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Ultimate aim

I We would really like to study the Dirac-Ramond operator on
the loop space of a string manifold.

I This is defined by (formal) analogy with the spin Dirac
operator.

I Ultimately one would like to obtain Witten’s genus (in elliptic
cohomology) via an appropriate index theorem.

I The basic principle (open to refutation) is that it is easier to
work on the loop space rather than on the manifold.

I The loop space is infinite-dimensional but then so is the string
structure.

I In the loop setting fusion conditions are important – the
objects are like holonomy.



Main result

I The first problem is to define the Dirac-Ramond operator; this
involves the differential geometry of the loop space.

I The first part of THAT problem is to establish

Fusive spin structures on loop space (‘loop-spin structures’)
OO

��
String structures on manifold

which is what I will discuss here.

I At the end I will indicate how we hope to proceed further and
at least define the Dirac-Ramond operator.



Whitehead tower for O(n)
I I will take n ≥ 5 throughout, to avoid quibbling.
I For a (Lie) group, Whitehead showed the existence of

successive topological groups (well-defined only up to
homotopy) killing the lowest remaining homotopy group.

I For O(n) :

Z2

��

K (Z, 2)

��

. . .

O(n) SO(n)oo Spin(n)oooo String(n)oooo . . .oooo

Π0 = Z2 Π1 = Z2 Π3 = Z Π7 = Z . . .

I The first three groups are (realized as) standard Lie groups.
I The String group cannot be, but there are recent

constructions of models as an infinite-dimensional Lie group
which can be refined to a Lie 2-group (Nikolaus and Waldorf).



Refinement of the frame bundle
I A choice of Riemann metric on a finite dimensional, compact,

connected manifold M reduces the structure group of the
tangent bundle to O(n), with orthonormal frame bundle FO.

I There are the successive principal bundle lifting problems:-

String(n)

��

FSt

��

∃ iff 0 = 1
2 p1 ∈ H4(M;Z) then H3(M;Z) torsor

Spin(n)

��

F

��

∃ iff 0 = w2 ∈ H2(M;Z2) then H1(M;Z2) torsor

SO(n)

��

FSO

��

∃ iff 0 = w1 ∈ H1(M;Z2) then Z2 torsor

O(n) FO

��
M.



Orientation and spin

I An orientation on M can be identified with a continuous
(hence smooth) function on the frame bundle

o : FO −→ Z2

which takes both values on each fibre.

I Once oriented, a spin structure on M can be identified with

F

��

Spin frame bundle

FSO Oriented frame bundle

as a Z2-bundle which restricts to each fibre to represent a
fixed generator of H1(Spin;Z2).

I The obstruction classes then arise from transgression.

I The spin-frame bundle is denote simply F since it appears
most often.



Spin Dirac (prototype for Dirac-Ramond)

I The Dirac operator is an important object on a spin manifold.

I The Spin representation, coming from the Clifford algebra,
induces the spinor bundle, S ; Z2-graded if n is even.

I The Dirac operator is given by the Levi-Civita connection and
the Clifford action of T ∗M on S :

ð = cl ◦∇S : C∞(M; S) −→ C∞(M; S)

ind(ð) = Â (n even).

I One consequence of the Atiyah-Singer index theorem is the
identification of the index of ð, with the Â genus of the
manifold, explaining the integrality of Â for a spin manifold.

I In odd dimensions the Spin Dirac operator has applications to
problems of the existence of metrics of constant curvature –
and many others besides.



Loop manifold
I The loop space of a manifold is the space of smooth maps

from the circle into M.

LM = C∞(U(1); M).

I This is a particularly nice Fréchet manifold, it is paracompact.
I LM has many Hilbert completions, in particular the energy

space LEM = H1(U(1); M).
I The tangent space to LM at a loop is naturally the space of

sections of the pulled-back tangent bundle

TλLM = C∞(U(1);λ∗TM), λ ∈ LM.

I If M is oriented this is associated to the corresponding loop
principal bundle

LSO LFSO

��
LM.



Spin and loop-orientation

I Since Π1(SO) = Z2, LSO has two components, the identity
component is naturally LSpin and one can ask whether LFSO

has a reduction to a principal L Spin bundle.

I In the 80’s Atiyah observed that the existence of such a
‘loop-orientation’, a continuous map

u : LFSO −→ Z2 (1)

taking both signs on each fibre, follows from the existence of
a spin structure on M

Spin structure (on M) =⇒ Loop-orientation on LM

I This can be understood as holonomy. The spin structure is a
Z2 bundle over FSO and its holonomy around a loop in FSO is
a map (1).

I The converse implication is in general false, although shown
by McLaughlin to be true if M is simply connected.



Fusion of paths

I The relationship between spin structures and loop-orientations
was clarified by Stolz and Teichner (2005) in terms of fusion.

I The path space IM = C∞([0, 2π]; M) is a fibre bundle over
the end-point evaluation maps

IM
ev(0),ev(2π) // M2

I The fibre product I [2]M is the space of pairs with the same
endpoints and there is a ‘fusion’ map

ψ : I [2]M −→ LEM

obtained by following the first path, then the reverse of the
second and reparameterizing to the circle – it is defined on
energy paths.



Fusive loop-orientations

I From the triple fibre product of paths there are three such
fusion maps defined from the (simplicial) projections

πij : I [3]M −→ I [2]M, ij = 12, 23, 13,

ψij = ψ ◦ πij : I [3]M −→ LEM.

I The holonomy of a Z2 bundle – such as F over FSO – satisfies
the fusion condition giving a fusive loop-orientation

ψ∗12u · ψ∗23u = ψ∗13u on I [3]FSO

since traversing a ‘there-and-back’ path does nothing.

I Stolz and Teichner show that there is a 1-1 correpondence

Spin structures on M ←→ Fusive loop-orientations on LM



Regression of holonomy

I The reverse, regression, map is worth understanding in this
simple setting.

I Take the path fibration with trivial Z2 factor thought of as a
bundle. A loop-orientation gives a map u : I [2]FSO −→ Z2

and hence a relation

IFSO × Z2 3 (λ, σ) ∼ (λ′, σ′) ∈ IFSO × Z2

⇐⇒ (λ, λ′) ∈ I [2]FSO, σ
′ = u(σ, σ′)σ.

I The fusion condition is precisely the requirement that this be
an equivalence relation, giving a Z2 bundle over F 2

SO as
quotient.

I This is actually a ‘simplicial’ bundle – really made from a
bundle over FSO as the tensor product of the bundle pulled
back to the two factors and inverted on one side. This is the
spin structure.



Fusive Čech cohomology
I There is a transgression map to the loop space in cohomology

Hk(U(1)× LM;Z)∫
U(1) ��

Hk(M;Z)
ev∗oo

Tguu
Hk−1(LM;Z)

I In general this map is neither injective nor surjective but by
adding fusion conditions it can be ‘corrected’ to an
isomorphism.

Theorem (Kottke-M.)

Fusive Čech cohomology, with values in U(1), can be defined over
LM giving a regression isomorphism and commutative diagram for
each k ≥ 1

Hk+1(M;Z)

Tg ((

Hk
fus(LM)

Rg

'
oo

��
Hk(LM;Z)



String structures

I Back to the question of string structures assuming M is spin.
So we are looking for covers of F by a principal bundle with
structure group String .

I Redden showed (in the topological category)

String structures/Compatible equivalence of principal bundles
OO

��
C(F ) = {α ∈ H3(F ;Z);α

∣∣
fib(F )

= β}, H3(Spin;Z) = Z · β
(2)

I By a transgression argument

C(F ) 6= ∅ ⇐⇒ 0 =
1

2
p1 ∈ H4(M;Z)

where 1
2 p1 is the first spin-Pontryagin class.



Central extension of L Spin
I The loop group of Spin has central extensions

U(1) −→ EL Spin −→ L Spin .

I Each corresponds to a circle bundle over LSpin which was
shown by Waldorf to have the fusion property

ψ∗12E ⊗ ψ∗23E ' ψ∗13E over I [3] Spin (3)

with a corresponding associativity condition over I [4] Spin .
I We want the basic extension associated to the class in

H2
fus(Spin) which regresses to a generator of H3(Spin;Z) = Z.

I For the pointed groups this gives part of the Whitehead tower

L̇ SO L̇Spinoo E L̇Spinoo · · ·oooo

Π0 = Z2 Π2 = Z Π6 = Z
I The Lie algebra was constructed by Kac and Moody. The full

group was discussed by Segal, and as a Fréchet manifold is
the determinant bundle from the Toeplitz algebra.



Toeplitz extension

I The N × N matrix Toeplitz alegra sits inside the compression
of the pseudodifferential operators on the circle to the Hardy
space HC∞(U(1);CN) :

HC∞(U(1); M(N))H+HΨ−∞(U(1);CN)H = ΨTo(U(1);CN)

⊂ HΨ0(U(1);CN)H ⊂ Ψ0(U(1);CN) 3 H

I For an invertible matrix loop λ ∈ C∞(U(1); GL(N))

ind(HλH) = −winding no(det(λ))

I Since Spin is simply connected there is a ‘big’ group of
invertible unitary extensions in terms of the spin representation

G = {A ∈ ΨTo(U(1);CN), A∗ = A, σ(A) ∈ LSpin}.



Toeplitz extension cont.

I The kernel of the symbol map consists of the unitary
perturbations of the identity by smoothing operators

U−∞H (U(1);CN) ⊂ G.

I The subgroup of Fredholm determinant one is normal

U−∞H (U(1);CN)det=1 ⊂ U−∞H (U(1);CN) ⊂ G.

I The quotient is the basic central extension of L Spin :

U(1) = U−∞H (U(1);CN)
/

U−∞H (U(1);CN)det=1 −→
ELSpin = G

/
U−∞H (U(1);CN)det=1 −→ L Spin .

I The regularized trace gives a connection on this circle bundle
with the Kac-Moody cocycle given by the residue trace.



Loop-spin structures

I A loop-spin structure is the loop analogue of a spin structure.

I It is a lifting of the principal LSpin bundle LF over LM for a
spin manifold M to a principal ELSpin bundle.

I As such it is a circle bundle T over LF with a twisted action
of LSpin so that

γ∗T ' T ⊗ Eγ over LF

with an associativity condition.

I Following Waldorf we demand that T satisfy a fusion
condition consistent with the fusion property of E

ψ∗12T ⊗ ψ∗23T ' ψ∗13T .

with associativity.

I We also impose a strong smoothness condition we call
‘litheness’.



Loop-spin and string structures
I McLaughlin, showed that there is a (non-fusion) loop-spin

structure if and only if 1
2 p1 = 0, provided M is 2-connected.

I Waldorf showed that there is a fusive (topological) loop-spin
structure if and only if 1

2 p1 = 0.

Theorem (Kottke-M.)

Fusive loop-spin structures up to fusion-preserving isomorphism are
in 1-1 correspondence with C(F ) and hence with string structures
up to equivalence.

I It is highly desireable to show reparameterizaton equivariance,
corresponding to the action of the oriented diffeomorphism
group, Dff+(U(1)), of the circle on loops.

I In particular Witten’s genus is formally identified with the
U(1)-equivariant index of the Dirac-Ramond operator,
corresponding to the rotation of loops.

I Brylinski has suggested that equivariance under Dff+(U(1))
should play a role in the index, through a realization of some
form of elliptic cohomology.



Lithe smoothness

I As mentioned at the beginning, the loop space is a very
special Fréchet manifold.

I In general smoothness of functions on a Fréchet manifold is
rather weak (weakened further as ‘convenient’ smoothness)
because the derivative at a point is ‘only’ an element of the
dual of the tangent space, which is the model Fréchet space.

I For LM, the model is C∞(U(1);Rn) = C∞(U(1))n.

I The dual of this is a space of distribution(al densities) on the
circle, but it contains C∞(U(1))n as a subspace.

I The coordinate transformations are such that this subspace is
preserved, so well-defined on the loop manifold. Having
(successive) derivatives in such subspaces is ‘litheness’.

I We construct lithe bundles and functions since it is essential
for the subsequence analytic steps to have as much regularity
as possible!



Proof of main theorem

I Passage from a loop-spin structure to a 3-class on F is by
regression of a circle bundle to a bundle gerbe in the sense of
Murray.

I Conversely a 3-class in C(F ) corresponds to a PU(H) bundle
over F the holonomy of which is a circle bundle D over LF .

I Over fibre loops D is identified with the central extension.

D

��

E

��
LfibF F × L̇Spin

I General loops are ‘blipped’ to special loops to construct the
twisted LSpin action on D using fusion



Loop-spinor bundle

I Segal has constructed the ‘spin’ representation of EL Spin and
such ‘positive energy representations’ have been classified.

I Once again a quite smooth version of this bundle can be
constructed using the Toeplitz algebra.

I Thus, there is a smooth infinite-dimensional bundle over LM
associated to a string structure on M.

I The Dirac-Ramond operator should act on (appropriately
smooth) sections of this bundle.

I By analogy with the spin Dirac operator a Levi-Civita
compatible connection is needed, and can be constructed.

I Finally, the analogue of a ‘Clifford action’ of T ∗γLM on the
loop-spinor bundle is needed, this is under active construction.

I This should give a well-defined Dirac-Ramond operator which
is then open to analysis.



Happy Birthday Jean-Michel!


