightarrow\left[\operatorname{Jac}\left(X^{\iota}\right)\right] \in \mathcal{A}_{g(M)}
$$

- $\ell \in M^{\perp} \otimes \mathbb{R}$: a fixed vector with $\langle\ell, \ell\rangle \geq 0 \Longrightarrow \ell^{\perp}$: hyperplane at ∞
- $j_{M}(\gamma,[\eta])=\frac{\langle\gamma(\eta), \ell\rangle}{\langle\eta, \ell\rangle}$: automorphic factor of $\Omega_{M^{\perp}}$, where $\gamma \in O\left(M^{\perp}\right)$
- \mathcal{F}_{g} : Hodge bundle on the Siegel modular variety $\mathcal{A}_{g}=\mathfrak{S}_{g} / S p_{2 g}(\mathbb{Z})$
- $\lambda_{M}^{q}:=J_{M}^{*} \mathcal{F}_{g(M)}^{\otimes q}$: pullback of $\mathcal{F}_{g(M)}^{\otimes q}$ by the meromorphic map

$$
J_{M}: \Omega_{M^{\perp}} \ni \varpi(X, \iota) \rightarrow\left[\operatorname{Jac}\left(X^{\iota}\right)\right] \in \mathcal{A}_{g(M)}
$$

- $\ell \in M^{\perp} \otimes \mathbb{R}$: a fixed vector with $\langle\ell, \ell\rangle \geq 0 \Longrightarrow \ell^{\perp}$: hyperplane at ∞
- $j_{M}(\gamma,[\eta])=\frac{\langle\gamma(\eta), \ell\rangle}{\langle\eta, \ell\rangle}$: automorphic factor of $\Omega_{M^{\perp}}$, where $\gamma \in O\left(M^{\perp}\right)$

Definition (automorphic forms)

- \mathcal{F}_{g} : Hodge bundle on the Siegel modular variety $\mathcal{A}_{g}=\mathfrak{S}_{g} / S p_{2 g}(\mathbb{Z})$
- $\lambda_{M}^{q}:=J_{M}^{*} \mathcal{F}_{g(M)}^{\otimes q}$: pullback of $\mathcal{F}_{g(M)}^{\otimes q}$ by the meromorphic map

$$
J_{M}: \Omega_{M^{\perp}} \ni \varpi(X, \iota) \rightarrow\left[\operatorname{Jac}\left(X^{\iota}\right)\right] \in \mathcal{A}_{g(M)}
$$

- $\ell \in M^{\perp} \otimes \mathbb{R}$: a fixed vector with $\langle\ell, \ell\rangle \geq 0 \Longrightarrow \ell^{\perp}$: hyperplane at ∞
- $j_{M}(\gamma,[\eta])=\frac{\langle\gamma(\eta), \ell\rangle}{\langle\eta, \ell\rangle}$: automorphic factor of $\Omega_{M^{\perp}}$, where $\gamma \in O\left(M^{\perp}\right)$

Definition (automorphic forms)

$F \in \Gamma\left(\Omega_{M^{\perp}}^{+}, \lambda_{M}^{q}\right)$ is an automorphic form of weight $(p, q) \Longleftrightarrow$

$$
F(\gamma \cdot[\eta])=\chi(\gamma) j_{M}([\eta], \gamma)^{p} \gamma \cdot F([\eta])
$$

where $\chi: O^{+}\left(M^{\perp}\right) \rightarrow \mathbb{C}^{*}$ is a character

- \mathcal{F}_{g} : Hodge bundle on the Siegel modular variety $\mathcal{A}_{g}=\mathfrak{S}_{g} / S p_{2 g}(\mathbb{Z})$
- $\lambda_{M}^{q}:=J_{M}^{*} \mathcal{F}_{g(M)}^{\otimes q}$: pullback of $\mathcal{F}_{g(M)}^{\otimes q}$ by the meromorphic map

$$
J_{M}: \Omega_{M^{\perp}} \ni \varpi(X, \iota) \rightarrow\left[\operatorname{Jac}\left(X^{\iota}\right)\right] \in \mathcal{A}_{g(M)}
$$

- $\ell \in M^{\perp} \otimes \mathbb{R}$: a fixed vector with $\langle\ell, \ell\rangle \geq 0 \Longrightarrow \ell^{\perp}$: hyperplane at ∞
- $j_{M}(\gamma,[\eta])=\frac{\langle\gamma(\eta), \ell\rangle}{\langle\eta, \ell\rangle}$: automorphic factor of $\Omega_{M^{\perp}}$, where $\gamma \in O\left(M^{\perp}\right)$

Definition (automorphic forms)

$F \in \Gamma\left(\Omega_{M^{\perp}}^{+}, \lambda_{M}^{q}\right)$ is an automorphic form of weight $(p, q) \Longleftrightarrow$

$$
F(\gamma \cdot[\eta])=\chi(\gamma) j_{M}([\eta], \gamma)^{p} \gamma \cdot F([\eta])
$$

where $\chi: O^{+}\left(M^{\perp}\right) \rightarrow \mathbb{C}^{*}$ is a character
$\Longrightarrow \exists$ automorphic form Φ_{M} of weight $((r(M)-6) \nu, 4 \nu), \nu \gg 1$ s.t.

$$
\tau_{M}(X, \iota)=\|\Phi(\varpi(X, \iota))\|^{-\frac{1}{2 \nu}}, \quad \operatorname{div}\left(\Phi_{M}\right)=\nu \mathcal{D}_{M^{\perp}}
$$

Quasi-pullback of Φ_{M}

Quasi-pullback of Φ_{M}
 Recall $\mathcal{D}_{M^{\perp}}=\sum_{d \in M^{\perp} / \pm 1, d^{2}=-2} H_{d}$, $H_{d}=d^{\perp}=\Omega_{M^{\perp} \cap d^{\perp}}=\Omega_{[M \perp d]}$,

Quasi-pullback of Φ_{M}

Recall $\mathcal{D}_{M^{\perp}}=\sum_{d \in M^{\perp} / \pm 1, d^{2}=-2} H_{d}$, $H_{d}=d^{\perp}=\Omega_{M^{\perp} \cap d^{\perp}}=\Omega_{[M \perp d]}$,
$[M \perp d]$: smallest primitive 2-elementary sublattice containing $M \oplus \mathbb{Z} d$

Quasi-pullback of Φ_{M}

Recall $\mathcal{D}_{M^{\perp}}=\sum_{d \in M^{\perp} / \pm 1, d^{2}=-2} H_{d}$, $H_{d}=d^{\perp}=\Omega_{M^{\perp} \cap d^{\perp}}=\Omega_{[M \perp d]}$,
$[M \perp d]$: smallest primitive 2-elementary sublattice containing $M \oplus \mathbb{Z} d$ \Longrightarrow The restriction of Φ_{M} to H_{d} vanishes identically.

Quasi-pullback of Φ_{M}

Recall $\mathcal{D}_{M^{\perp}}=\sum_{d \in M^{\perp} / \pm 1, d^{2}=-2} H_{d}$, $H_{d}=d^{\perp}=\Omega_{M^{\perp} \cap d^{\perp}}=\Omega_{[M \perp d]}$,
$[M \perp d]$: smallest primitive 2-elementary sublattice containing $M \oplus \mathbb{Z} d$ \Longrightarrow The restriction of Φ_{M} to H_{d} vanishes identically. However, the quasi-pullback of Φ_{M} to $H_{d}=\Omega_{[M \perp d]}^{+}$

$$
\rho_{[M \perp d]}^{M}\left(\Phi_{M}\right):=\left.\left(\frac{\langle\eta, \ell\rangle}{\langle\eta, d\rangle}\right)^{\nu} \Phi_{M}([\eta])\right|_{H_{d}}
$$

is a non-zero automorphic form on $\Omega_{[M \perp d]}^{+}$of weight $\nu(r([M \perp d])-6,4)$.

Quasi-pullback of Φ_{M}

Recall $\mathcal{D}_{M^{\perp}}=\sum_{d \in M^{\perp} / \pm 1, d^{2}=-2} H_{d}$, $H_{d}=d^{\perp}=\Omega_{M^{\perp} \cap d^{\perp}}=\Omega_{[M \perp d]}$,
$[M \perp d]$: smallest primitive 2-elementary sublattice containing $M \oplus \mathbb{Z} d$
\Longrightarrow The restriction of Φ_{M} to H_{d} vanishes identically. However, the quasi-pullback of Φ_{M} to $H_{d}=\Omega_{[M \perp d]}^{+}$

$$
\rho_{[M \perp d]}^{M}\left(\Phi_{M}\right):=\left.\left(\frac{\langle\eta, \ell\rangle}{\langle\eta, d\rangle}\right)^{\nu} \Phi_{M}([\eta])\right|_{H_{d}}
$$

is a non-zero automorphic form on $\Omega_{[M \perp d]}^{+}$of weight $\nu(r([M \perp d])-6,4)$.

Theorem (Ma-Y.)

Quasi-pullback of Φ_{M}

Recall $\mathcal{D}_{M^{\perp}}=\sum_{d \in M^{\perp} / \pm 1, d^{2}=-2} H_{d}$, $H_{d}=d^{\perp}=\Omega_{M^{\perp} \cap d^{\perp}}=\Omega_{[M \perp d]}$,
$[M \perp d]$: smallest primitive 2-elementary sublattice containing $M \oplus \mathbb{Z} d$
\Longrightarrow The restriction of Φ_{M} to H_{d} vanishes identically. However, the quasi-pullback of Φ_{M} to $H_{d}=\Omega_{[M \perp d]}^{+}$

$$
\rho_{[M \perp d]}^{M}\left(\Phi_{M}\right):=\left.\left(\frac{\langle\eta, \ell\rangle}{\langle\eta, d\rangle}\right)^{\nu} \Phi_{M}([\eta])\right|_{H_{d}}
$$

is a non-zero automorphic form on $\Omega_{[M \perp d]}^{+}$of weight $\nu(r([M \perp d])-6,4)$.

Theorem (Ma-Y.)

Up to a constant, $\Phi_{[M \perp d]}$ is the quasi-pullback of Φ_{M} :

$$
\Phi_{[M \perp d]}=\rho_{[M \perp d]}^{M}\left(\Phi_{M}\right)
$$

$M_{\text {min }}$: primitive 2-elementary lattices of $\mathbb{L}_{K 3}$ without roots, i.e.,

Fact

$M_{\min }$: primitive 2-elementary lattices of $\mathbb{L}_{K 3}$ without roots, i.e.,

$$
\mathbb{A}_{1}^{+}=\langle 2\rangle, \quad \mathbb{U}(2)=\binom{0}{20}, \quad \mathbb{U}(2) \oplus \mathbb{E}_{8}(2)
$$

Fact

$M_{\min }$: primitive 2-elementary lattices of $\mathbb{L}_{K 3}$ without roots, i.e.,

$$
\mathbb{A}_{1}^{+}=\langle 2\rangle, \quad \mathbb{U}(2)=\left(\begin{array}{l}
0 \\
20 \\
20
\end{array}\right), \quad \mathbb{U}(2) \oplus \mathbb{E}_{8}(2)
$$

M : arbitrary primitive 2-elementary Lorentzian sublattice of $\mathbb{L}_{K 3}$

Fact

$M_{\min }$: primitive 2-elementary lattices of $\mathbb{L}_{K 3}$ without roots, i.e.,

$$
\mathbb{A}_{1}^{+}=\langle 2\rangle, \quad \mathbb{U}(2)=\left(\begin{array}{ll}
0 & 2 \\
20
\end{array}\right), \quad \mathbb{U}(2) \oplus \mathbb{E}_{8}(2)
$$

M : arbitrary primitive 2-elementary Lorentzian sublattice of $\mathbb{L}_{K 3}$
$\Longrightarrow \exists M_{\min }$ and \exists mutually perpendicular roots $d_{1}, \ldots, d_{k} \in \Delta_{M_{\text {min }}^{\perp}}$ s.t.

$$
M \cong\left[M_{\min } \perp d_{1} \perp \ldots \perp d_{k}\right]
$$

where $\Delta_{M_{\text {min }}}^{\perp}=\left\{d \in M_{\text {min }}^{\perp} ; d^{2}=-2\right\}$ is the set of roots of $M_{\text {min }}^{\perp}$

Fact

$M_{\min }$: primitive 2-elementary lattices of $\mathbb{L}_{K 3}$ without roots, i.e.,

$$
\mathbb{A}_{1}^{+}=\langle 2\rangle, \quad \mathbb{U}(2)=\left(\begin{array}{ll}
0 & 2 \\
20
\end{array}\right), \quad \mathbb{U}(2) \oplus \mathbb{E}_{8}(2)
$$

M : arbitrary primitive 2-elementary Lorentzian sublattice of $\mathbb{L}_{K 3}$
$\Longrightarrow \exists M_{\min }$ and \exists mutually perpendicular roots $d_{1}, \ldots, d_{k} \in \Delta_{M_{\min }^{\perp}}$ s.t.

$$
M \cong\left[M_{\min } \perp d_{1} \perp \ldots \perp d_{k}\right]
$$

where $\Delta_{M_{\text {min }}^{\perp}}^{\perp}=\left\{d \in M_{\text {min }}^{\perp} ; d^{2}=-2\right\}$ is the set of roots of $M_{\text {min }}^{\perp}$

Corollary

Fact

$M_{\min }$: primitive 2-elementary lattices of $\mathbb{L}_{K 3}$ without roots, i.e.,

$$
\mathbb{A}_{1}^{+}=\langle 2\rangle, \quad \mathbb{U}(2)=\left(\begin{array}{ll}
0 & 2 \\
20
\end{array}\right), \quad \mathbb{U}(2) \oplus \mathbb{E}_{8}(2)
$$

M : arbitrary primitive 2-elementary Lorentzian sublattice of $\mathbb{L}_{K 3}$
$\Longrightarrow \exists M_{\min }$ and \exists mutually perpendicular roots $d_{1}, \ldots, d_{k} \in \Delta_{M_{\min }^{\perp}}$ s.t.

$$
M \cong\left[M_{\min } \perp d_{1} \perp \ldots \perp d_{k}\right]
$$

where $\Delta_{M_{\text {min }}}^{\perp}=\left\{d \in M_{\text {min }}^{\perp} ; d^{2}=-2\right\}$ is the set of roots of $M_{\text {min }}^{\perp}$

Corollary

Every Φ_{M} is obtained from $\Phi_{\langle 2\rangle}, \Phi_{\mathbb{U}(2)}, \Phi_{\mathbb{U}(2) \oplus \mathbb{E}_{8}(2)}$ by applying quasi-pullbacks successively

Problem

Problem

Give an explicit formula for τ_{M} or Φ_{M}, especially $\Phi_{\langle 2\rangle}, \Phi_{\mathbb{U}(2)}, \Phi_{\mathbb{U}(2) \oplus \mathbb{E}_{8}(2)}$.

Problem

Give an explicit formula for τ_{M} or Φ_{M}, especially $\Phi_{\langle 2\rangle}, \Phi_{\mathbb{U}(2)}, \Phi_{\mathbb{U}(2) \oplus \mathbb{E}_{8}(2)}$. Equivalently, give an explicit $O^{+}\left(M^{\perp}\right)$-invariant solution of the PDE
$(*) \quad d d^{c} \log \tau_{M}=\frac{r(M)-6}{4} \omega_{\Omega_{M \perp}}+J_{M^{*}}^{*} \omega_{\mathcal{A}_{g(M)}}-\frac{1}{4} \delta_{\mathcal{D}_{M \perp}}$ on $\Omega_{M^{\perp}}$.

Problem

Give an explicit formula for τ_{M} or Φ_{M}, especially $\Phi_{\langle 2\rangle}, \Phi_{\mathbb{U}(2)}, \Phi_{\mathbb{U}(2) \oplus \mathbb{E}_{8}(2)}$. Equivalently, give an explicit $O^{+}\left(M^{\perp}\right)$-invariant solution of the PDE
$(*) \quad d d^{c} \log \tau_{M}=\frac{r(M)-6}{4} \omega_{\Omega_{M \perp}}+J_{M^{*}}^{*} \omega_{\mathcal{A}_{g(M)}}-\frac{1}{4} \delta_{\mathcal{D}_{M \perp}}$ on $\Omega_{M^{\perp}}$.

Goal (joint with Shouhei Ma)

Problem

Give an explicit formula for τ_{M} or Φ_{M}, especially $\Phi_{\langle 2\rangle}, \Phi_{\mathbb{U}(2)}, \Phi_{\mathbb{U}(2) \oplus \mathbb{E}_{8}(2)}$. Equivalently, give an explicit $O^{+}\left(M^{\perp}\right)$-invariant solution of the PDE
(*) $\quad d d^{c} \log \tau_{M}=\frac{r(M)-6}{4} \omega_{\Omega_{M \perp}}+J_{M^{*}}^{*} \omega_{\mathcal{A}_{g(M)}}-\frac{1}{4} \delta_{\mathcal{D}_{M \perp}}$ on $\Omega_{M^{\perp}}$.

Goal (joint with Shouhei Ma)

Explicit formula for τ_{M} for the following 68 isometry classes of M :

Problem

Give an explicit formula for τ_{M} or Φ_{M}, especially $\Phi_{\langle 2\rangle}, \Phi_{\mathbb{U}(2)}, \Phi_{\mathbb{U}(2) \oplus \mathbb{E}_{8}(2)}$. Equivalently, give an explicit $O^{+}\left(M^{\perp}\right)$-invariant solution of the PDE
$(*) \quad d d^{c} \log \tau_{M}=\frac{r(M)-6}{4} \omega_{\Omega_{M \perp}}+J_{M^{*}}^{*} \omega_{\mathcal{A}_{g(M)}}-\frac{1}{4} \delta_{\mathcal{D}_{M \perp}}$ on $\Omega_{M^{\perp}}$.

Goal (joint with Shouhei Ma)

Explicit formula for τ_{M} for the following 68 isometry classes of M :

- general M (63 classes)
- $r(M)=10, \delta(M)=0, \ell(M)=\operatorname{dim}_{\mathbb{Z}_{2}} M^{\vee} / M=4,6,8$ (3 classes)
- double Del Pezzo surfaces, i.e., $M \cong\langle 2\rangle$ or $\mathbb{U}(2)=\binom{0}{20}$ (2 classes)

Problem

Give an explicit formula for τ_{M} or Φ_{M}, especially $\Phi_{\langle 2\rangle}, \Phi_{\mathbb{U}(2)}, \Phi_{\mathbb{U}(2) \oplus \mathbb{E}_{8}(2)}$. Equivalently, give an explicit $O^{+}\left(M^{\perp}\right)$-invariant solution of the PDE
$(*) \quad d d^{c} \log \tau_{M}=\frac{r(M)-6}{4} \omega_{\Omega_{M \perp}}+J_{M^{*}}^{*} \omega_{\mathcal{A}_{g(M)}}-\frac{1}{4} \delta_{\mathcal{D}_{M \perp}}$ on $\Omega_{M^{\perp}}$.

Goal (joint with Shouhei Ma)

Explicit formula for τ_{M} for the following 68 isometry classes of M :

- general M (63 classes)
- $r(M)=10, \delta(M)=0, \ell(M)=\operatorname{dim}_{\mathbb{Z}_{2}} M^{\vee} / M=4,6,8$ (3 classes)
- double Del Pezzo surfaces, i.e., $M \cong\langle 2\rangle$ or $\mathbb{U}(2)=\binom{02}{20}$ (2 classes)
N.B. There are 75 possibilities of M.

Borcherds products and a formula for τ_{M} for general M

Borcherds products and a formula for τ_{M} for general M

Definition (Some classical elliptic modular forms)

Borcherds products and a formula for τ_{M} for general M

Definition (Some classical elliptic modular forms)

- Recall some classical elliptic modular forms:

Borcherds products and a formula for τ_{M} for general M

Definition (Some classical elliptic modular forms)

- Recall some classical elliptic modular forms:

$$
\text { (Dedekind) } \quad \eta(q)=q^{1 / 24} \prod_{n=1}^{\infty}\left(1-q^{n}\right), \quad q=e^{2 \pi i \tau}
$$

Borcherds products and a formula for τ_{M} for general M

Definition (Some classical elliptic modular forms)

- Recall some classical elliptic modular forms:

$$
\begin{array}{lll}
\text { (Dedekind) } & \eta(q)=q^{1 / 24} \prod_{n=1}^{\infty}\left(1-q^{n}\right), & q=e^{2 \pi i \tau} \\
(\text { Jacobi }) & \vartheta_{\mathbb{A}_{1}+\frac{k}{2}}(q)=\sum_{n \in \mathbb{Z}} q^{\left(n+\frac{k}{2}\right)^{2}} & (k=0,1)
\end{array}
$$

Borcherds products and a formula for τ_{M} for general M

Definition (Some classical elliptic modular forms)

- Recall some classical elliptic modular forms:
(Dedekind) $\eta(q)=q^{1 / 24} \prod_{n=1}^{\infty}\left(1-q^{n}\right)$,
$q=e^{2 \pi i \tau}$
(Jacobi)
$\vartheta_{\mathbb{A}_{1}+\frac{k}{2}}(q)=\sum_{n \in \mathbb{Z}} q^{\left(n+\frac{k}{2}\right)^{2}}$
$(k=0,1)$.
- Define the series $\left\{c_{k}^{(0)}(m)\right\}_{m \in \mathbb{Z}},\left\{c_{k}^{(1)}(m)\right\}_{m \in \mathbb{Z}+k / 4}$ by

Borcherds products and a formula for τ_{M} for general M

Definition (Some classical elliptic modular forms)

- Recall some classical elliptic modular forms:

$$
\begin{array}{lll}
\text { (Dedekind) } & \eta(q)=q^{1 / 24} \prod_{n=1}^{\infty}\left(1-q^{n}\right), & q=e^{2 \pi i \tau} \\
(\text { Jacobi }) & \vartheta_{\mathbb{A}_{1}+\frac{k}{2}}(q)=\sum_{n \in \mathbb{Z}} q^{\left(n+\frac{k}{2}\right)^{2}} & (k=0,1)
\end{array}
$$

- Define the series $\left\{c_{k}^{(0)}(m)\right\}_{m \in \mathbb{Z}},\left\{c_{k}^{(1)}(m)\right\}_{m \in \mathbb{Z}+k / 4}$ by

$$
\sum_{m \in \mathbb{Z}} c_{k}^{(0)}(m) q^{m}=\frac{\eta\left(q^{2}\right)^{8} \vartheta_{\mathbb{A}_{1}}(q)^{k}}{\eta(q)^{8} \eta\left(q^{4}\right)^{8}}=: \eta_{1^{-8} 2^{8} 4^{-8}} \vartheta^{k}(\tau)
$$

Borcherds products and a formula for τ_{M} for general M

Definition (Some classical elliptic modular forms)

- Recall some classical elliptic modular forms:

$$
\begin{array}{lll}
\text { (Dedekind) } & \eta(q)=q^{1 / 24} \prod_{n=1}^{\infty}\left(1-q^{n}\right), & q=e^{2 \pi i \tau} \\
(\mathrm{Jacobi}) & \vartheta_{\mathbb{A}_{1}+\frac{k}{2}}(q)=\sum_{n \in \mathbb{Z}} q^{\left(n+\frac{k}{2}\right)^{2}} & (k=0,1)
\end{array}
$$

- Define the series $\left\{c_{k}^{(0)}(m)\right\}_{m \in \mathbb{Z}},\left\{c_{k}^{(1)}(m)\right\}_{m \in \mathbb{Z}+k / 4}$ by

$$
\begin{aligned}
\sum_{m \in \mathbb{Z}} c_{k}^{(0)}(m) q^{m} & =\frac{\eta\left(q^{2}\right)^{8} \vartheta_{\mathbb{A}_{1}}(q)^{k}}{\eta(q)^{8} \eta\left(q^{4}\right)^{8}}=: \eta_{1^{-8} 2^{8} 4^{-8}} \vartheta^{k}(\tau) \\
\sum_{m \in k / 4+\mathbb{Z}} c_{k}^{(1)}(m) q^{m} & =-8 \frac{\eta\left(q^{4}\right)^{8} \vartheta_{\mathbb{A}_{1}+1 / 2}(q)^{k}}{\eta\left(q^{2}\right)^{16}}
\end{aligned}
$$

Definition (some Borcherds products)

Definition (some Borcherds products)

L : 2-elementary Lorentzian lattice with positive cone $\mathcal{C}_{L}=\mathcal{C}_{L}^{+} \amalg \mathcal{C}_{L}^{-}$

Definition (some Borcherds products)

L : 2-elementary Lorentzian lattice with positive cone $\mathcal{C}_{L}=\mathcal{C}_{L}^{+} \amalg \mathcal{C}_{L}^{-}$ $\Lambda:=\binom{0 N}{N} \oplus L, N=1,2$: lattice of signature $(2, r(L))$

Definition (some Borcherds products)

L : 2-elementary Lorentzian lattice with positive cone $\mathcal{C}_{L}=\mathcal{C}_{L}^{+} \amalg \mathcal{C}_{L}^{-}$ $\Lambda:=\binom{0 N}{N} \oplus L, N=1,2$: lattice of signature $(2, r(L))$
Define the formal infinite product on the tube domain $L \otimes \mathbb{R}+\sqrt{-1} \mathcal{C}_{L}^{+}$

Definition (some Borcherds products)

L : 2-elementary Lorentzian lattice with positive cone $\mathcal{C}_{L}=\mathcal{C}_{L}^{+} \amalg \mathcal{C}_{L}^{-}$ $\Lambda:=\binom{0 N}{N} \oplus L, N=1,2$: lattice of signature $(2, r(L))$
Define the formal infinite product on the tube domain $L \otimes \mathbb{R}+\sqrt{-1} \mathcal{C}_{L}^{+}$

$$
\begin{aligned}
& \Psi_{\Lambda}\left(z, \eta_{1^{-8} 2^{8} 4^{-8}} \vartheta^{12-r(\Lambda)}\right):= \\
& e^{2 \pi i\langle\varrho, z\rangle} \prod_{\lambda \in L, \lambda \cdot \mathcal{W}>0, \lambda^{2} \geq-2}\left(1-e^{2 \pi i\langle\lambda, z\rangle}\right)^{c_{12-r(\Lambda)}^{(0)}\left(\lambda^{2} / 2\right)} \\
& \quad \times \prod_{\lambda \in 2 L \vee}, \lambda \cdot \mathcal{W}>0, \lambda^{2} \geq-2 \\
& \quad\left(1-e^{\pi i N\langle\lambda, z\rangle}\right)^{2^{\frac{r(\Lambda)-\ell(\Lambda)}{2}}} c_{12-r(\Lambda)}^{(0)}\left(\lambda^{2} / 2\right) \\
& \quad \prod_{\lambda \in\left(\mathbf{1}_{L}+L\right), \lambda \cdot \mathcal{W}>0, \lambda^{2} \geq-4}\left(1-e^{2 \pi i\langle\lambda, z\rangle}\right)^{2 c_{12-r(\Lambda)}^{(1)}\left(\lambda^{2} / 2\right)}
\end{aligned}
$$

Definition (some Borcherds products)

L : 2-elementary Lorentzian lattice with positive cone $\mathcal{C}_{L}=\mathcal{C}_{L}^{+} \amalg \mathcal{C}_{L}^{-}$ $\Lambda:=\binom{0 N}{N} \oplus L, N=1,2$: lattice of signature $(2, r(L))$
Define the formal infinite product on the tube domain $L \otimes \mathbb{R}+\sqrt{-1} \mathcal{C}_{L}^{+}$

$$
\begin{aligned}
& \Psi_{\Lambda}\left(z, \eta_{1^{-8} 2^{8} 4^{-8}} \vartheta^{12-r(\Lambda)}\right):= \\
& e^{2 \pi i\langle\varrho, z\rangle} \prod_{\lambda \in L, \lambda \cdot \mathcal{W}>0, \lambda^{2} \geq-2}\left(1-e^{2 \pi i\langle\lambda, z\rangle}\right)^{c_{12-r(\Lambda)}^{(0)}\left(\lambda^{2} / 2\right)} \\
& \quad \times \prod_{\lambda \in 2 L \vee}, \lambda \cdot \mathcal{W}>0, \lambda^{2} \geq-2 \\
& \quad\left(1-e^{\pi i N\langle\lambda, z\rangle}\right)^{2^{\frac{r(\Lambda)-\ell(\Lambda)}{2}}} c_{12-r(\Lambda)}^{(0)}\left(\lambda^{2} / 2\right) \\
& \quad \prod_{\lambda \in\left(\mathbf{1}_{L}+L\right), \lambda \cdot \mathcal{W}>0, \lambda^{2} \geq-4}\left(1-e^{2 \pi i\langle\lambda, z\rangle}\right)^{2 c_{12-r(\Lambda)}^{(1)}\left(\lambda^{2} / 2\right)}
\end{aligned}
$$

where $\mathcal{W} \subset L \otimes \mathbb{R}$ is a "Weyl chamber", $\varrho \in L \otimes \mathbb{Q}$ is the "Weyl vector", $\mathbf{1}_{L} \in L^{\vee} / L$ is the unique element s.t. $\left\langle\mathbf{1}_{L}, \alpha\right\rangle \equiv \alpha^{2} \bmod \mathbb{Z}\left(\forall \alpha \in L^{\vee} / L\right)$.

This Borcherds product is regarded as a formal function on Ω_{Λ}^{+}.

This Borcherds product is regarded as a formal function on Ω_{Λ}^{+}.
Fact (Realization of Ω_{Λ} as a tube domain)

This Borcherds product is regarded as a formal function on Ω_{Λ}^{+}.
Fact (Realization of Ω_{Λ} as a tube domain)

- The tube domain $L \otimes \mathbb{R}+\sqrt{-1} \mathcal{C}_{L}^{+}$is isomorphic to Ω_{Λ}^{+}via the map

This Borcherds product is regarded as a formal function on Ω_{Λ}^{+}.

Fact (Realization of Ω_{Λ} as a tube domain)

- The tube domain $L \otimes \mathbb{R}+\sqrt{-1} \mathcal{C}_{L}^{+}$is isomorphic to Ω_{Λ}^{+}via the map

$$
L \otimes \mathbb{R}+\sqrt{-1} \mathcal{C}_{L}^{+} \ni z \rightarrow\left[\left(-\frac{z^{2}}{2}, \frac{1}{N}, z\right)\right] \in \Omega_{\Lambda}^{+} \subset \mathbb{P}(\Lambda \otimes \mathbb{C})
$$

This Borcherds product is regarded as a formal function on Ω_{Λ}^{+}.

Fact (Realization of Ω_{Λ} as a tube domain)

- The tube domain $L \otimes \mathbb{R}+\sqrt{-1} \mathcal{C}_{L}^{+}$is isomorphic to Ω_{Λ}^{+}via the map

$$
L \otimes \mathbb{R}+\sqrt{-1} \mathcal{C}_{L}^{+} \ni z \rightarrow\left[\left(-\frac{z^{2}}{2}, \frac{1}{N}, z\right)\right] \in \Omega_{\Lambda}^{+} \subset \mathbb{P}(\Lambda \otimes \mathbb{C})
$$

$\mathcal{C}_{L}^{+}=$one of the connected componets of $\left\{x \in L \otimes \mathbb{R} ; x^{2}>0\right\}$.

This Borcherds product is regarded as a formal function on Ω_{Λ}^{+}.

Fact (Realization of Ω_{Λ} as a tube domain)

- The tube domain $L \otimes \mathbb{R}+\sqrt{-1} \mathcal{C}_{L}^{+}$is isomorphic to Ω_{Λ}^{+}via the map

$$
L \otimes \mathbb{R}+\sqrt{-1} \mathcal{C}_{L}^{+} \ni z \rightarrow\left[\left(-\frac{z^{2}}{2}, \frac{1}{N}, z\right)\right] \in \Omega_{\Lambda}^{+} \subset \mathbb{P}(\Lambda \otimes \mathbb{C})
$$

$\mathcal{C}_{L}^{+}=$one of the connected componets of $\left\{x \in L \otimes \mathbb{R} ; x^{2}>0\right\}$.

- Via this identification, $O^{+}(\Lambda)$ acts on $L \otimes \mathbb{R}+\sqrt{-1} \mathcal{C}_{L}^{+}$.

This Borcherds product is regarded as a formal function on Ω_{Λ}^{+}.

Fact (Realization of Ω_{Λ} as a tube domain)

- The tube domain $L \otimes \mathbb{R}+\sqrt{-1} \mathcal{C}_{L}^{+}$is isomorphic to Ω_{Λ}^{+}via the map

$$
L \otimes \mathbb{R}+\sqrt{-1} \mathcal{C}_{L}^{+} \ni z \rightarrow\left[\left(-\frac{z^{2}}{2}, \frac{1}{N}, z\right)\right] \in \Omega_{\Lambda}^{+} \subset \mathbb{P}(\Lambda \otimes \mathbb{C})
$$

$\mathcal{C}_{L}^{+}=$one of the connected componets of $\left\{x \in L \otimes \mathbb{R} ; x^{2}>0\right\}$.

- Via this identification, $O^{+}(\Lambda)$ acts on $L \otimes \mathbb{R}+\sqrt{-1} \mathcal{C}_{L}^{+}$.

Fact (Borcherds)

This Borcherds product is regarded as a formal function on Ω_{Λ}^{+}.

Fact (Realization of Ω_{Λ} as a tube domain)

- The tube domain $L \otimes \mathbb{R}+\sqrt{-1} \mathcal{C}_{L}^{+}$is isomorphic to Ω_{Λ}^{+}via the map

$$
L \otimes \mathbb{R}+\sqrt{-1} \mathcal{C}_{L}^{+} \ni z \rightarrow\left[\left(-\frac{z^{2}}{2}, \frac{1}{N}, z\right)\right] \in \Omega_{\Lambda}^{+} \subset \mathbb{P}(\Lambda \otimes \mathbb{C})
$$

$\mathcal{C}_{L}^{+}=$one of the connected componets of $\left\{x \in L \otimes \mathbb{R} ; x^{2}>0\right\}$.

- Via this identification, $O^{+}(\Lambda)$ acts on $L \otimes \mathbb{R}+\sqrt{-1} \mathcal{C}_{L}^{+}$.

Fact (Borcherds)

$r(\Lambda)<20 \Longrightarrow \Psi_{\Lambda}\left(z, \eta_{1^{-8} 2^{8} 4^{-8}} \vartheta^{12-r(\Lambda)}\right)^{8}$ is a (possibly meromorphic) automorphic form on $L \otimes \mathbb{R}+\sqrt{-1} \mathcal{C}_{L}^{+} \cong \Omega_{\Lambda}^{+}$for $O^{+}(\Lambda)$, whose weight, zeros and poles are computed explicitly from the Fourier coefficients of $\eta_{1^{-8} 2^{8} 4^{-8}} \vartheta^{12-r(\Lambda)}$ and its modular transformation.

Theorem (Structure of τ_{M} for general M)

Theorem (Structure of τ_{M} for general M)

Except for the possible 12 triples $[M]=(r(M), \ell(M), \delta(M))$ given by $(r, r, 1)(1 \leq r \leq 5),(2,2,0),(2,0,0),(10, \ell, 0)(0 \leq \ell \leq 8, \ell \equiv 0(2))$, the following equality holds, up to a constant depending only on M

Theorem (Structure of τ_{M} for general M)

Except for the possible 12 triples $[M]=(r(M), \ell(M), \delta(M))$ given by $(r, r, 1)(1 \leq r \leq 5),(2,2,0),(2,0,0),(10, \ell, 0)(0 \leq \ell \leq 8, \ell \equiv 0(2))$, the following equality holds, up to a constant depending only on M

$$
\begin{aligned}
& \tau_{M}^{-2^{g(M)}\left(2^{g(M)}+1\right)}(X, \iota)= \\
& \left\|\Psi_{M^{\perp}}\left(\varpi_{M}(X, \iota), \eta_{1^{-8} 2^{8} 4^{-8}} \vartheta^{12-r\left(M^{\perp}\right)}\right)^{2 g(M)-1} \otimes \chi_{g(M)}\left(\Omega\left(X^{\iota}\right)\right)^{8}\right\|
\end{aligned}
$$

Theorem (Structure of τ_{M} for general M)

Except for the possible 12 triples $[M]=(r(M), \ell(M), \delta(M))$ given by $(r, r, 1)(1 \leq r \leq 5),(2,2,0),(2,0,0),(10, \ell, 0)(0 \leq \ell \leq 8, \ell \equiv 0(2))$, the following equality holds, up to a constant depending only on M

$$
\begin{aligned}
& \tau_{M}^{-2^{g(M)}\left(2^{g(M)}+1\right)}(X, \iota)= \\
& \left\|\Psi_{M^{\perp}}\left(\varpi_{M}(X, \iota), \eta_{1^{-8} 2^{8} 4^{-8}} \vartheta^{12-r\left(M^{\perp}\right)}\right)^{2 g(M)-1} \otimes \chi_{g(M)}\left(\Omega\left(X^{\iota}\right)\right)^{8}\right\|
\end{aligned}
$$

where χ_{g} is the Siegel modular form of degree g and weight $2^{g-2}\left(2^{g}+1\right)$

$$
\chi_{g}(\Omega):=\prod_{(a, b) \text { even }} \theta_{a, b}(\Omega)
$$

Theorem (Structure of τ_{M} for general M)

Except for the possible 12 triples $[M]=(r(M), \ell(M), \delta(M))$ given by $(r, r, 1)(1 \leq r \leq 5),(2,2,0),(2,0,0),(10, \ell, 0)(0 \leq \ell \leq 8, \ell \equiv 0(2))$, the following equality holds, up to a constant depending only on M

$$
\begin{aligned}
& \tau_{M}^{-2^{g(M)}\left(2^{g(M)}+1\right)}(X, \iota)= \\
& \left\|\Psi_{M^{\perp}}\left(\varpi_{M}(X, \iota), \eta_{1^{-8} 2^{8} 4^{-8}} \vartheta^{12-r\left(M^{\perp}\right)}\right)^{2 g(M)-1} \otimes \chi_{g(M)}\left(\Omega\left(X^{\iota}\right)\right)^{8}\right\|
\end{aligned}
$$

where χ_{g} is the Siegel modular form of degree g and weight $2^{g-2}\left(2^{g}+1\right)$

$$
\chi_{g}(\Omega):=\prod_{(a, b) \text { even }} \theta_{a, b}(\Omega)
$$

$\Omega\left(X^{\iota}\right) \in \mathfrak{S}_{g(M)}$: the period of the fixed-point-curve X^{ι}

Theorem (Structure of τ_{M} for general M)

Except for the possible 12 triples $[M]=(r(M), \ell(M), \delta(M))$ given by $(r, r, 1)(1 \leq r \leq 5),(2,2,0),(2,0,0),(10, \ell, 0)(0 \leq \ell \leq 8, \ell \equiv 0(2))$, the following equality holds, up to a constant depending only on M

$$
\begin{aligned}
& \tau_{M}^{-2^{g(M)}\left(2^{g(M)}+1\right)}(X, \iota)= \\
& \left\|\Psi_{M^{\perp}}\left(\varpi_{M}(X, \iota), \eta_{1^{-8} 2^{8} 4^{-8}} \vartheta^{12-r\left(M^{\perp}\right)}\right)^{2 g(M)-1} \otimes \chi_{g(M)}\left(\Omega\left(X^{\iota}\right)\right)^{8}\right\|
\end{aligned}
$$

where χ_{g} is the Siegel modular form of degree g and weight $2^{g-2}\left(2^{g}+1\right)$

$$
\chi_{g}(\Omega):=\prod_{(a, b) \text { even }} \theta_{a, b}(\Omega)
$$

$\Omega\left(X^{\iota}\right) \in \mathfrak{S}_{g(M)}$: the period of the fixed-point-curve X^{ι} $g(M):=\{22-r(M)-\ell(M)\} / 2$: the total genus of X^{ι}.

Theorem (Structure of τ_{M} for special $M: r(M)=10, \delta(M)=0$)

Theorem (Structure of τ_{M} for special $M: r(M)=10, \delta(M)=0$)
If $(r(M), \ell(M), \delta(M))=(10, \ell, 0)(\ell=4,6,8)$, then the following equality holds, up to a universal constant

Theorem (Structure of τ_{M} for special $M: r(M)=10, \delta(M)=0$)
If $(r(M), \ell(M), \delta(M))=(10, \ell, 0)(\ell=4,6,8)$, then the following equality holds, up to a universal constant

$$
\begin{aligned}
& \tau_{M}(X, \iota)^{-a(M)}= \\
& \left\|\Psi_{M^{\perp}}\left(\varpi_{M}(X, \iota), \eta_{1^{-8} 2^{8} 4^{-8}} \vartheta^{12-r\left(M^{\perp}\right)}\right)^{b(M)} \otimes \psi_{M}\left(\Omega\left(X^{\iota}\right)\right)\right\|
\end{aligned}
$$

Theorem (Structure of τ_{M} for special $M: r(M)=10, \delta(M)=0$)
If $(r(M), \ell(M), \delta(M))=(10, \ell, 0)(\ell=4,6,8)$, then the following equality holds, up to a universal constant

$$
\begin{aligned}
& \tau_{M}(X, \iota)^{-a(M)}= \\
& \left\|\Psi_{M^{\perp}}\left(\varpi_{M}(X, \iota), \eta_{1-82^{8} 4-8} \vartheta^{12-r\left(M^{\perp}\right)}\right)^{b(M)} \otimes \psi_{M}\left(\Omega\left(X^{\iota}\right)\right)\right\| \\
& \bullet \\
& \ell=8 \Longrightarrow a(M)=-12, b(M)=1, \psi_{M}\left(\tau_{1}, \tau_{2}\right)=\eta\left(\tau_{1}\right)^{24} \eta\left(\tau_{2}\right)^{24}
\end{aligned}
$$

Theorem (Structure of τ_{M} for special $M: r(M)=10, \delta(M)=0$)

If $(r(M), \ell(M), \delta(M))=(10, \ell, 0)(\ell=4,6,8)$, then the following equality holds, up to a universal constant

$$
\begin{aligned}
& \tau_{M}(X, \iota)^{-a(M)}= \\
& \left\|\Psi_{M^{\perp}}\left(\varpi_{M}(X, \iota), \eta_{1^{-8} 2^{8} 4^{-8}} \vartheta^{12-r\left(M^{\perp}\right)}\right)^{b(M)} \otimes \psi_{M}\left(\Omega\left(X^{\iota}\right)\right)\right\|
\end{aligned}
$$

- $\ell=8 \Longrightarrow a(M)=-12, b(M)=1, \psi_{M}\left(\tau_{1}, \tau_{2}\right)=\eta\left(\tau_{1}\right)^{24} \eta\left(\tau_{2}\right)^{24}$
- $\ell=6 \Longrightarrow a(M)=-28, b(M)=1, \psi_{M}(\Omega)$ is Tsuyumine's Siegel modular form of degree 3 of weight 28, which is nowhere vanishing on the hyperelliptic locus of \mathfrak{S}_{3}

Theorem (Structure of τ_{M} for special $M: r(M)=10, \delta(M)=0$)

If $(r(M), \ell(M), \delta(M))=(10, \ell, 0)(\ell=4,6,8)$, then the following equality holds, up to a universal constant

$$
\begin{aligned}
& \tau_{M}(X, \iota)^{-a(M)}= \\
& \left\|\Psi_{M^{\perp}}\left(\varpi M(X, \iota), \eta_{1^{-8} 2^{8} 4^{-8}} \vartheta^{12-r\left(M^{\perp}\right)}\right)^{b(M)} \otimes \psi_{M}\left(\Omega\left(X^{\iota}\right)\right)\right\|
\end{aligned}
$$

- $\ell=8 \Longrightarrow a(M)=-12, b(M)=1, \psi_{M}\left(\tau_{1}, \tau_{2}\right)=\eta\left(\tau_{1}\right)^{24} \eta\left(\tau_{2}\right)^{24}$
- $\ell=6 \Longrightarrow a(M)=-28, b(M)=1, \psi_{M}(\Omega)$ is Tsuyumine's Siegel modular form of degree 3 of weight 28 , which is nowhere vanishing on the hyperelliptic locus of \mathfrak{S}_{3}
- $\ell=4 \Longrightarrow a(M)=-540, b(M)=9, \psi_{M}(\Omega)$ is Igusa's Siegel modular form of degree 4 of weight 540, which is nowhere vanishing on the locus of vanishing theta null of \mathfrak{S}_{4} except hyperelliptic locus

Double Del Pezzo surfaces

Double Del Pezzo surfaces

A compact connected complex surface S is Del Pezzo if $-K_{S}>0$.

Double Del Pezzo surfaces

A compact connected complex surface S is Del Pezzo if $-K_{S}>0$.

Fact

Double Del Pezzo surfaces

A compact connected complex surface S is Del Pezzo if $-K_{S}>0$.

Fact

- If S is Del Pezzo, then $S \cong \mathrm{Bl}_{p_{1}, \ldots, p_{k}}\left(\mathbb{P}^{2}\right)(0 \leq k \leq 8)$ or $S \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$

Double Del Pezzo surfaces

A compact connected complex surface S is Del Pezzo if $-K_{S}>0$.

Fact

- If S is Del Pezzo, then $S \cong \mathrm{Bl}_{p_{1}, \ldots, p_{k}}\left(\mathbb{P}^{2}\right)(0 \leq k \leq 8)$ or $S \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$
- A Del Pezzo surface S is rigid if $\operatorname{deg} S:=c_{1}(S)^{2} \geq 6$.

Double Del Pezzo surfaces

A compact connected complex surface S is Del Pezzo if $-K_{S}>0$.

Fact

- If S is Del Pezzo, then $S \cong \mathrm{Bl}_{p_{1}, \ldots, p_{k}}\left(\mathbb{P}^{2}\right)(0 \leq k \leq 8)$ or $S \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$
- A Del Pezzo surface S is rigid if $\operatorname{deg} S:=c_{1}(S)^{2} \geq 6$.
- $-2 K_{S}$ is very ample if $\operatorname{deg} S>1$.

Double Del Pezzo surfaces

A compact connected complex surface S is Del Pezzo if $-K_{S}>0$.

Fact

- If S is Del Pezzo, then $S \cong \mathrm{Bl}_{p_{1}, \ldots, p_{k}}\left(\mathbb{P}^{2}\right)(0 \leq k \leq 8)$ or $S \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$
- A Del Pezzo surface S is rigid if $\operatorname{deg} S:=c_{1}(S)^{2} \geq 6$.
- $-2 K_{S}$ is very ample if $\operatorname{deg} S>1$.
- If $C \in\left|-2 K_{S}\right|$ is smooth, then the double covering $p: X \rightarrow S$ with branch locus C is a 2-elementary K3 surface, whose involution is the non-trivial covering transformation.

Double Del Pezzo surfaces

A compact connected complex surface S is Del Pezzo if $-K_{S}>0$.

Fact

- If S is Del Pezzo, then $S \cong \mathrm{Bl}_{p_{1}, \ldots, p_{k}}\left(\mathbb{P}^{2}\right)(0 \leq k \leq 8)$ or $S \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$
- A Del Pezzo surface S is rigid if $\operatorname{deg} S:=c_{1}(S)^{2} \geq 6$.
- $-2 K_{S}$ is very ample if $\operatorname{deg} S>1$.
- If $C \in\left|-2 K_{S}\right|$ is smooth, then the double covering $p: X \rightarrow S$ with branch locus C is a 2-elementary $K 3$ surface, whose involution is the non-trivial covering transformation. In this case,

$$
H_{+}^{2}(X, \mathbb{Z}) \cong\langle 2\rangle \oplus\langle-2\rangle^{\oplus(9-\operatorname{deg} S)}
$$

Double Del Pezzo surfaces

A compact connected complex surface S is Del Pezzo if $-K_{S}>0$.

Fact

- If S is Del Pezzo, then $S \cong \mathrm{Bl}_{p_{1}, \ldots, p_{k}}\left(\mathbb{P}^{2}\right)(0 \leq k \leq 8)$ or $S \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$
- A Del Pezzo surface S is rigid if $\operatorname{deg} S:=c_{1}(S)^{2} \geq 6$.
- $-2 K_{S}$ is very ample if $\operatorname{deg} S>1$.
- If $C \in\left|-2 K_{S}\right|$ is smooth, then the double covering $p: X \rightarrow S$ with branch locus C is a 2-elementary $K 3$ surface, whose involution is the non-trivial covering transformation. In this case,

$$
H_{+}^{2}(X, \mathbb{Z}) \cong\langle 2\rangle \oplus\langle-2\rangle^{\oplus(9-\operatorname{deg} S)}
$$

This 2-elementary $K 3$ surface is denoted by $\left(X_{(S, C)},{ }_{(S, C)}\right)$ and is called a double Del Pezzo surface associated to (S, C).

Fact (2-elementary K3 surfaces of type $(r, r, 1)$ or $(2,2,0)$)

Fact (2-elementary K3 surfaces of type ($r, r, 1$) or ($2,2,0$))

Let S be a rigid Del Pezzo surface and set

$$
\mathbb{L}_{S}:=H^{2}(S, \mathbb{Z})(2) \cong \begin{cases}\langle 2\rangle \oplus\langle-2\rangle^{\oplus(9-\operatorname{deg} S)} & \left(S \nsubseteq \mathbb{P}^{1} \times \mathbb{P}^{1}\right) \\ \mathbb{U}(2)=\binom{02}{20} & \left(S \cong \mathbb{P}^{1} \times \mathbb{P}^{1}\right)\end{cases}
$$

Fact (2-elementary K3 surfaces of type $(r, r, 1)$ or $(2,2,0)$)

Let S be a rigid Del Pezzo surface and set

$$
\mathbb{L}_{S}:=H^{2}(S, \mathbb{Z})(2) \cong \begin{cases}\langle 2\rangle \oplus\langle-2\rangle^{\oplus(9-\operatorname{deg} S)} & \left(S \not \approx \mathbb{P}^{1} \times \mathbb{P}^{1}\right) \\ \mathbb{U}(2)=\binom{02}{20} & \left(S \cong \mathbb{P}^{1} \times \mathbb{P}^{1}\right)\end{cases}
$$

Let $\left|-2 K_{S}\right|^{0}$ be the locus of smooth members of the complete linear system $\left|-2 K_{S}\right| \cong \mathbb{P}\left(H^{0}\left(S,-2 K_{S}\right)^{\vee}\right)$, i.e., the complement of the discriminant locus.

Fact (2-elementary K3 surfaces of type $(r, r, 1)$ or $(2,2,0)$)

Let S be a rigid Del Pezzo surface and set

$$
\mathbb{L}_{S}:=H^{2}(S, \mathbb{Z})(2) \cong \begin{cases}\langle 2\rangle \oplus\langle-2\rangle^{\oplus(9-\operatorname{deg} S)} & \left(S \nsubseteq \mathbb{P}^{1} \times \mathbb{P}^{1}\right) \\ \mathbb{U}(2)=\binom{02}{20} & \left(S \cong \mathbb{P}^{1} \times \mathbb{P}^{1}\right)\end{cases}
$$

Let $\left|-2 K_{S}\right|^{0}$ be the locus of smooth members of the complete linear system $\left|-2 K_{S}\right| \cong \mathbb{P}\left(H^{0}\left(S,-2 K_{S}\right)^{\vee}\right)$, i.e., the complement of the discriminant locus.
\Longrightarrow the period mapping

$$
\pi:\left|-2 K_{S}\right|^{0} \ni C \rightarrow \varpi\left(X_{(S, C)}, \iota(S, C)\right) \in \mathcal{M}_{\mathbb{L}_{S}}^{0}
$$

is dominant.

Fact (2-elementary K3 surfaces of type $(r, r, 1)$ or $(2,2,0)$)

Let S be a rigid Del Pezzo surface and set

$$
\mathbb{L}_{S}:=H^{2}(S, \mathbb{Z})(2) \cong \begin{cases}\langle 2\rangle \oplus\langle-2\rangle^{\oplus(9-\operatorname{deg} S)} & \left(S \not \approx \mathbb{P}^{1} \times \mathbb{P}^{1}\right) \\ \mathbb{U}(2)=\binom{02}{20} & \left(S \cong \mathbb{P}^{1} \times \mathbb{P}^{1}\right)\end{cases}
$$

Let $\left|-2 K_{S}\right|^{0}$ be the locus of smooth members of the complete linear system $\left|-2 K_{S}\right| \cong \mathbb{P}\left(H^{0}\left(S,-2 K_{S}\right)^{\vee}\right)$, i.e., the complement of the discriminant locus.
\Longrightarrow the period mapping

$$
\pi:\left|-2 K_{S}\right|^{0} \ni C \rightarrow \varpi\left(X_{(S, C)}, \iota(S, C)\right) \in \mathcal{M}_{\mathbb{L}_{S}}^{0}
$$

is dominant. In particular, a generic 2-elementary K3 surface of type \mathbb{L}_{S} is a double Del Pezzo surface.

Discriminant of $\left|-2 K_{S}\right|$ as a section of the Hodge bundle

Discriminant of $\left|-2 K_{S}\right|$ as a section of the Hodge bundle

Notation

Discriminant of $\left|-2 K_{S}\right|$ as a section of the Hodge bundle

Notation

- $\left\{s_{i}\right\}_{i \in I}$: a fixed basis of $H^{0}\left(S,-K_{S}\right)$

Discriminant of $\left|-2 K_{S}\right|$ as a section of the Hodge bundle

Notation

- $\left\{s_{i}\right\}_{i \in I}$: a fixed basis of $H^{0}\left(S,-K_{S}\right)$
- $\left\{\sigma_{\alpha}\right\}_{\alpha \in A}$: a fixed basis of $H^{0}\left(S,-2 K_{S}\right)$

Discriminant of $\left|-2 K_{S}\right|$ as a section of the Hodge bundle

Notation

- $\left\{s_{i}\right\}_{i \in I}$: a fixed basis of $H^{0}\left(S,-K_{S}\right)$
- $\left\{\sigma_{\alpha}\right\}_{\alpha \in A}$: a fixed basis of $H^{0}\left(S,-2 K_{S}\right)$
- $\xi=\left(\xi_{\alpha}\right)_{\alpha \in A}$: coordinates of $H^{0}\left(S,-2 K_{S}\right)$ w.r.t. the basis $\left\{\sigma_{\alpha}\right\}_{\alpha \in A}$

Discriminant of $\left|-2 K_{S}\right|$ as a section of the Hodge bundle

Notation

- $\left\{s_{i}\right\}_{i \in I}$: a fixed basis of $H^{0}\left(S,-K_{S}\right)$
- $\left\{\sigma_{\alpha}\right\}_{\alpha \in A}$: a fixed basis of $H^{0}\left(S,-2 K_{S}\right)$
- $\xi=\left(\xi_{\alpha}\right)_{\alpha \in A}$: coordinates of $H^{0}\left(S,-2 K_{S}\right)$ w.r.t. the basis $\left\{\sigma_{\alpha}\right\}_{\alpha \in A}$
- $C_{\xi}:=\left\{x \in S ; \sum_{\alpha \in A} \xi_{\alpha} \sigma_{\alpha}(x)=0\right\} \in\left|-2 K_{S}\right|$

Discriminant of $\left|-2 K_{S}\right|$ as a section of the Hodge bundle

Notation

- $\left\{s_{i}\right\}_{i \in I}$: a fixed basis of $H^{0}\left(S,-K_{S}\right)$
- $\left\{\sigma_{\alpha}\right\}_{\alpha \in A}$: a fixed basis of $H^{0}\left(S,-2 K_{S}\right)$
- $\xi=\left(\xi_{\alpha}\right)_{\alpha \in A}$: coordinates of $H^{0}\left(S,-2 K_{S}\right)$ w.r.t. the basis $\left\{\sigma_{\alpha}\right\}_{\alpha \in A}$
- $C_{\xi}:=\left\{x \in S ; \sum_{\alpha \in A} \xi_{\alpha} \sigma_{\alpha}(x)=0\right\} \in\left|-2 K_{S}\right|$
- $\left\{s_{i} / \sum_{\alpha \in A} \xi_{\alpha} \sigma_{\alpha}\right\}_{i \in I}$: a basis of $H^{0}\left(S, \Omega_{S}^{2}\left(\log C_{\xi}\right)\right)$

Discriminant of $\left|-2 K_{S}\right|$ as a section of the Hodge bundle

Notation

- $\left\{s_{i}\right\}_{i \in I}$: a fixed basis of $H^{0}\left(S,-K_{S}\right)$
- $\left\{\sigma_{\alpha}\right\}_{\alpha \in A}$: a fixed basis of $H^{0}\left(S,-2 K_{S}\right)$
- $\xi=\left(\xi_{\alpha}\right)_{\alpha \in A}$: coordinates of $H^{0}\left(S,-2 K_{S}\right)$ w.r.t. the basis $\left\{\sigma_{\alpha}\right\}_{\alpha \in A}$
- $C_{\xi}:=\left\{x \in S ; \sum_{\alpha \in A} \xi_{\alpha} \sigma_{\alpha}(x)=0\right\} \in\left|-2 K_{S}\right|$
- $\left\{s_{i} / \sum_{\alpha \in A} \xi_{\alpha} \sigma_{\alpha}\right\}_{i \in I}$: a basis of $H^{0}\left(S, \Omega_{S}^{2}\left(\log C_{\xi}\right)\right)$
- $\left\{\operatorname{Res}_{C_{\xi}}\left(s_{i} / \sum_{\alpha \in A} \xi_{\alpha} \sigma_{\alpha}\right)\right\}_{i \in I}$: a basis of $H^{0}\left(C_{\xi}, \Omega_{C_{\xi}}^{1}\right)$ for smooth C_{ξ}

$$
\omega_{\xi}:=\bigwedge_{i \in I} \operatorname{Res}_{C_{\xi}}\left(\frac{s_{i}}{\sum_{\alpha \in A} \xi_{\alpha} \sigma_{\alpha}}\right) \in \operatorname{det} H^{0}\left(C_{\xi}, \Omega_{C_{\xi}}^{1}\right) \backslash\{0\}
$$

Discriminant of $\left|-2 K_{S}\right|$ as a section of the Hodge bundle

Notation

- $\left\{s_{i}\right\}_{i \in I}$: a fixed basis of $H^{0}\left(S,-K_{S}\right)$
- $\left\{\sigma_{\alpha}\right\}_{\alpha \in A}$: a fixed basis of $H^{0}\left(S,-2 K_{S}\right)$
- $\xi=\left(\xi_{\alpha}\right)_{\alpha \in A}$: coordinates of $H^{0}\left(S,-2 K_{S}\right)$ w.r.t. the basis $\left\{\sigma_{\alpha}\right\}_{\alpha \in A}$
- $C_{\xi}:=\left\{x \in S ; \sum_{\alpha \in A} \xi_{\alpha} \sigma_{\alpha}(x)=0\right\} \in\left|-2 K_{S}\right|$
- $\left\{s_{i} / \sum_{\alpha \in A} \xi_{\alpha} \sigma_{\alpha}\right\}_{i \in I}$: a basis of $H^{0}\left(S, \Omega_{S}^{2}\left(\log C_{\xi}\right)\right)$
- $\left\{\operatorname{Res}_{C_{\xi}}\left(s_{i} / \sum_{\alpha \in A} \xi_{\alpha} \sigma_{\alpha}\right)\right\}_{i \in I}$: a basis of $H^{0}\left(C_{\xi}, \Omega_{C_{\xi}}^{1}\right)$ for smooth C_{ξ}

$$
\omega_{\xi}:=\bigwedge_{i \in I} \operatorname{Res} C_{\xi}\left(\frac{s_{i}}{\sum_{\alpha \in A} \xi_{\alpha} \sigma_{\alpha}}\right) \in \operatorname{det} H^{0}\left(C_{\xi}, \Omega_{C_{\xi}}^{1}\right) \backslash\{0\}
$$

- $\Delta_{S}(\xi) \in \mathbb{Z}\left[\xi_{\alpha}\right]_{\alpha \in A}$: defining Eq of the projective dual of $\left(S,-2 K_{S}\right)$ \Longleftrightarrow defining Eq of the discriminant locus of $\left|-2 K_{S}\right|$

a section of Hodge bundle produced by the discriminant

a section of Hodge bundle produced by the discriminant

$\Delta_{S}(\xi)^{\operatorname{deg} S+1} \cdot \omega_{\xi}^{\otimes(7 \operatorname{deg} S+12)} \in \operatorname{det} H^{0}\left(C_{\xi}, \Omega_{C_{\xi}}^{1}\right) \backslash\{0\}$ is \mathbb{C}^{*}-invariant.

a section of Hodge bundle produced by the discriminant

$\Delta_{S}(\xi)^{\operatorname{deg} S+1} \cdot \omega_{\xi}^{\otimes(7 \operatorname{deg} S+12)} \in \operatorname{det} H^{0}\left(C_{\xi}, \Omega_{C_{\xi}}^{1}\right) \backslash\{0\}$ is \mathbb{C}^{*}-invariant.
Theorem (Structure of τ_{M} for some double Del Pezzo surfaces)

a section of Hodge bundle produced by the discriminant

$\Delta_{S}(\xi)^{\operatorname{deg} S+1} \cdot \omega_{\xi}^{\otimes(7 \operatorname{deg} S+12)} \in \operatorname{det} H^{0}\left(C_{\xi}, \Omega_{C_{\xi}}^{1}\right) \backslash\{0\}$ is \mathbb{C}^{*}-invariant.

Theorem (Structure of τ_{M} for some double Del Pezzo surfaces)
Let S be a rigid Del Pezzo surface.

a section of Hodge bundle produced by the discriminant

$\Delta_{S}(\xi)^{\operatorname{deg} S+1} \cdot \omega_{\xi}^{\otimes(7 \operatorname{deg} S+12)} \in \operatorname{det} H^{0}\left(C_{\xi}, \Omega_{C_{\xi}}^{1}\right) \backslash\{0\}$ is \mathbb{C}^{*}-invariant.

Theorem (Structure of τ_{M} for some double Del Pezzo surfaces)

Let S be a rigid Del Pezzo surface. Then for any $C_{\xi} \in\left|-2 K_{S}\right|^{0}$,

$$
\tau_{\mathbb{L} S}\left(X_{\left(S, C_{\xi}\right)}, \iota_{\left(S, C_{\xi}\right)}\right)^{2(7 \operatorname{deg} S+12)}=\frac{\| \Psi_{\mathbb{L} \frac{\perp}{S}}\left(\varpi\left(X_{\left(S, C_{\xi}\right)}, \iota\left(S, C_{\xi}\right), F_{S}\right) \|^{\operatorname{deg} S-4}\right.}{\left\|\Delta_{S}(\xi)^{\operatorname{deg} S+1} \cdot \omega_{\xi}^{\otimes(7 \operatorname{deg} S+12)}\right\|^{4}}
$$

a section of Hodge bundle produced by the discriminant

$\Delta_{S}(\xi)^{\operatorname{deg} S+1} \cdot \omega_{\xi}^{\otimes(7 \operatorname{deg} S+12)} \in \operatorname{det} H^{0}\left(C_{\xi}, \Omega_{C_{\xi}}^{1}\right) \backslash\{0\}$ is \mathbb{C}^{*}-invariant.

Theorem (Structure of τ_{M} for some double Del Pezzo surfaces)

Let S be a rigid Del Pezzo surface. Then for any $C_{\xi} \in\left|-2 K_{S}\right|^{0}$,

$$
\tau_{\mathbb{L} S}\left(X_{\left(S, C_{\xi}\right)}, \iota_{\left(S, C_{\xi}\right)}\right)^{2(7 \operatorname{deg} S+12)}=\frac{\| \Psi_{\mathbb{I} \frac{\perp}{S}}\left(\varpi\left(X_{\left(S, C_{\xi}\right)}, \iota\left(S, C_{\xi}\right), F_{S}\right) \|^{\operatorname{deg} S-4}\right.}{\left\|\Delta_{S}(\xi)^{\operatorname{deg} S+1} \cdot \omega_{\xi}^{\otimes(7 \operatorname{deg} S+12)}\right\|^{4}}
$$

Here the elliptic modular form F_{S} is given as follows:

a section of Hodge bundle produced by the discriminant

$\Delta_{S}(\xi)^{\operatorname{deg} S+1} \cdot \omega_{\xi}^{\otimes(7 \operatorname{deg} S+12)} \in \operatorname{det} H^{0}\left(C_{\xi}, \Omega_{C_{\xi}}^{1}\right) \backslash\{0\}$ is \mathbb{C}^{*}-invariant.

Theorem (Structure of τ_{M} for some double Del Pezzo surfaces)

Let S be a rigid Del Pezzo surface. Then for any $C_{\xi} \in\left|-2 K_{S}\right|^{0}$,

$$
\tau_{\mathbb{L}_{S}}\left(X_{\left(S, C_{\xi}\right)}, \iota\left(S, C_{\xi}\right)\right)^{2(7 \operatorname{deg} S+12)}=\frac{\| \Psi_{\mathbb{L}+\frac{\perp}{S}}\left(\varpi\left(X_{\left(S, C_{\xi}\right)}, \iota\left(S, C_{\xi}\right), F_{S}\right) \|^{\operatorname{deg} S-4}\right.}{\left\|\Delta_{S}(\xi)^{\operatorname{deg} S+1} \cdot \omega_{\xi}^{\otimes(7 \operatorname{deg} S+12)}\right\|^{4}}
$$

Here the elliptic modular form F_{S} is given as follows:

- $F_{S}(\tau)=\Theta_{\mathbb{E}_{7}^{+}}(\tau) / \eta(\tau)^{24}$ when $S=\mathbb{P}^{2}(\Longleftrightarrow M=\langle 2\rangle)$

a section of Hodge bundle produced by the discriminant

$\Delta_{S}(\xi)^{\operatorname{deg} S+1} \cdot \omega_{\xi}^{\otimes(7 \operatorname{deg} S+12)} \in \operatorname{det} H^{0}\left(C_{\xi}, \Omega_{C_{\xi}}^{1}\right) \backslash\{0\}$ is \mathbb{C}^{*}-invariant.

Theorem (Structure of τ_{M} for some double Del Pezzo surfaces)

Let S be a rigid Del Pezzo surface. Then for any $C_{\xi} \in\left|-2 K_{S}\right|^{0}$,

$$
\tau_{\mathbb{L}_{S}}\left(X_{\left(S, C_{\xi}\right)}, \iota\left(S, C_{\xi}\right)\right)^{2(7 \operatorname{deg} S+12)}=\frac{\left\|\Psi_{\mathbb{L}_{S}^{\perp}}\left(\varpi\left(X_{\left(S, C_{\xi}\right)}, \iota_{\left(S, C_{\xi}\right)}\right), F_{S}\right)\right\|^{\operatorname{deg} S-4}}{\left\|\Delta_{S}(\xi)^{\operatorname{deg} S+1} \cdot \omega_{\xi}^{\otimes(7 \operatorname{deg} S+12)}\right\|^{4}}
$$

Here the elliptic modular form F_{S} is given as follows:

- $F_{S}(\tau)=\Theta_{\mathbb{E}_{7}^{+}}(\tau) / \eta(\tau)^{24}$ when $S=\mathbb{P}^{2}(\Longleftrightarrow M=\langle 2\rangle)$
- $F_{S}(\tau)=\eta(\tau)^{-8} \eta(2 \tau)^{-8}$ when $S=\mathbb{P}^{1} \times \mathbb{P}^{1}(\Longleftrightarrow M=\mathbb{U}(2))$

Analytic torsion for log-Enriques surfaces (joint with X.Dai)

Analytic torsion for log-Enriques surfaces (joint with X.Dai)

Definition (log-Enriques surfaces, D.-Q. Zhang)

Analytic torsion for log-Enriques surfaces (joint with X. Dai)

Definition (log-Enriques surfaces, D.-Q. Zhang)

A normal complex projective surface Y is log-Enriques (of index 2)

Analytic torsion for log-Enriques surfaces (joint with X. Dai)

Definition (log-Enriques surfaces, D.-Q. Zhang)

A normal complex projective surface Y is log-Enriques (of index 2)

- Sing Y is of the from $\mathbb{C}^{2} /\langle i\rangle$, where $i=\sqrt{-1}$ acts diagonally on \mathbb{C}^{2}

Analytic torsion for log-Enriques surfaces (joint with X. Dai)

Definition (log-Enriques surfaces, D.-Q. Zhang)

A normal complex projective surface Y is log-Enriques (of index 2) \Longleftrightarrow

- Sing Y is of the from $\mathbb{C}^{2} /\langle i\rangle$, where $i=\sqrt{-1}$ acts diagonally on \mathbb{C}^{2}
- $H^{1}\left(Y, \mathcal{O}_{Y}\right)=0$

Analytic torsion for log-Enriques surfaces (joint with X. Dai)

Definition (log-Enriques surfaces, D.-Q. Zhang)

A normal complex projective surface Y is log-Enriques (of index 2) \Longleftrightarrow

- Sing Y is of the from $\mathbb{C}^{2} /\langle i\rangle$, where $i=\sqrt{-1}$ acts diagonally on \mathbb{C}^{2}
- $H^{1}\left(Y, \mathcal{O}_{Y}\right)=0$
- $K_{Y} \not \not \mathcal{O}_{Y}, K_{Y}^{\otimes 2} \cong \mathcal{O}_{Y}$.

Analytic torsion for log-Enriques surfaces (joint with X. Dai)

Definition (log-Enriques surfaces, D.-Q. Zhang)

A normal complex projective surface Y is log-Enriques (of index 2) \Longleftrightarrow

- Sing Y is of the from $\mathbb{C}^{2} /\langle i\rangle$, where $i=\sqrt{-1}$ acts diagonally on \mathbb{C}^{2}
- $H^{1}\left(Y, \mathcal{O}_{Y}\right)=0$
- $K_{Y} \not \approx \mathcal{O}_{Y}, K_{Y}^{\otimes 2} \cong \mathcal{O}_{Y}$.

Definition (canonical double covering)

Analytic torsion for log-Enriques surfaces (joint with X. Dai)

Definition (log-Enriques surfaces, D.-Q. Zhang)

A normal complex projective surface Y is log-Enriques (of index 2) \Longleftrightarrow

- Sing Y is of the from $\mathbb{C}^{2} /\langle i\rangle$, where $i=\sqrt{-1}$ acts diagonally on \mathbb{C}^{2}
- $H^{1}\left(Y, \mathcal{O}_{Y}\right)=0$
- $K_{Y} \not \approx \mathcal{O}_{Y}, K_{Y}^{\otimes 2} \cong \mathcal{O}_{Y}$.

Definition (canonical double covering)

The canonical double covering of a log-Enriques surface Y is defined as

$$
X:=\left\{(y, \xi) \in K_{Y} ; \xi \otimes \xi=\omega(y)\right\}, \quad \omega \in H^{0}\left(Y, K_{Y}^{\otimes 2}\right) \backslash\{0\}
$$

Analytic torsion for log-Enriques surfaces (joint with X. Dai)

Definition (log-Enriques surfaces, D.-Q. Zhang)

A normal complex projective surface Y is log-Enriques (of index 2) \Longleftrightarrow

- Sing Y is of the from $\mathbb{C}^{2} /\langle i\rangle$, where $i=\sqrt{-1}$ acts diagonally on \mathbb{C}^{2}
- $H^{1}\left(Y, \mathcal{O}_{Y}\right)=0$
- $K_{Y} \not \approx \mathcal{O}_{Y}, K_{Y}^{\otimes 2} \cong \mathcal{O}_{Y}$.

Definition (canonical double covering)

The canonical double covering of a log-Enriques surface Y is defined as

$$
X:=\left\{(y, \xi) \in K_{Y} ; \xi \otimes \xi=\omega(y)\right\}, \quad \omega \in H^{0}\left(Y, K_{Y}^{\otimes 2}\right) \backslash\{0\}
$$

which is equipped with the canonical involution

$$
\iota: X \ni(y, \xi) \rightarrow(y,-\xi) \in X
$$

Fact

Fact

- A smooth log-Enriques surface is an Enriques surface.

Fact

- A smooth log-Enriques surface is an Enriques surface.
- The canonical double covering with canonical involution (X, ι) is a K3 surface with ODP's equipped with an anti-symplectic involution

Fact

- A smooth log-Enriques surface is an Enriques surface.
- The canonical double covering with canonical involution (X, ι) is a K3 surface with ODP's equipped with an anti-symplectic involution
- $(\widetilde{X}, \theta) \rightarrow(X, \iota)$: minimal resolution with induced involution \Longrightarrow (\widetilde{X}, θ) is a 2-elementary K3 surface s.t.

$$
\tilde{x}^{\theta}=E_{1} \amalg \ldots \amalg E_{k}, \quad E_{i} \cong \mathbb{P}^{1}, \quad 0 \leq k \leq 10
$$

Fact

- A smooth log-Enriques surface is an Enriques surface.
- The canonical double covering with canonical involution (X, ι) is a K3 surface with ODP's equipped with an anti-symplectic involution
- $(\widetilde{X}, \theta) \rightarrow(X, \iota)$: minimal resolution with induced involution \Longrightarrow (\widetilde{X}, θ) is a 2-elementary K3 surface s.t.

$$
\widetilde{X}^{\theta}=E_{1} \amalg \ldots \amalg E_{k}, \quad E_{i} \cong \mathbb{P}^{1}, \quad 0 \leq k \leq 10
$$

Fact (moduli space of log-Enriques surfaces)

Fact

- A smooth log-Enriques surface is an Enriques surface.
- The canonical double covering with canonical involution (X, ι) is a $K 3$ surface with ODP's equipped with an anti-symplectic involution
- $(\underset{\sim}{X}, \theta) \rightarrow(X, \iota)$: minimal resolution with induced involution \Longrightarrow (\widetilde{X}, θ) is a 2-elementary K3 surface s.t.

$$
\widetilde{X}^{\theta}=E_{1} \amalg \ldots \amalg E_{k}, \quad E_{i} \cong \mathbb{P}^{1}, \quad 0 \leq k \leq 10
$$

Fact (moduli space of log-Enriques surfaces)

By assigning Y the period of (\widetilde{X}, θ), the moduli space of log-Enriques surfaces with k-singularities $(k>0)$ is isomorphic to the modular variety

$$
\mathcal{M}_{k}^{0}:=\frac{\Omega_{\Lambda_{k}} \backslash \mathcal{D}_{\Lambda_{k}}}{O\left(\Lambda_{k}\right)}, \quad \Lambda_{k}:=\langle 1\rangle^{\oplus 2} \oplus\langle-1\rangle^{\oplus(10-k)}
$$

Fact

- A smooth log-Enriques surface is an Enriques surface.
- The canonical double covering with canonical involution (X, ι) is a $K 3$ surface with ODP's equipped with an anti-symplectic involution
- $(\underset{\sim}{X}, \theta) \rightarrow(X, \iota)$: minimal resolution with induced involution \Longrightarrow (\widetilde{X}, θ) is a 2-elementary K3 surface s.t.

$$
\widetilde{X}^{\theta}=E_{1} \amalg \ldots \amalg E_{k}, \quad E_{i} \cong \mathbb{P}^{1}, \quad 0 \leq k \leq 10
$$

Fact (moduli space of log-Enriques surfaces)

By assigning Y the period of (\widetilde{X}, θ), the moduli space of log-Enriques surfaces with k-singularities $(k>0)$ is isomorphic to the modular variety

$$
\mathcal{M}_{k}^{0}:=\frac{\Omega_{\Lambda_{k}} \backslash \mathcal{D}_{\Lambda_{k}}}{O\left(\Lambda_{k}\right)}, \quad \Lambda_{k}:=\langle 1\rangle^{\oplus 2} \oplus\langle-1\rangle^{\oplus(10-k)}
$$

where $\mathcal{D}_{\Lambda_{k}}=\sum_{d \in \Lambda_{k}, d^{2}=-1} d^{\perp}$ is the Heegner divisor of norm -1-vectors.

Theorem (analytic-torsion-invariant for log-Enriques)

Theorem (analytic-torsion-invariant for log-Enriques)
Y : log-Enriques surface with k-singular points

Theorem (analytic-torsion-invariant for log-Enriques)

Y : log-Enriques surface with k-singular points
γ : Kähler form on Y in the sense of orbifolds

Theorem (analytic-torsion-invariant for log-Enriques)

Y : log-Enriques surface with k-singular points
γ : Kähler form on Y in the sense of orbifolds
$\Xi \in H^{0}\left(Y, K_{Y}^{\otimes 2}\right) \backslash\{0\}$: nowhere vanishing double canonical form on Y

Theorem (analytic-torsion-invariant for log-Enriques)

Y : log-Enriques surface with k-singular points
γ : Kähler form on Y in the sense of orbifolds
$\Xi \in H^{0}\left(Y, K_{Y}^{\otimes 2}\right) \backslash\{0\}$: nowhere vanishing double canonical form on Y
\Longrightarrow The number

$$
\begin{aligned}
\tau_{k}(Y):= & \tau(Y, \gamma) \operatorname{Vol}(Y, \gamma)\|\Xi\|_{L^{1}(Y)}^{-\frac{4+k}{8}}\left\{\prod_{\mathfrak{p} \in \operatorname{Sing}(Y)}\left(\frac{\gamma^{2} / 2!}{|\Xi|}\right)(\mathfrak{p})\right\}^{\frac{5}{32}} \\
& \times \exp \left[\frac{1}{24} \int_{Y} \log \left(\frac{|\Xi|}{\gamma^{2} / 2!}\right) c_{2}(Y, \gamma)\right]
\end{aligned}
$$

is independent of the choices of γ and Ξ,

Theorem (analytic-torsion-invariant for log-Enriques)

Y : log-Enriques surface with k-singular points
γ : Kähler form on Y in the sense of orbifolds
$\Xi \in H^{0}\left(Y, K_{Y}^{\otimes 2}\right) \backslash\{0\}$: nowhere vanishing double canonical form on Y
\Longrightarrow The number

$$
\begin{aligned}
\tau_{k}(Y):= & \tau(Y, \gamma) \operatorname{Vol}(Y, \gamma)\|\Xi\|_{L^{1}(Y)}^{-\frac{4+k}{8}}\left\{\prod_{\mathfrak{p} \in \operatorname{Sing}(Y)}\left(\frac{\gamma^{2} / 2!}{|\Xi|}\right)(\mathfrak{p})\right\}^{\frac{5}{32}} \\
& \times \exp \left[\frac{1}{24} \int_{Y} \log \left(\frac{|\Xi|}{\gamma^{2} / 2!}\right) c_{2}(Y, \gamma)\right]
\end{aligned}
$$

is independent of the choices of γ and Ξ, where

$$
|\Xi|:=\sqrt{\Xi \otimes \bar{\Xi}}
$$

is the Ricci-flat volume form on Y induced by Ξ.

Theorem (Dai-Y.)

Theorem (Dai-Y.)

M_{k} : primitive Lorentzian sublattice of $\mathbb{L}_{K 3}$ with $M_{k}^{\perp}=\Lambda_{k}(2)$.

Theorem (Dai-Y.)

M_{k} : primitive Lorentzian sublattice of $\mathbb{L}_{k 3}$ with $M_{k}^{\perp}=\Lambda_{k}(2)$.
Y : log-Enriques surface with k-singular points

Theorem (Dai-Y.)

M_{k} : primitive Lorentzian sublattice of $\mathbb{L}_{k 3}$ with $M_{k}^{\perp}=\Lambda_{k}(2)$.
Y : log-Enriques surface with k-singular points
$(\widetilde{X}, \theta):$ 2-elementary $K 3$ surface of type M_{k} associated to Y, i.e., $\left(\widetilde{X} / \theta, \widetilde{X}^{\theta}\right) \rightarrow(Y, \operatorname{Sing} Y)$ is the contraction of \widetilde{X}^{θ}.

Theorem (Dai-Y.)

M_{k} : primitive Lorentzian sublattice of $\mathbb{L}_{k 3}$ with $M_{k}^{\perp}=\Lambda_{k}(2)$.
Y : log-Enriques surface with k-singular points
$(\widetilde{X}, \theta):$ 2-elementary $K 3$ surface of type M_{k} associated to Y, i.e., $\left(\widetilde{X} / \theta, \widetilde{X}^{\theta}\right) \rightarrow(Y, \operatorname{Sing} Y)$ is the contraction of \widetilde{X}^{θ}.
$\Longrightarrow U p$ to a constant depending only on $k=\# \operatorname{Sing} Y$,

$$
\tau_{k}(Y)=\tau_{M_{k}}(\widetilde{X}, \theta)^{\frac{1}{2}}
$$

Theorem (Dai-Y.)

M_{k} : primitive Lorentzian sublattice of $\mathbb{L}_{k 3}$ with $M_{k}^{\perp}=\Lambda_{k}(2)$.
Y : log-Enriques surface with k-singular points
$(\widetilde{X}, \theta):$ 2-elementary $K 3$ surface of type M_{k} associated to Y, i.e., $\left(\widetilde{X} / \theta, \widetilde{X}^{\theta}\right) \rightarrow(Y, \operatorname{Sing} Y)$ is the contraction of \widetilde{X}^{θ}.
\Longrightarrow Up to a constant depending only on $k=\# \operatorname{Sing} Y$,

$$
\tau_{k}(Y)=\tau_{M_{k}}(\widetilde{X}, \theta)^{\frac{1}{2}}
$$

In particular, up to a constant depending only on k,

$$
\tau_{k}(Y)=\left\|\Psi_{\Lambda_{k}(2)}(\varpi(Y))\right\|^{-1 / 4}
$$

where $\Psi_{\Lambda_{k}(2)}$ is the Borcherds lift of $\eta_{1-82^{8} 4-8} \vartheta^{k}$ w.r.t. $\Lambda_{k}(2)$.

Theorem (Dai-Y.)

M_{k} : primitive Lorentzian sublattice of $\mathbb{L}_{K 3}$ with $M_{k}^{\perp}=\Lambda_{k}(2)$.
Y : log-Enriques surface with k-singular points
$(\widetilde{X}, \theta):$ 2-elementary $K 3$ surface of type M_{k} associated to Y, i.e., $\left(\widetilde{X} / \theta, \widetilde{X}^{\theta}\right) \rightarrow(Y, \operatorname{Sing} Y)$ is the contraction of \widetilde{X}^{θ}.
$\Longrightarrow U p$ to a constant depending only on $k=\# \operatorname{Sing} Y$,

$$
\tau_{k}(Y)=\tau_{M_{k}}(\widetilde{X}, \theta)^{\frac{1}{2}}
$$

In particular, up to a constant depending only on k,

$$
\tau_{k}(Y)=\left\|\Psi_{\Lambda_{k}(2)}(\varpi(Y))\right\|^{-1 / 4}
$$

where $\Psi_{\Lambda_{k}(2)}$ is the Borcherds lift of $\eta_{1^{-8} 2^{8} 4-8} \vartheta^{k}$ w.r.t. $\Lambda_{k}(2)$.
N.B. $\Psi_{\Lambda_{k}(2)}$ is an automorphic form on the Kähler moduli of a Del Pezzo surface of degree k vanishing exactly on the divisor of norm -1-vectors

