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On a canonical class of Green currents associated
with the unit sections of abelian schemes

Orsay, Conference in honor of J.-M.Bismut, May 29th 2013
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Preamble: the exponential function and the Siegel
functions

A unit is an algebraic integer whose inverse is also an algebraic
integer.

A cyclotomic unit is an algebraic integer of the form

1− exp(2iπ k
m )

where (k , n) = 1 and m is a composite number.

This is the prime example of a unit, which is not a root of unity.
Such units are built from the torsion points of the torus Gm.
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Elliptic units

Elliptic units are built from the torsion points of an elliptic curve
with potential good reduction over an algebraic number field.

Let E = C/[1, τ ] be such a curve.

Let z be a point of order m of E , where m is composite.

The complex number

e−z·quasiperiod(z)/2σ(z)∆(τ)
1
12 (∗)

is a unit, called the elliptic unit attached to z .

The function (∗) on E (C) is usually called a Siegel function.
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The Néron-Tate height

Why do Siegel functions give rise to units ?

To explain why they do so, the best way is to relate them to height
functions.

Recall that the Néron-Tate height NT(·) is the only height
function associated with the origin of an elliptic curve, such that

m2 ·NT(P) = NT(m · P)

for all m > 2.
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Formula for the Néron-Tate height

Let E = C/[1, τ ] be an elliptic curve with a model E
y2 = x3 + Ax + B

over OK (K a number field).

Let P := (x , y) ∈ K 2 be a point on E , which reduces into the
smooth locus of E .

Theorem (Tate)

NT(P) =
1

[K : Q]

[
log |NK/Q(16(4A3 + 27B2))|

− 1

2
log |NK/Q(Denominator(x))|

−
∑
v ar.

nv · log |e−z(Pv )quasiperiod(z(Pv ))/2σ(z(Pv ))∆(τv )
1
12 |
]
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Mazur and Tate’s refinement of the Néron-Tate height I

One cannot prove that Siegel functions give rise to units using the
Néron-Tate height alone, because the latter involves an averaging.

Mazur and Tate constructed a refinement MT(·) of the
Néron-Tate height NT(·).

The refined height MT(·) has values in the group

Ĉl(OK ) :=
( ⊕
v n.−ar.

Z
⊕
v ar.

R
)
/
{
⊕v n.−ar.v(k)⊕v ar.log |k|−2v , k ∈ K ∗

}
which is a quotient of the idele class-group of K .
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Mazur and Tate’s refinement of the Néron-Tate height II

• The group Ĉl(OK ) fits in a diagram

O∗K
reg // R#(ar. v.) // Ĉl(OK )

��

// Cl(OK ) // 0

Ĉl(Z)

where the first row is exact and the map reg is (−2) × the
Dirichlet regulator.

• MT(P) is mapped to [K : Q] ·NT(P) by the map

Ĉl(OK )→ Ĉl(Z) = R.
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Formula for the refined height

Just as the Néron-Tate height, the refined height MT(·) has the
property that

MT(m · P) = m2 ·MT(P).

Theorem (Mazur-Tate)

The refined height MT(P) of P is given by the formula⊕
v n.−ar.

(
v(16(4A3 + 27B2))− 1

2
v(Denominator(x(P)))

)
⊕
v ar.

− log |e−z(Pv )quasiperiod(z(Pv )/2)σ(z(Pv ))∆(τv )
1
12 |2.

D. Rössler (joint with V. Maillot) On a canonical class of Green currents associated with the unit sections of abelian schemes
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Interpretation of the formula of Mazur and Tate

• The term v(16(4A3 + 27B2)) comes from the bad reduction
of E .

• The term −1
2v(Denominator(x(P))) is the intersection

multiplicity of the section of E defined by P with the unit
section of E .

• The term − log |e−z(Pv )quasiperiod(z(Pv )/2)σ(z(Pv ))∆(τv )
1
12 |2 is

an archimedean intersection multiplicity and is best
understood via Arakelov theory.
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The refined height and elliptic units

Corollary (of the formula of Mazur and Tate)

Let P be an m-torsion point on an elliptic curve over K with good
reduction everywhere. Suppose that P is defined over K . If m is
composite, then

m2 ·
⊕
v ar.

− log |e−z(Pv )quasiperiod(z(Pv ))/2σ(z(Pv ))∆(τv )
1
12 |2

lies in the image of the Dirichlet regulator map.

Hence
|e−z(Pv )quasiperiod(z(Pv ))/2σ(z(Pv ))∆(τv )

1
12 |

is a unit for each archimedean v .
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Questions: do Siegel functions have analogs on any abelian
scheme ?

How should the group Ĉl(·) be defined on a higher-dimensional
scheme ?

Is there a natural analog of MT(·) on any abelian scheme ?

Can one generalize the formula of Mazur and Tate to any abelian
scheme ?

We shall propose answers to these questions, which are based on
Arakelov theory.

D. Rössler (joint with V. Maillot) On a canonical class of Green currents associated with the unit sections of abelian schemes
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Generalization of the group Ĉl(OK ), I

Let X be a regular scheme, which is of finite type over OK (K a
number field).

Gillet and Soulé defined the arithmetic Chow group ĈH
∗
(X ).

If X = Spec OK, then ĈH
1
(X ) = Ĉl(OK ).

There is for any g > 0 an exact sequence

CHg ,g−1(X )︸ ︷︷ ︸
motivic coh. group

cycan−−−→ Ãg−1,g−1(XR)︸ ︷︷ ︸
space of diff. forms

a→ ĈH
g

(X )→ CHg (X )︸ ︷︷ ︸
Chow group

→ 0

analogous to the sequence of Mazur and Tate for Ĉl(OK ).
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Generalization of the group Ĉl(OK ), II

The arithmetic Chow group ĈH
∗
(X ) is an extension of the ordinary

Chow group, which includes differential geometric data on X (C).

It is generated by pairs (Z , gZ ), where Z is a cycle on X and gZ is
a Green current for Z . By definition, such a gZ has the property
that

i

2π
∂∂̄gZ + δZ(C)︸ ︷︷ ︸

Dirac current

= smooth current.

For any hermitian vector bundle Ē := (E , hE(C)) on X , there are

Chern classes ĉi (Ē ) ∈ ĈH
i
(X ).

The arithmetic Chow groups are covariant for projective and
generically smooth morphisms and contravariant for
quasi-projective morphisms.
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Higher analogs of the Siegel functions I

Let S be a regular scheme, which is of finite type over OK .

Let π : A → S be an abelian scheme over S of relative
dimension g .

We shall write A∨ for the dual abelian scheme and P/A×S A∨ for
the Poincaré bundle.

This bundle carries a natural hermitian metric and we write P̄ for
the corresponding hermitian bundle.

We write S0 (resp. S∨0 ) for the unit section of A (resp. A∨).
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Higher analogs of the Siegel functions II

Theorem (existence and unicity of the current gA)

There is a real and conjugation invariant current gA of type
(g − 1, g − 1) on A∨(C) with the following properties.

(a) The current gA is a Green current for the unit section S∨0
of A∨.

(b) We have (S∨0 , gA) = (−1)gpA∨,∗(ĉh(P))(g) in ĈH
g

(A∨)Q.

(c) The identity gA = [n]∗gA holds for all n > 2.

The current gA∨ is uniquely determined by these properties, up to
currents of type ∂(·) + ∂̄(·).
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Back to g = 1

Let σ : S → A be a section. We have a pull-back map

σ∗ : ĈH
∗
(A)→ ĈH

∗
(S).

It can be shown that if g = 1, then

MT(σ) = (−1)gσ∗(pA∨,∗(ĉh(P))(g)).

Furthermore, if g = 1 then

gA = − log |e−z·quasiperiod(z)/2σ(z)∆(τ)
1
12 |2.
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Algebraic properties of gA

By property (b) in the theorem, for all n, g > 1, we have

[n]∗(pA∨,∗(ĉh(P))(g)) = pA∨,∗(ĉh(P⊗n)) = n2g · pA∨,∗(ĉh(P))(g)

and thus for any section σ : S → A∨ we have

([n] · σ)∗(ĉh(P))(g)) = n2g · σ∗(ĉh(P))(g)).

In particular, if σ is a torsion section and σ(S) ∩ S∨0 = ∅ we have

σ∗(gA) ∈ image(cycan(CHg ,g−1(S))Q.

This generalizes the theorem of Mazur and Tate and its Corollary.
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Further properties of the current gA, I

Let L be a rigidified symmetric relatively ample line bundle on A.

Endow L with the unique hermitian metric hL, which is compatible
with the rigidification and whose curvature form is translation
invariant on the fibres of A(C)→ S(C).

Let L := (L, hL) be the resulting hermitian line bundle.

Let φL : A → A∨ be the polarisation morphism induced by L.
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Further properties of the current gA, II

1. (distributivity) Let ι : A → B be an isogeny of abelian
schemes over S . Then the identity ι∨∗ (gB) = gA holds.

2. (”formula of Beauville and Bloch”) The equalities

(S∨0 , gA) = (−1)gpA∨,∗(ĉh(P)) =
1

g !
√

deg(φL)
φL,∗(ĉ1(L)g )

are verified in ĈH
g

(A∨)Q.

3. If S is projective over OK , then the condition

(S∨0 , gA) = (−1)gpA∨,∗(ĉh(P))(g)

(ie (b) in the last theorem) can be replaced by the weaker

i

2π
∂∂̄gA + δS∨

0 (C) = (−1)gpA∨,∗(ch(P))(g).
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Spectral interpretation of the current gA, I

Part of the current gA∨ can be interpreted as the Bismut-Köhler
higher analytic torsion form of the Poincaré bundle.

Let λ be a (1, 1)-form on A(C) defining a Kähler fibration
structure on the fibration A(C)→ S(C).

We suppose that λ is translation invariant on the fibres of the map
A(C)→ S(C) as well as conjugation invariant.

We shall write

T (λ,P0
) ∈ Ã(A∨\S∨0 ) :=

⊕
p>0

Ãp,p(A∨\S∨0 )

for the Bismut-Köhler higher analytic torsion form of P restricted
to the fibration

A(C)×S(C) (A∨(C)\S∨0 (C)) −→ A∨(C)\S∨0 (C).
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Spectral interpretation of the current gA, II

Let Ω̄ be the sheaf of differentials of A, endowed with the metric
induced by the Kähler fibration. Let ε : S → A be the unit section.

Theorem
The equality

gA|A∨(C)\S∨
0 (C) = Td(ε∗Ω) · T (λ,P0

)

holds on A∨\S∨0 .

In particular T (λ,P0
)(g−1) does not depend on λ.

This theorem specialises to the second Kronecker limit formula,
when g = 1.
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Fields of definition

Let
N2g := 2 · denominator [(−1)g+1B2g/(2g)],

where B2g is the 2g -th Bernoulli number. Recall that

∑
t>1

Bt
ut

t!
:=

u

exp(u)− 1
.

Theorem
Suppose that σ : S → A∨ is an n-torsion section, such that
σ(S) ∩ S∨0 = ∅. Then

2g · n · N2g · σ∗T (λ,P0
) ∈ image(regan(K1(S))).

In particular, 48 · σ∗T (λ,P0
) ∈ image(regDirichlet(O∗S)) if g = 1.
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Further topics

• There should be a connection between gA∨ and the Hodge
realisation of the abelian polylogarithm (work in progress by
G. Kings and D. R.).

• If dim(S) 6 1 then gA is the canonical harmonic Green
current associated with S∨0 and the above results (aside from
the spectral interpretation) are contained in the work of K.
Künnemann.
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