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Common situation in dissipative PDE

- a “conservative” part + a “dissipative” part
{
- the conservative part alone does not induce relaxation

- the dissipative part is degenerate and not sufficient

..... but the combination of the two leads to relaxation.

Problem: How is the convergence as t → +∞? (how

fast, etc.)



Numerical simulations (Filbet, around 2004)

Hydrodynamic approximation does not hold true in the

large-time limit −→ oscillations between “more

hydrodynamic” and “more homogeneous” states (guessed

by Desvillettes–V)
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Typical examples from kinetic theory

Unknown: f(t, x, v) ≥ 0, x ∈ R
n (or Ω ⊂ R

n), v ∈ R
n

• the linear kinetic Fokker–Planck equation

(kFP)
∂f

∂t
+ v · ∇xf −∇V (x) · ∇vf = ∆vf +∇v · (fv)

conservative diffusion/friction

• the nonlinear Vlasov–Landau equation

(BE)
∂f

∂t
+ v · ∇xf + F [f ] · ∇vf = QL(f, f)

transport collisions

v · ∇x: simple differential linear operator, “mixes” x, v

QL: complicated diffusion bilinear operator, acts only

on v



• the Boltzmann equation

(BE)
∂f

∂t
+ v · ∇xf = Q(f, f)

transport collisions

v · ∇x: simple differential linear operator, “mixes” x, v

Q: complicated integral bilinear operator, acts only on v

Always the problem is to put the two properties

together.



Collision operator

Q(f, f) =

∫

RN

∫

SN−1

[
f(v′)f(v′∗)− f(v)f(v∗)

]
|v − v∗| dσ dv∗

(v, v∗)
collision−−−−→ (v′, v′∗)

{
v′ = (v + v∗)/2 + (|v − v∗|/2) σ
v′∗ = (v + v∗)/2− (|v − v∗|/2) σ

Q(f, f) = 0 if and only if f is hydrodynamic, i.e.

f(x, v) = MρuT =
ρ(x) e−

|v−u(x)|2

2T (x)

(2πT (x))N/2



Some difficulties

• For both (kFP) and (BE) the dissipative (collisional)

part acts only on the variable v

=⇒ (BE) ceases to be dissipative on hydrodynamical

states: Q(Mρ uT ,Mρ uT ) = 0

=⇒ (kFP) ceases to be dissipative on states

f(x, v) = ρ(x) e−|v|2/2

• For Boltzmann, additional difficulties: nonlinearity,

complexity, just one Lyapunov functional (entropy) and

the understanding of its production is very tricky

....Anyway we need to cleverly use the

conservative part



Grad’s intuition

“the question is whether the deviation from a local

Maxwellian, which is fed by molecular streaming in the

presence of spatial inhomogeneity, is sufficiently strong to

ultimately wipe out the inhomogeneity” (...)

“a valid proof of the approach to equilibrium in a spatially

varying problem requires just the opposite of the procedure

that is followed in a proof of the H-Theorem, viz., to

show that the distribution function does not approach too

closely to a local Maxwellian.”

On Boltzmann’s H Theorem (1965)



Incomplete bibliography for kinetic Fokker–Planck

Various convergence results by probabilistic methods

(Wu, Rey-Bellet, Bakry–Cattiaux–Guillin,

Mattingly–Stuart...)

Desvillettes–V (2001): convergence in O(t−∞) for

V ≃ a |x|2 at infinity and f0/f∞ ∈ L∞(!)

Exponential convergence for f0/f∞ ∈ L2(f∞):

Hérau–Nier (2004), Helffer–Nier, Hérau....



Incomplete bibliography for Boltzmann

(With adequate boundary conditions)

Desvillettes–V (2005): If f(t, x, v) is uniformly smooth

and positive, then convergence like O(t−∞), and the

decay bounds can be estimated from the smoothness and

positivity bounds

Guo, Strain: f0(x, v) close enough to equilibrium =⇒
convergence to equilibrium like O(e−λt) (or O(e−λtγ ))

(Note: For Boltzmann equation in the large we don’t

know any estimate!)



The Desvillettes–V. method

Based on four first-order and second-order differential

inequalities coupled by functional inequalities.

Uses

(a) Lower bound on the entropy production far from

hydrodynamic states (information-theoretical input)

(b) Instability of the hydrodynamic approximation in

presence of gradients (fluid mechanics input)

(c) Geometric inequalities (Poincaré, Korn)

(d) Study of the system of differential inequalities

(“Gronwall” style)

+ a lot of interpolation (trade smoothness for exponents)



Hydrodynamic approximation (fluid mechanics)

f(t, x, v) −→ M f = ρ
e−

|v−u|2

2T

(2πT )N/2

M f = best approximation of f by a hydrodynamic state

(“projection”)





ρ(t, x) :=

∫
f dv (density)

u(t, x) :=
1

ρ

∫
f v dv (mean velocity)

T (t, x) :=
1

Nρ

∫
f |v − u|2 dv (temperature)



Entropy production

H(f) =
∫
f log f dv dx

D(f) =
1

4

∫ (
f(v′)f(v′∗)− f(v)f(v∗)

)
log

f(v)f(v∗)

f(v′)f(v′∗)
|v − v∗| dσ dv dv∗

Best known lower bound

(precursors: Carlen–Carvalho, Toscani-V)

D(f) ≥ Kε(f)
[
H(f)−H(M f )

]1+ε

Kε(f) depends on





ε

regularity (high order Sobolev norms) of f

positivity: f ≥ Ke−A|v|q

Rk: Inequality with ε = 0 (Cercignani conjecture) is false



....The system




− d
dt
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dt
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................... H(f(t))−H(M) = O(t−1/200 ε)



Two goals which were subsequently pursued

(1) Find simpler (maybe less intuitive) methods

(2) Identify general structures gathering various models

with a “degenerate diffusive part” and start a “toolbox”

=⇒ Hypocoercivity (Memoirs AMS, 2009)
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Rather frequent situation:

- a “conservative” part + a “dissipative part”
{
- the conservative part alone does not induce relaxation

- the dissipative part is degenerate and not sufficient

..... but the combination of the two leads to relaxation.

Analogy with (parabolic) hypoellipticity theory

- a first-order part + a second-order part
{
- the first-order part does not induce any regularization

- the second-order part is degenerate

..... but the combination leads to regularization

Denomination: hypocoercivity for the first situation

(Gallay)
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)
u
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Recall: Hörmander’s “
∑

X2
i +X0” theorem

(ai)0≤i≤m smooth vector fields in dimension n

(ai) ↔ Xi = ai ·∇ differentiation operators in direction ai

∂u

∂t
=

(∑

i≥1

X2
i +X0

)
u

Ellliptic case: rank ((Xi)) = n =⇒ C∞ regularization

Still regularizing if

rank ((Xi), ([Xi, Xj]), ([[Xi, Xk], Xj]), . . .) = n

i.e. by taking a finite number of commutators involving

the dissipative and the conservative part, one can

generate all directions



The “A∗A+B” theorem

(abstract linear result in a Hilbert space)

A = (A1, . . . , Am), B∗ = −B in H, L = A∗A+B

C0 = A, [Cj, B] = Cj+1+Rj+1 (j ≤ Nc), CNc+1 = 0,





(i) [A,Ck] bounded relatively to {Cj}0≤j≤k, {CjA}0≤j≤k−1

(ii) [A∗, Ck] bounded relatively to I, {Cj}0≤j≤k

(iii) Rk bounded relatively to {Cj}0≤j≤k−1, {CjA}0≤j≤k−1
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The “A∗A+B” theorem

(abstract linear result in a Hilbert space)

A = (A1, . . . , Am), B∗ = −B in H, L = A∗A+B

C0 = A, [Cj, B] = Cj+1+Rj+1 (j ≤ Nc), CNc+1 = 0,





(i) [A,Ck] bounded relatively to {Cj}0≤j≤k, {CjA}0≤j≤k−1

(ii) [A∗, Ck] bounded relatively to I, {Cj}0≤j≤k

(iii) Rk bounded relatively to {Cj}0≤j≤k−1, {CjA}0≤j≤k−1

+ (H)
∑Nc

j=0 C
∗
jCj is coercive

Then
∥∥∥e−tL

∥∥∥
H1→H1

= O(e−λt) ‖h‖2H1 = ‖h‖2 +
∑

‖Cjh‖2



Application of the A∗A+B theorem to kFP

∂f

∂t
+ v · ∇xf −∇V (x) · ∇vf = ∆vf +∇v · (fv)

h = f/f∞ ∈ H = L2(f∞ dx dv)

A = ∇v B = v · ∇x −∇V (x) · ∇v



Application of the A∗A+B theorem to kFP

∂f

∂t
+ v · ∇xf −∇V (x) · ∇vf = ∆vf +∇v · (fv)

h = f/f∞ ∈ H = L2(f∞ dx dv)

A = ∇v B = v · ∇x −∇V (x) · ∇v

Assumptions are satisfied as soon as

(a) |∇2V | ≤ const. (1 + |∇V |)
(b) e−V dx satisfies a Poincaré inequality:
∫

|∇xh|2e−V dx ≥ K

∫
|h− 〈h〉|2 e−V dx

Then ‖h(t)− 1‖ = O(e−λt) constructive rate

(most general result at the time)



Core of the proof of A∗A+B

Introduce a Lyapunov functional: (say Nc = 1)

F(h) = ‖h‖2 + a‖Ah‖2+2 bRe 〈Ah, [A,B]h〉+ c‖[A,B]h‖2
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Core of the proof of A∗A+B

Introduce a Lyapunov functional: (say Nc = 1)

F(h) = ‖h‖2 + a‖Ah‖2+2 bRe 〈Ah, [A,B]h〉+ c‖[A,B]h‖2

1 ≫ a ≫ b ≫ c; b ≪ √
ac

Key algebraic identity:

d

dt

∣∣∣∣
B

〈Ah, [A,B]h〉 = 〈ABh, [A,B]h〉+ 〈Ah, [A,B]Bh〉

= ‖[A,B]h‖2 + 〈Ah, [[A,B], B]h〉

Rks: • Not unrelated to tricks by Guo and Talay

• Often one can use similar Lyapunov functionals to

prove Hörmander’s hypoelliptic regularity bounds

(Hérau, V)

=⇒ Global regularization theorems



Regularization from L1 data

∂tf + v · ∇xf −∇V · ∇vf = ∆vf +∇v · (fv)
∫
f0(x, v) (1 + |x|2 + |v|2) dv dx < +∞

Prove that ft ∈ Hk
xH

ℓ
v(R

n × R
n) ??

Note carefully: Because of the behavior at infinity,

there is no regularization L1 → L2 !!



Global hypoellipticity (in 4 steps)

L1 initial datum → (flat) Sobolev regularity

Step 1: Energy estimate

Em(f) =
∑

3k+ℓ≤3m

akℓ

∫
|∇k

x∇ℓ
vf |2 dx dv

≃
∫

|∇m
x f |2 +

∫
|∇3m

v f |2 +
∫

f 2

Choose ad hoc coefficients akℓ =⇒
Computation using integration by parts...

d Em(f)
dt

≤ −K

∫
|∇3m+1

v f |2 dx dv + C Em(f)



Step 2: Mixed derivatives

Mm(f) =

∫
∇m

x f · ∇m−1
x ∇vf dx dv ( =

∫
∇xf · ∇vf if m = 1)

.... Computation using commutator [∇v, v · ∇x] = ∇x

dMm

dt
≤ −K

∫
|∇m

x f |2 dx dv + C
∑

3k+ℓ≤3m

k<m

∫
|∇k

x∇ℓ
vf |2



Step 3: Interpolation

Based on anisotropic Nash inequality

∫
|Dλ

xD
µ
v f |2 dx dv

≤ C

(∫
|Dλ′

x f |2 dx dv +
∫

|Dµ′

v f |2 dx dv
)1−θ (∫

f

)θ

θ =
1−

(
λ
λ′ +

µ
µ′

)

1 + n
2

(
1
λ′ +

1
µ′

) ∈ (0, 1)

λ = µ = 0, λ′ = µ′ = 1 −→ usual Nash inequality in R
2n







K

(∫
|∇m

x f |2 +
∫

|∇3m
v f |2 +

∫
f 2

)
≤ Em ≤ C

(
. . .

)

|Mm| ≤ C E1−δ
m

dEm
dt

≤ −K

∫
|∇3m+1

v f |2 + C Em

∫
|∇3m

v f |2 +
∫

f 2 ≤ C

(∫
|∇m

x f |2 +
∫

|∇3m+1
v f |2

)1−θ

dMm

dt
≤ −K

∫
|∇m

x f |2 + C

(∫
|∇3m

v f |2 +
∫

f 2

)







K

(∫
|∇m

x f |2 +
∫

|∇3m
v f |2 +

∫
f 2

)
≤ Em ≤ C

(
. . .

)

|Mm| ≤ C E1−δ
m

dEm
dt

≤ −K

∫
|∇3m+1

v f |2 + C Em

∫
|∇3m

v f |2 +
∫

f 2 ≤ C

(∫
|∇m

x f |2 +
∫

|∇3m+1
v f |2

)1−θ

dMm

dt
≤ −K

∫
|∇m

x f |2 + C

(∫
|∇3m

v f |2 +
∫

f 2

)

=⇒ Em(f) = O(t−1/κ), κ = min(δ, θ/(1− θ))



Regularization in Fisher information sense

F(t, ft) =

∫
f log f + a t

∫
f |∇v log f |2

+ 2b t2
∫

f〈∇v log f,∇x log f〉

+ c t3
∫

f |∇x log f |2

(adaptation of a trick by Hérau)

..... compute .... choose coefficients well =⇒ (d/dt)F ≤ 0

=⇒ ∫
ft|∇x,v log ft|2 dx dv ≤ (C t−3)

∫
f0 log f0 dx dv

Discovery: Computations almost similar for h2 or h log h!



∂th = A∗Ah =
∑

A∗
iAih

d

dt

∫
|Ch|2 dµ =− 2

∫
|CAh|2 dµ− 2

∫
〈[C,A∗]Ah,Ch〉 dµ

− 2

∫
〈CAh, [A,C]h〉 dµ

d

dt

∫
h |C log h|2 dµ =− 2

∫
h |CA log h|2 dµ

− 2

∫
h 〈[C,A∗]A log h,C log h〉 dµ

− 2

∫
h 〈CA log h, [A,C] log h〉 dµ

−2

∫
h
∑

ij

[Ai, Cj]
∗
(
(Ai log h) (Cj log h)

)
dµ

(Compare with Bakry–Émery) Proof is by brute force.



Conclusion

Convergence in L1

(a) |∇2V | ≤ C

(b) log Sobolev inequality for e−V dx (e.g. ∇2V ≥ κ In at ∞)

(c)
∫
f0(x, v) (1 + |v|2 + |x|2) dx dv < +∞

Then ft → f∞ in L1 (and in entropy) exponentially fast



Conclusion

Convergence in L1

(a) |∇2V | ≤ C

(b) log Sobolev inequality for e−V dx (e.g. ∇2V ≥ κ In at ∞)

(c)
∫
f0(x, v) (1 + |v|2 + |x|2) dx dv < +∞

Then ft → f∞ in L1 (and in entropy) exponentially fast

Compare: Convergence in L2

(a) |∇2V | ≤ C (1 + |∇V |)

(b) Poincaré inequality for e−V dx (e.g.
|∇V |2

2
−∆V −→

∞
∞)

(c) f0/f∞ ∈ L2(f∞)

Then ft/f∞ → 1 in L2(f∞) exponentially fast



Remark: Completely different approach to exponential

convergence in (weak) L1, by Hairer–Mattingly



Remark: Completely different approach to exponential

convergence in (weak) L1, by Hairer–Mattingly

What about nonlinear models?



Another framework: fully nonlinear equations

∂tf +Bf = Cf in a scale of Banach spaces (Xs)s≥0 that

are in interpolation; X0 is Hilbert

f is uniformly bounded in all Xs

B, C are Lipschitz Xs → Xs′ (loss of index allowed)

B is “conservative” and C is “dissipative”

f∞: stationary state

E : (Lyapunov) functional ≥ K ‖f − f∞‖2+ε

(Πj)1≤j≤J : nonlinear “projection” operators, twice

differentiable Xs → Xs′ , Πj ◦ Πk = Πmax(j,k)



Assumptions (simplified)
{
E(f)− E(Π1f) ≥ K ‖f − Π1f‖2+ε

K‖Π1f − f∞‖2+ε ≤ E(Π1f)− E(f∞) ≤ C‖Π1f − f∞‖2−ε

{
E ′(f) · (Bf) = 0

−E ′(f) · (Cf) ≥ K
[
E(f)− E(Π1f)

]1+ε

∀j, Πj(f∞) = f∞; C ◦ Πj = 0 ΠJ+1f = f∞

(H)
∥∥∥(Id−Πj)

′
Πjf

· (BΠjf)
∥∥∥
2

≥ Kε

∥∥(Πj −Πj+1)f
∥∥2+ε

=⇒ ‖f − f∞‖ = O(t−∞) (quantitative)



Application to the Boltzmann equation

In a nonaxisymmetric box: 3 projections:

Π1f = Mρ uT Π2f = Mρ u 〈T 〉 Π3f = Mρ 0 1 Π4f = f∞

For other boundary conditions, change the projectors.....



An unconditional nonlinear convergence result

∂f

∂t
+ v · ∇xf + F (t, x) · ∇vf = ∆vf +∇v · (fv)

F (t, x) = −
∫

∇W (x− y) f(t, y, w) dy dw

where x ∈ T
N , W ∈ C2(TN),

∫
W = 0,∫

f0(x, v) (1 + |v|2) dx dv < +∞

max |W | < 1 =⇒ unique equilibrium f∞



An unconditional nonlinear convergence result

∂f

∂t
+ v · ∇xf + F (t, x) · ∇vf = ∆vf +∇v · (fv)

F (t, x) = −
∫

∇W (x− y) f(t, y, w) dy dw

where x ∈ T
N , W ∈ C2(TN),

∫
W = 0,∫

f0(x, v) (1 + |v|2) dx dv < +∞

max |W | < 1 =⇒ unique equilibrium f∞

The general convergence theorem allows to prove

max |W | < 0.38 =⇒ ‖ft − f∞‖ = O(t−∞)



The Lyapunov functional for the fully nonlinear case

L(f) := E(f) +
J∑

j=1

aj

〈
(I − Πj)f, (I − Πj)

′
f · (Bf)

〉
L2

1 ≫ a1 ≫ a2 . . . ≫ aJ chosen recursively, depending on

the smoothness bounds and how close to equilibrium

Remark: In practice, L might be quite complicated!!



LBoltz(f) =

∫

f log f − a1

∫

(f−M
f
ρ u T )·

(

v · ∇xf +M
f
ρ u T

{[

∇u : D

ρT
+

∇ ·R
ρT

]

+
v − u√

T
·
[

−
(

N

2
+ 1

)

∇T√
T
−∇ ·D

ρ
√
T

]

+
∑

i<j

(

v − u√
T

)

i

(

v − u√
T

)

j

[

∂xj
ui+∂xi

uj

]

+
∑

i

(

vi − ui√
T

)2 [

∂xi
ui −

∇ · u
N

− ∇u : D

NρT
− ∇ ·R

NρT

]

+

∣

∣

∣

∣

v − u√
T

∣

∣

∣

∣

2 (
v − u√

T

)

· ∇T

2
√
T

}

)

− a2

∫

(f−M
f

ρ u 〈T 〉)·
(

v · ∇xf +M
f

ρ u 〈T 〉

{[

−∇ · u+

∫

∇u : D

〈T 〉ρ
+

∫

ρT∇ · u
〈T 〉ρ

]

+
v − u
√

〈T 〉ρ
·
[

− ∇T
√

〈T 〉ρ
−





T
√

〈T 〉ρ
−
√

〈T 〉ρ





∇ρ

ρ
− ∇ ·D

ρ
√

〈T 〉ρ

]

+
∑

i<j

(

v − u
√

〈T 〉ρ

)

i

(

v − u
√

〈T 〉ρ

)

j

[

∂xj
ui + ∂xi

uj

]

+
∑

i

(

vi − ui
√

〈T 〉ρ

)2 [

∂xi
ui −

1

N〈T 〉ρ

∫

∇u : (D + ρTIN )

]}





− a3

∫

(f −M
f
ρ 0 1) ·

(

v · ∇xf +M
f
ρ 0 1

{

− ∇ · (ρu)
ρ

+ v · ∇ρ

ρ

})





Further examples

The Landau–Lifschitz–Gilbert–Maxwell model

(by Capella, Loeschcke, Wachsmuth)





∂tm = J(h−m)

∂th = −∇ ∧∇ ∧ h− J(h−m)

∇ · h = −∇ ·m,

m : R3 → R
2 = linearized magnetization

h : R3 → R
3 = linearized magnetic field

J [x1, x2, x3] = [−x2, x1].

This is of the form A∗A+B and general theorem applies

after 3 commutators



2d incompressible flow

Model problem for the stability of Oseen vortices, studied

by Gallagher, Gallay, Nier:

H = L2(R;C); Lε = (−∂2
x + x2 + 1) + i

ε
f ,

f(x) =
(1− e−|x|2/4)

|x|2 (typically), ε → 0



2d incompressible flow

Model problem for the stability of Oseen vortices, studied

by Gallagher, Gallay, Nier:

H = L2(R;C); Lε = (−∂2
x + x2 + 1) + i

ε
f ,

f(x) =
(1− e−|x|2/4)

|x|2 (typically), ε → 0

Discovery: The antisymmetric part enhances the

dissipation by a factor ε−1/2

(or ε−2/(4+k) if f is Morse and decays like |x|−k)

How to prove this??



• Hard approach: localize the spectrum by microlocal

techniques and semiclassical asymptotics à la Hörmander,

Sjöstrand, Zworski, Helffer, Nier.... Get

Re σ(Lε) ≥ K ε−1/2



• Hard approach: localize the spectrum by microlocal

techniques and semiclassical asymptotics à la Hörmander,

Sjöstrand, Zworski, Helffer, Nier.... Get

Re σ(Lε) ≥ K ε−1/2

• Alternative approach: look at the evolution problem:

search µ s.t. ‖e−tL‖ ≤ C e−µt.

Set A = ∂x + x, B = (i/ε)f , then Lε = A∗A+B



• Hard approach: localize the spectrum by microlocal

techniques and semiclassical asymptotics à la Hörmander,

Sjöstrand, Zworski, Helffer, Nier.... Get

Re σ(Lε) ≥ K ε−1/2

• Alternative approach: look at the evolution problem:

search µ s.t. ‖e−tL‖ ≤ C e−µt.

Set A = ∂x + x, B = (i/ε)f , then Lε = A∗A+B

L =

∫

R

( |u|2
2

+
a

2

(
|∂xu|2+x2|u|2

)
+bRe (u i f ′∂xu)+

c

2
f ′2 |u|2

)

A∗A+ [A,B]∗[A,B] = L̃ε = −∂2
x + x2 + 1 +

1

ε2
f ′(x)2



• Hard approach: localize the spectrum by microlocal

techniques and semiclassical asymptotics à la Hörmander,

Sjöstrand, Zworski, Helffer, Nier.... Get

Re σ(Lε) ≥ K ε−1/2

• Alternative approach: look at the evolution problem:

search µ s.t. ‖e−tL‖ ≤ C e−µt.

Set A = ∂x + x, B = (i/ε)f , then Lε = A∗A+B

L =

∫

R

( |u|2
2

+
a

2

(
|∂xu|2+x2|u|2

)
+bRe (u i f ′∂xu)+

c

2
f ′2 |u|2

)

A∗A+ [A,B]∗[A,B] = L̃ε = −∂2
x + x2 + 1 +

1

ε2
f ′(x)2

....... ‖e−tLε‖ ≤ C exp(−ε−1/2t)



Other hypocoercivity results

Sometimes commutators are not well-behaved, neither

fractional powers

=⇒ Play with projections...

• Linearized Boltzmann in the torus: Mouhot–Neumann

Dolbeault–Mouhot–Schmeiser (2013)

∂f

∂t
+ Tf = Lf , Π = projkerL

L∗ = L, −〈Lf, f〉 ≥ λ‖(I − Π)f‖2

T ∗ = −T , ‖TΠf‖2 ≥ λ‖Πf‖2

ΠTΠ = 0 + some technical conditions (boundedness...)

A :=
(
1 + (TΠ)∗(TΠ)

)−1

(TΠ)∗

Then ‖f‖2 + ε 〈Af, f〉 ≃ ‖f‖2 is a contracting norm



Some mysteries?

Qualitative understanding of the role of confinement

∂th+ v · ∇xh = ∆vh− v · ∇vh

in L2(aTd
x × R

d
v; e

−|v|2/2 dv dx)

• Spectrum is real (!) — physical implications

• Bottom of spectrum is equal to λOU for a small

∂th+ v · ∇xh− ωx · ∇vh = ∆vh− v · ∇vh in

L2(Rd
x × R

d
v; e

−(ω|x|2+|v|2)/2 dv dx)

• Bottom of spectrum is
λ

2
+ im.part as ω → ∞

• “Best” choice is ω = 1/2



Large dimensions: Models of heat conduction




q̈j = −∇V (qj)−∇W (qj − qj−1) +∇W (qj+1 − qj)
dℓ

dt
= −γℓ+ δq0 − κℓ

dw

dt
q̈0 = −∇V (q0) +∇W (11 − q0) + ℓ

Spectral properties as N → ∞?

• Does the stationary µ satisfy a Poincaré inequality?

• Meaningful asymptotics? Better work in entropy?

• Estimates as N → ∞??

−→ For a related model with weak coupling,

Liverani–Olla prove the hydrodynamic limit toward

diffusion model using both hypoelliptic (sum of squares)

and hypocoercive (A∗A+B) methods.



Riemannian case

∂tf + ξf = ∆V f − v · ∇V f

Set in tangent or cotangent formalism

Use ∇V , ∇H in place of ∇v,∇x

• Regularization: L2, L1: same as in flat space

• Hypocoercivity in L2: ok

• Hypocoercivity in L1: ?? The problem is that

[dH , ξ] = O(|v|2)∇V cannot be easily controlled in

entropy estimates
∫

|v|2 |∇v log h|2 h dµ ≤

C

(∫
|∇v log h|2 h dµ+

∫
|∇2

v log h|2 h dµ
)

does NOT hold



Weakly diffusive Landau damping in low regularity?

∂f

∂t
+ v · ∇xf + F [f ] · ∇vf = ε QL(f, f)

= ε ∇v ·
{∫

R3

Π
(v−v∗)⊥

|v−v∗|

(
f(v∗)∇vf(v)− f(v)∇vf(v∗)

)
dv∗

}

• ε = log Λ/(2πΛ) ≃ 10−2 → 10−30 ≪ 1



Weakly diffusive Landau damping in low regularity?

∂f

∂t
+ v · ∇xf + F [f ] · ∇vf = ε QL(f, f)

= ε ∇v ·
{∫

R3

Π
(v−v∗)⊥

|v−v∗|

(
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}

• ε = log Λ/(2πΛ) ≃ 10−2 → 10−30 ≪ 1

• Expect: regularize in Gν , like O(exp(εt)−ν/(2−ν)) in v,

maybe O(exp(εν(εt)−3ν/(2−3ν))) in x

• Expect: homogenize at least as fast as VP (diffusion;

stability of homogeneity), i.e. O(exp−tν)

• Deduce: damping on time scale ε−ζ ≪ ε−1, while

entropy increase is O(ε1−ζ) ≪ 1



Weakly diffusive Landau damping in low regularity?

∂f

∂t
+ v · ∇xf + F [f ] · ∇vf = ε QL(f, f)

= ε ∇v ·
{∫

R3

Π
(v−v∗)⊥

|v−v∗|

(
f(v∗)∇vf(v)− f(v)∇vf(v∗)

)
dv∗

}

• ε = log Λ/(2πΛ) ≃ 10−2 → 10−30 ≪ 1

• Expect: regularize in Gν , like O(exp(εt)−ν/(2−ν)) in v,

maybe O(exp(εν(εt)−3ν/(2−3ν))) in x

• Expect: homogenize at least as fast as VP (diffusion;

stability of homogeneity), i.e. O(exp−tν)

• Deduce: damping on time scale ε−ζ ≪ ε−1, while

entropy increase is O(ε1−ζ) ≪ 1

• Heuristics: ζ ≃ 8/9... (1/6 without x-smoothness)




