On a canonical class of Green currents associated with the unit sections of abelian schemes

Orsay, Conference in honor of J.-M.Bismut, May 29th 2013

Preamble: the exponential function and the Siegel functions

A unit is an algebraic integer whose inverse is also an algebraic integer.
A cyclotomic unit is an algebraic integer of the form

$$
1-\exp \left(2 i \pi \frac{k}{m}\right)
$$

where $(k, n)=1$ and m is a composite number.
This is the prime example of a unit, which is not a root of unity. Such units are built from the torsion points of the torus \mathbb{G}_{m}.

Elliptic units

Elliptic units are built from the torsion points of an elliptic curve with potential good reduction over an algebraic number field.
Let $E=\mathbb{C} /[1, \tau]$ be such a curve.
Let z be a point of order m of E, where m is composite.
The complex number

$$
e^{-z \cdot \text { quasiperiod }(z) / 2} \sigma(z) \Delta(\tau)^{\frac{1}{12}} \quad(*)
$$

is a unit, called the elliptic unit attached to z.
The function $(*)$ on $E(\mathbb{C})$ is usually called a Siegel function.

The Néron-Tate height

Why do Siegel functions give rise to units ?
To explain why they do so, the best way is to relate them to height functions.

Recall that the Néron-Tate height $\mathrm{NT}(\cdot)$ is the only height function associated with the origin of an elliptic curve, such that

$$
m^{2} \cdot \mathrm{NT}(P)=\mathrm{NT}(m \cdot P)
$$

for all $m \geqslant 2$.

Formula for the Néron-Tate height

Let $E=\mathbb{C} /[1, \tau]$ be an elliptic curve with a model \mathcal{E}

$$
y^{2}=x^{3}+A x+B
$$

over \mathcal{O}_{K} (K a number field).
Let $P:=(x, y) \in K^{2}$ be a point on E, which reduces into the smooth locus of \mathcal{E}.

Theorem (Tate)

$$
\begin{aligned}
\mathrm{NT}(P) & =\frac{1}{[K: \mathbb{Q}]}\left[\log \left|N_{K / \mathbb{Q}}\left(16\left(4 A^{3}+27 B^{2}\right)\right)\right|\right. \\
& \left.\left.-\frac{1}{2} \log \right\rvert\, N_{K / \mathbb{Q}}(\text { Denominator }(x)) \right\rvert\, \\
& \left.-\sum_{v \text { ar. }} n_{v} \cdot \log \left|e^{-z\left(P_{v}\right) \text { quasiperiod }\left(z\left(P_{v}\right)\right) / 2} \sigma\left(z\left(P_{v}\right)\right) \Delta\left(\tau_{v}\right)^{\frac{1}{12}}\right|\right]
\end{aligned}
$$

D. Rössler (joint with V. Maillot)

On a canonical class of Green currents associated with the unit

Mazur and Tate's refinement of the Néron-Tate height I

One cannot prove that Siegel functions give rise to units using the Néron-Tate height alone, because the latter involves an averaging.

Mazur and Tate constructed a refinement $\mathrm{MT}(\cdot)$ of the Néron-Tate height NT(•).
The refined height $\mathrm{MT}(\cdot)$ has values in the group

$$
\widehat{\mathrm{Cl}}\left(\mathcal{O}_{K}\right):=\left(\underset{v \text { n. -ar. }}{\bigoplus} \mathbb{Z} \bigoplus_{v \text { ar. }} \mathbb{R}\right) /\left\{\oplus_{v \text { n. }-\operatorname{ar} .} v(k) \oplus_{v \text { ar. }} \log |k|_{v}^{-2}, \quad k \in K^{*}\right\}
$$

which is a quotient of the idele class-group of K.

Mazur and Tate's refinement of the Néron-Tate height II

- The group $\widehat{\mathrm{Cl}}\left(\mathcal{O}_{K}\right)$ fits in a diagram

$$
\begin{gathered}
\mathcal{O}_{K}^{*} \xrightarrow{\text { reg }} \mathbb{R}^{\# \text { (ar. v. }) \longrightarrow} \longrightarrow \widehat{\mathrm{Cl}}\left(\mathcal{O}_{K}\right) \longrightarrow \mathrm{Cl}\left(\mathcal{O}_{K}\right) \longrightarrow 0 \\
\downarrow \\
\widehat{\mathrm{Cl}}(\mathbb{Z})
\end{gathered}
$$

where the first row is exact and the map reg is $(-2) \times$ the Dirichlet regulator.

- $\mathrm{MT}(P)$ is mapped to $[K: \mathbb{Q}] \cdot \mathrm{NT}(P)$ by the map

$$
\widehat{\mathrm{Cl}}\left(\mathcal{O}_{K}\right) \rightarrow \widehat{\mathrm{Cl}}(\mathbb{Z})=\mathbb{R}
$$

Formula for the refined height

Just as the Néron-Tate height, the refined height $\mathrm{MT}(\cdot)$ has the property that

$$
\mathrm{MT}(m \cdot P)=m^{2} \cdot \operatorname{MT}(P)
$$

Theorem (Mazur-Tate)
The refined height $\mathrm{MT}(P)$ of P is given by the formula

$$
\bigoplus_{v \text { n.-ar. }}\left(v\left(16\left(4 A^{3}+27 B^{2}\right)\right)-\frac{1}{2} v(\text { Denominator }(x(P)))\right)
$$

$$
\bigoplus-\log \left|e^{-z\left(P_{v}\right) \text { quasiperiod }\left(z\left(P_{v}\right) / 2\right)} \sigma\left(z\left(P_{v}\right)\right) \Delta\left(\tau_{v}\right)^{\frac{1}{12}}\right|^{2} .
$$

v ar.

Interpretation of the formula of Mazur and Tate

- The term $v\left(16\left(4 A^{3}+27 B^{2}\right)\right)$ comes from the bad reduction of E.
- The term $-\frac{1}{2} v($ Denominator $(x(P)))$ is the intersection multiplicity of the section of \mathcal{E} defined by P with the unit section of \mathcal{E}.
- The term $-\log \left|e^{-z\left(P_{v}\right) \text { quasiperiod }\left(z\left(P_{v}\right) / 2\right)} \sigma\left(z\left(P_{v}\right)\right) \Delta\left(\tau_{v}\right)^{\frac{1}{12}}\right|^{2}$ is an archimedean intersection multiplicity and is best understood via Arakelov theory.

The refined height and elliptic units

Corollary (of the formula of Mazur and Tate)

Let P be an m-torsion point on an elliptic curve over K with good reduction everywhere. Suppose that P is defined over K. If m is composite, then

$$
m^{2} \cdot \bigoplus_{v \text { ar. }}-\log \left|e^{-z\left(P_{v}\right) \text { quasiperiod }\left(z\left(P_{v}\right)\right) / 2} \sigma\left(z\left(P_{v}\right)\right) \Delta\left(\tau_{v}\right)^{\frac{1}{12}}\right|^{2}
$$

lies in the image of the Dirichlet regulator map.
Hence

$$
\left|e^{-z\left(P_{v}\right) \text { quasiperiod }\left(z\left(P_{v}\right)\right) / 2} \sigma\left(z\left(P_{v}\right)\right) \Delta\left(\tau_{v}\right)^{\frac{1}{12}}\right|
$$

is a unit for each archimedean v.

Questions: do Siegel functions have analogs on any abelian scheme?

How should the group $\widehat{\mathrm{Cl}}(\cdot)$ be defined on a higher-dimensional scheme?

Is there a natural analog of $\mathrm{MT}(\cdot)$ on any abelian scheme ?
Can one generalize the formula of Mazur and Tate to any abelian scheme?

We shall propose answers to these questions, which are based on Arakelov theory.

Generalization of the group $\widehat{\mathrm{Cl}}\left(\mathcal{O}_{K}\right)$, I

Let X be a regular scheme, which is of finite type over $\mathcal{O}_{K}(K$ a number field).

Gillet and Soulé defined the arithmetic Chow group $\widehat{\mathrm{CH}}^{*}(X)$. If $X=\operatorname{Spec} \mathcal{O}_{\mathrm{K}}$, then $\widehat{\mathrm{CH}}^{1}(X)=\widehat{\mathrm{Cl}}\left(\mathcal{O}_{K}\right)$.

There is for any $g \geqslant 0$ an exact sequence

analogous to the sequence of Mazur and Tate for $\widehat{\mathrm{Cl}}\left(\mathcal{O}_{K}\right)$.

Generalization of the group $\widehat{\mathrm{Cl}}\left(\mathcal{O}_{K}\right)$, II

The arithmetic Chow group $\widehat{\mathrm{CH}}^{*}(X)$ is an extension of the ordinary Chow group, which includes differential geometric data on $X(\mathbb{C})$.
It is generated by pairs $\left(Z, g_{z}\right)$, where Z is a cycle on X and g_{Z} is a Green current for Z. By definition, such a g_{Z} has the property that

$$
\frac{i}{2 \pi} \partial \bar{\partial} g_{z}+\underbrace{\delta_{Z(\mathbb{C})}}_{\text {Dirac current }}=\text { smooth current. }
$$

For any hermitian vector bundle $\bar{E}:=\left(E, h_{E(\mathbb{C})}\right)$ on X, there are Chern classes $\hat{\mathrm{c}}^{i}(\bar{E}) \in \widehat{\mathrm{CH}}^{i}(X)$.

The arithmetic Chow groups are covariant for projective and generically smooth morphisms and contravariant for quasi-projective morphisms.

Higher analogs of the Siegel functions I

Let S be a regular scheme, which is of finite type over \mathcal{O}_{K}.
Let $\pi: \mathcal{A} \rightarrow S$ be an abelian scheme over S of relative dimension g.

We shall write \mathcal{A}^{\vee} for the dual abelian scheme and $\mathcal{P} / \mathcal{A} \times s \mathcal{A}^{\vee}$ for the Poincaré bundle.

This bundle carries a natural hermitian metric and we write $\overline{\mathcal{P}}$ for the corresponding hermitian bundle.

We write $S_{0}\left(\right.$ resp. $\left.S_{0}^{\vee}\right)$ for the unit section of $\mathcal{A}\left(\right.$ resp. $\left.\mathcal{A}^{\vee}\right)$.

Higher analogs of the Siegel functions II

Theorem (existence and unicity of the current $\mathfrak{g}_{\mathcal{A}}$)
There is a real and conjugation invariant current $\mathfrak{g}_{\mathcal{A}}$ of type ($g-1, g-1$) on $\mathcal{A}^{\vee}(\mathbb{C})$ with the following properties.
(a) The current $\mathfrak{g}_{\mathcal{A}}$ is a Green current for the unit section S_{0}^{\vee} of \mathcal{A}^{\vee}.
(b) We have $\left(S_{0}^{\vee}, \mathfrak{g}_{\mathcal{A}}\right)=(-1)^{g} p_{\mathcal{A} \vee, *}(\widehat{\operatorname{ch}}(\overline{\mathcal{P}}))^{(g)}$ in $\widehat{\mathrm{CH}}^{g}\left(\mathcal{A}^{\vee}\right)_{\mathbb{Q}}$.
(c) The identity $\mathfrak{g}_{\mathcal{A}}=[n]_{* \mathfrak{g}_{\mathcal{A}}}$ holds for all $n \geqslant 2$.

The current $\mathfrak{g}_{\mathcal{A}^{\vee}}$ is uniquely determined by these properties, up to currents of type $\partial(\cdot)+\bar{\partial}(\cdot)$.

Back to $g=1$

Let $\sigma: S \rightarrow \mathcal{A}$ be a section. We have a pull-back map

$$
\sigma^{*}: \widehat{\mathrm{CH}}^{*}(\mathcal{A}) \rightarrow \widehat{\mathrm{CH}}^{*}(S)
$$

It can be shown that if $g=1$, then

$$
\operatorname{MT}(\sigma)=(-1)^{g} \sigma^{*}\left(p_{\mathcal{A}^{\vee}, *}(\widehat{\operatorname{ch}}(\overline{\mathcal{P}}))^{(g)}\right)
$$

Furthermore, if $g=1$ then

$$
\mathfrak{g}_{\mathcal{A}}=-\log \left|e^{-z \cdot q u a s i p e r i o d(z) / 2} \sigma(z) \Delta(\tau)^{\frac{1}{12}}\right|^{2}
$$

D. Rössler (joint with V. Maillot)

Algebraic properties of $\mathfrak{g}_{\mathcal{A}}$

By property (b) in the theorem, for all $n, g \geqslant 1$, we have

$$
[n]^{*}\left(p_{\mathcal{A}^{\vee}, *}(\widehat{\operatorname{ch}}(\overline{\mathcal{P}}))^{(g)}\right)=p_{\mathcal{A}^{\vee}, *}\left(\widehat{\operatorname{ch}}\left(\overline{\mathcal{P}}^{\otimes n}\right)\right)=n^{2 g} \cdot p_{\mathcal{A}^{\vee}, *}(\widehat{\operatorname{ch}}(\overline{\mathcal{P}}))^{(g)}
$$

and thus for any section $\sigma: S \rightarrow \mathcal{A}^{\vee}$ we have

$$
\left.\left.([n] \cdot \sigma)^{*}(\widehat{\operatorname{ch}}(\overline{\mathcal{P}}))^{(g)}\right)=n^{2 g} \cdot \sigma^{*}(\widehat{\operatorname{ch}}(\overline{\mathcal{P}}))^{(g)}\right) .
$$

In particular, if σ is a torsion section and $\sigma(S) \cap S_{0}^{\vee}=\emptyset$ we have

$$
\sigma^{*}\left(\mathfrak{g}_{\mathcal{A}}\right) \in \operatorname{image}\left(\operatorname{cyc}_{\mathrm{an}}\left(\mathrm{CH}^{g, g-1}(S)\right)_{\mathbb{Q}} .\right.
$$

This generalizes the theorem of Mazur and Tate and its Corollary.

Further properties of the current $\mathfrak{g}_{\mathcal{A}}, I$

Let \mathcal{L} be a rigidified symmetric relatively ample line bundle on \mathcal{A}.
Endow \mathcal{L} with the unique hermitian metric $h_{\mathcal{L}}$, which is compatible with the rigidification and whose curvature form is translation invariant on the fibres of $\mathcal{A}(\mathbb{C}) \rightarrow S(\mathbb{C})$.

Let $\overline{\mathcal{L}}:=\left(\mathcal{L}, h_{\mathcal{L}}\right)$ be the resulting hermitian line bundle.
Let $\phi_{\mathcal{L}}: \mathcal{A} \rightarrow \mathcal{A}^{\vee}$ be the polarisation morphism induced by \mathcal{L}.

Further properties of the current $\mathfrak{g}_{\mathcal{A}}$, II

1. (distributivity) Let $\iota: \mathcal{A} \rightarrow \mathcal{B}$ be an isogeny of abelian schemes over S. Then the identity $\iota_{*}^{\vee}\left(\mathfrak{g}_{\mathcal{B}}\right)=\mathfrak{g}_{\mathcal{A}}$ holds.
2. ("formula of Beauville and Bloch") The equalities

$$
\left(S_{0}^{\vee}, \mathfrak{g}_{\mathcal{A}}\right)=(-1)^{g} p_{\mathcal{A}^{\vee}, *}(\widehat{\operatorname{ch}}(\overline{\mathcal{P}}))=\frac{1}{g!\sqrt{\operatorname{deg}\left(\phi_{\mathcal{L}}\right)}} \phi_{\mathcal{L}, *}\left(\widehat{c}_{1}(\overline{\mathcal{L}})^{g}\right)
$$

are verified in $\widehat{\mathrm{CH}}^{g}\left(\mathcal{A}^{\vee}\right)_{\mathbb{Q}}$.
3. If S is projective over \mathcal{O}_{K}, then the condition

$$
\left(S_{0}^{\vee}, \mathfrak{g}_{\mathcal{A}}\right)=(-1)^{g} p_{\mathcal{A}^{\vee}, *}(\widehat{\operatorname{ch}}(\overline{\mathcal{P}}))^{(g)}
$$

(ie (b) in the last theorem) can be replaced by the weaker

$$
\frac{i}{2 \pi} \partial \bar{\partial} \mathfrak{g}_{\mathcal{A}}+\delta_{S_{0}^{\vee}(\mathbb{C})}=(-1)^{g} p_{\mathcal{A}^{\vee}, *}(\operatorname{ch}(\overline{\mathcal{P}}))^{(g)}
$$

Spectral interpretation of the current $\mathfrak{g}_{\mathcal{A}}$, I

Part of the current $\mathfrak{g}_{\mathcal{A}} \vee$ can be interpreted as the Bismut-Köhler higher analytic torsion form of the Poincaré bundle.

Let λ be a (1,1)-form on $\mathcal{A}(\mathbb{C})$ defining a Kähler fibration structure on the fibration $\mathcal{A}(\mathbb{C}) \rightarrow S(\mathbb{C})$.

We suppose that λ is translation invariant on the fibres of the map $\mathcal{A}(\mathbb{C}) \rightarrow S(\mathbb{C})$ as well as conjugation invariant.

We shall write

$$
T\left(\lambda, \overline{\mathcal{P}}^{0}\right) \in \widetilde{A}\left(\mathcal{A}^{\vee} \backslash S_{0}^{\vee}\right):=\bigoplus_{p \geqslant 0} \widetilde{A}^{p, p}\left(\mathcal{A}^{\vee} \backslash S_{0}^{\vee}\right)
$$

for the Bismut-Köhler higher analytic torsion form of $\overline{\mathcal{P}}$ restricted to the fibration

$$
\mathcal{A}(\mathbb{C}) \times{ }_{S(\mathbb{C})}\left(\mathcal{A}^{\vee}(\mathbb{C}) \backslash S_{0}^{\vee}(\mathbb{C})\right) \longrightarrow \mathcal{A}^{\vee}(\mathbb{C}) \backslash S_{0}^{\vee}(\mathbb{C})
$$

D. Rössler (joint with V. Maillot)

Spectral interpretation of the current $\mathfrak{g}_{\mathcal{A}}$, II

Let $\bar{\Omega}$ be the sheaf of differentials of \mathcal{A}, endowed with the metric induced by the Kähler fibration. Let $\epsilon: S \rightarrow \mathcal{A}$ be the unit section.

Theorem
The equality

$$
\left.\mathfrak{g}_{\mathcal{A}}\right|_{\mathcal{A}^{\vee}(\mathbb{C}) \backslash S_{0}^{\vee}(\mathbb{C})}=\operatorname{Td}\left(\epsilon^{*} \bar{\Omega}\right) \cdot T\left(\lambda, \overline{\mathcal{P}}^{0}\right)
$$

holds on $\mathcal{A}^{\vee} \backslash S_{0}^{\vee}$.
In particular $T\left(\lambda, \overline{\mathcal{P}}^{0}\right)^{(g-1)}$ does not depend on λ.
This theorem specialises to the second Kronecker limit formula, when $g=1$.

Fields of definition

Let

$$
N_{2 g}:=2 \cdot \text { denominator }\left[(-1)^{g+1} B_{2 g} /(2 g)\right],
$$

where $B_{2 g}$ is the $2 g$-th Bernoulli number. Recall that

$$
\sum_{t \geqslant 1} B_{t} \frac{u^{t}}{t!}:=\frac{u}{\exp (u)-1}
$$

Theorem

Suppose that $\sigma: S \rightarrow \mathcal{A}^{\vee}$ is an n-torsion section, such that $\sigma(S) \cap S_{0}^{\vee}=\emptyset$. Then

$$
2 g \cdot n \cdot N_{2 g} \cdot \sigma^{*} T\left(\lambda, \overline{\mathcal{P}}^{0}\right) \in \text { image }\left(\operatorname{reg}_{\mathrm{an}}\left(K_{1}(S)\right)\right)
$$

In particular, $48 \cdot \sigma^{*} T\left(\lambda, \overline{\mathcal{P}}^{0}\right) \in \operatorname{image}\left(\operatorname{reg}_{\text {Dirichlet }}\left(\mathcal{O}_{S}^{*}\right)\right)$ if $g=1$.
D. Rössler (joint with V. Maillot)

On a canonical class of Green currents associated with the unit

Further topics

- There should be a connection between $\mathfrak{g}_{\mathcal{A}^{\vee}}$ and the Hodge realisation of the abelian polylogarithm (work in progress by G. Kings and D. R.).
- If $\operatorname{dim}(S) \leqslant 1$ then $\mathfrak{g}_{\mathcal{A}}$ is the canonical harmonic Green current associated with S_{0}^{\vee} and the above results (aside from the spectral interpretation) are contained in the work of K. Künnemann.

