Morse functions and families torsion

Sebastian Goette

Mathematisches Institut der Universität Freiburg
Bismutfest Orsay, May 31, 2013

Outline

1. Torsion Invariants for Families
1.1 Torsion Invariants for Compact Manifolds
1.2 Bismut-Lott Torsion
1.3 Dwyer-Weiss-Williams Torsion
1.4 Igusa-Klein Torsion
1.5 A Comparison Formula
2. Torsion Invariants and Generalised Fibrewise Morse

Functions
2.1 Generalised Fibrewise Morse Functions
2.2 A General Torsion Form
2.3 The Bismut-Lott Index Theorem
2.4 Cohomological Invariants

1.1.1 Reidemeister-Franz Torsion

Let M be a compact manifold of odd dimension n
Let $F \rightarrow M$ be a flat vector bundle

1.1.1 Reidemeister-Franz Torsion

Let M be a compact manifold of odd dimension n
Let $F \rightarrow M$ be a flat vector bundle
Choose a CW structure X on M
Let $\left(C^{\bullet}(X ; F), \delta\right)$ denote the cellular cochain complex

1.1.1 Reidemeister-Franz Torsion

Let M be a compact manifold of odd dimension n
Let $F \rightarrow M$ be a flat vector bundle
Choose a CW structure X on M
Let $\left(C^{\bullet}(X ; F), \delta\right)$ denote the cellular cochain complex
Assume that F is acyclic, so $H^{\bullet}(M ; F)=H^{\bullet}\left(C^{\bullet}(X ; F), \delta\right)=0$

1.1.1 Reidemeister-Franz Torsion

Let M be a compact manifold of odd dimension n
Let $F \rightarrow M$ be a flat vector bundle
Choose a CW structure X on M
Let $\left(C^{\bullet}(X ; F), \delta\right)$ denote the cellular cochain complex
Assume that F is acyclic, so $H^{\bullet}(M ; F)=H^{\bullet}\left(C^{\bullet}(X ; F), \delta\right)=0$
Assume that F carries a parallel metric g^{F}
Then g^{F} induces a metric on $C^{\bullet}(X ; F)$.

1.1.1 Reidemeister-Franz Torsion

Let M be a compact manifold of odd dimension n
Let $F \rightarrow M$ be a flat vector bundle
Choose a CW structure X on M
Let $\left(C^{\bullet}(X ; F), \delta\right)$ denote the cellular cochain complex
Assume that F is acyclic, so $H^{\bullet}(M ; F)=H^{\bullet}\left(C^{\bullet}(X ; F), \delta\right)=0$
Assume that F carries a parallel metric g^{F}
Then g^{F} induces a metric on $C^{\bullet}(X ; F)$.
Definition (Reidemeister '35, Franz '35)

$$
\log \tau(M, F)=\frac{1}{2} \sum_{i=0}^{n}(-1)^{n} \log \operatorname{det}_{\operatorname{im} \delta_{i}}\left(\delta_{i} \delta_{i}^{*}\right)
$$

1.1.1 Reidemeister-Franz Torsion

Let M be a compact manifold of odd dimension n
Let $F \rightarrow M$ be a flat vector bundle
Choose a CW structure X on M
Let $\left(C^{\bullet}(X ; F), \delta\right)$ denote the cellular cochain complex
Assume that F is acyclic, so $H^{\bullet}(M ; F)=H^{\bullet}\left(C^{\bullet}(X ; F), \delta\right)=0$
Assume that F carries a parallel metric g^{F}
Then g^{F} induces a metric on $C^{\bullet}(X ; F)$.
Definition (Reidemeister '35, Franz '35)

$$
\log \tau(M, F)=\frac{1}{2} \sum_{i=0}^{n}(-1)^{n} \log \operatorname{det}_{\mathrm{im}} \delta_{i}\left(\delta_{i} \delta_{i}^{*}\right)
$$

Application (Reidemeister '35, Franz '35)
τ distinguishes homotopy equivalent but non-homeomorphic lens spaces

1.1.2 Ray-Singer Torsion

Let M, F, g^{F} be as above
We still assume that $H^{\bullet}(M ; F)=0$ and that g^{F} is parallel

1.1.2 Ray-Singer Torsion

Let M, F, g^{F} be as above
We still assume that $H^{\bullet}(M ; F)=0$ and that g^{F} is parallel
Choose a Riemannian metric $g^{T M}$ on M
It gives rise to the Hodge Laplacian $\Delta=d d^{*}+d^{*} d$ on $\Omega^{\bullet}(M ; F)$

1.1.2 Ray-Singer Torsion

Let M, F, g^{F} be as above We still assume that $H^{\bullet}(M ; F)=0$ and that g^{F} is parallel
Choose a Riemannian metric $g^{T M}$ on M It gives rise to the Hodge Laplacian $\Delta=d d^{*}+d^{*} d$ on $\Omega^{\bullet}(M ; F)$

Definition (Ray-Singer, '71)

$$
\log \mathcal{T}(M, F)=-\frac{1}{2} \sum_{i=0}^{n} i(-1)^{i} \zeta_{\Delta_{i}}^{\prime}(0)
$$

This definition is strictly analogous to the definition of $\tau(M ; F)$

1.1.2 Ray-Singer Torsion

Let M, F, g^{F} be as above
We still assume that $H^{\bullet}(M ; F)=0$ and that g^{F} is parallel
Choose a Riemannian metric $g^{T M}$ on M It gives rise to the Hodge Laplacian $\Delta=d d^{*}+d^{*} d$ on $\Omega^{\bullet}(M ; F)$

Definition (Ray-Singer, '71)

$$
\log \mathcal{T}(M, F)=-\frac{1}{2} \sum_{i=0}^{n} i(-1)^{i} \zeta_{\Delta_{i}}^{\prime}(0)
$$

This definition is strictly analogous to the definition of $\tau(M ; F)$
Theorem (Cheeger '79, Müller '78)

$$
\tau(M ; F)=\mathcal{T}(M ; F)
$$

1.1.3 A Generalisation

Can we define torsion invariants without assuming

$$
\begin{gathered}
\operatorname{dim} M \text { odd } \\
H^{\bullet}(M ; F)=0 \\
\nabla^{F} g^{F}=0 ?
\end{gathered}
$$

1.1.3 A Generalisation

Can we define torsion invariants without assuming

$$
\begin{gathered}
\operatorname{dim} M \text { odd } \\
H^{\bullet}(M ; F)=0 \\
\nabla^{F} g^{F}=0 ?
\end{gathered}
$$

Let $F \rightarrow M$ be flat
Choose metrics $g^{T M}, g^{F}$
Define $\mathcal{T}(M, F)=\mathcal{T}\left(M, F ; g^{T M}, g^{F}\right)$ as before

1.1.3 A Generalisation

Can we define torsion invariants without assuming
dim M odd

$$
\begin{gathered}
H^{\bullet}(M ; F)=0 \\
\nabla^{F} g^{F}=0 ?
\end{gathered}
$$

Let $F \rightarrow M$ be flat
Choose metrics $g^{T M}, g^{F}$
Define $\mathcal{T}(M, F)=\mathcal{T}\left(M, F ; g^{T M}, g^{F}\right)$ as before
Let $h: M \rightarrow \mathbb{R}$ be a Morse function with gradient field $\nabla^{T M} h$ Assume Smale transversality condition for $\nabla^{T M} h$
Then the unstable cells form a CW structure X on M
Call $(V, \delta)=\left(C^{\bullet}(X ; F), \delta\right)$ the Thom-Smale complex of h

1.1.3 A Generalisation

Can we define torsion invariants without assuming

dim M odd

$$
\begin{gathered}
H^{\bullet}(M ; F)=0 \\
\nabla^{F} g^{F}=0 ?
\end{gathered}
$$

Let $F \rightarrow M$ be flat
Choose metrics $g^{T M}, g^{F}$
Define $\mathcal{T}(M, F)=\mathcal{T}\left(M, F ; g^{T M}, g^{F}\right)$ as before
Let $h: M \rightarrow \mathbb{R}$ be a Morse function with gradient field $\nabla^{T M} h$ Assume Smale transversality condition for $\nabla^{T M} h$
Then the unstable cells form a CW structure X on M
Call $(V, \delta)=\left(C^{\bullet}(X ; F), \delta\right)$ the Thom-Smale complex of h
The metric g^{F} at the critical points C induces a metric g^{V} on V Define $\tau(M, F)=\tau\left(M, F ; g^{T M}, g^{F}, h\right)$ using $\left(V, \delta, g^{V}\right)$

1.1.4 Bismut-Zhang Comparison Formula

Let $g_{L^{2}}^{H}$ denote the L^{2}-metric on $H=H^{\bullet}(M ; F) \cong \operatorname{ker} \Delta$
Let g_{V}^{H} denote the metric induced by g^{V} on $H \cong \operatorname{ker}\left(\delta^{*} \delta+\delta \delta^{*}\right)$

1.1.4 Bismut-Zhang Comparison Formula

Let $g_{L^{2}}^{H}$ denote the L^{2}-metric on $H=H^{\bullet}(M ; F) \cong \operatorname{ker} \Delta$
Let g_{V}^{H} denote the metric induced by g^{V} on $H \cong \operatorname{ker}\left(\delta^{*} \delta+\delta \delta^{*}\right)$
Let $e\left(T M, \nabla^{T M}\right)$ denote the Euler form of $T M$
Let δ_{C} denote the δ-distribution at the critical points C of h Then the Mathai-Quillen current satisfies

$$
d\left(\left(\nabla^{T M} h\right)^{*} \psi\left(\nabla^{T M}, g^{T M}\right)\right)=e\left(T M, \nabla^{T M}\right)-\delta_{C}
$$

1.1.4 Bismut-Zhang Comparison Formula

Let $g_{L^{2}}^{H}$ denote the L^{2}-metric on $H=H^{\bullet}(M ; F) \cong \operatorname{ker} \Delta$
Let g_{V}^{H} denote the metric induced by g^{V} on $H \cong \operatorname{ker}\left(\delta^{*} \delta+\delta \delta^{*}\right)$
Let $e\left(T M, \nabla^{T M}\right)$ denote the Euler form of $T M$
Let δ_{C} denote the δ-distribution at the critical points C of h Then the Mathai-Quillen current satisfies

$$
d\left(\left(\nabla^{T M} h\right)^{*} \psi\left(\nabla^{T M}, g^{T M}\right)\right)=e\left(T M, \nabla^{T M}\right)-\delta_{C}
$$

Define a characteristic form of the flat vector bundle F by

$$
\operatorname{ch}_{1}^{O}\left(F, g^{F}\right)=\operatorname{tr}\left(\omega^{F}\right)=\operatorname{tr}\left(\left(g^{F}\right)^{-1} \nabla^{F} g^{F}\right) \in \Omega^{1}(M)
$$

1.1.4 Bismut-Zhang Comparison Formula

Let $g_{L^{2}}^{H}$ denote the L^{2}-metric on $H=H^{\bullet}(M ; F) \cong \operatorname{ker} \Delta$
Let g_{V}^{H} denote the metric induced by g^{V} on $H \cong \operatorname{ker}\left(\delta^{*} \delta+\delta \delta^{*}\right)$
Let $e\left(T M, \nabla^{T M}\right)$ denote the Euler form of $T M$
Let δ_{C} denote the δ-distribution at the critical points C of h Then the Mathai-Quillen current satisfies

$$
d\left(\left(\nabla^{T M} h\right)^{*} \psi\left(\nabla^{T M}, g^{T M}\right)\right)=e\left(T M, \nabla^{T M}\right)-\delta_{C}
$$

Define a characteristic form of the flat vector bundle F by

$$
\operatorname{ch}_{1}^{O}\left(F, g^{F}\right)=\operatorname{tr}\left(\omega^{F}\right)=\operatorname{tr}\left(\left(g^{F}\right)^{-1} \nabla^{F} g^{F}\right) \in \Omega^{1}(M)
$$

Theorem (Bismut-Zhang '92)

$$
\begin{aligned}
& \log \mathcal{T}\left(M, F ; g^{T M}, g^{F}\right)-\log \tau\left(M, F ; g^{T M}, g^{F}, h\right) \\
& \quad=\log \frac{\|\cdot\|_{\operatorname{det} H, g_{L^{2}}^{H}}}{\|\cdot\|_{\operatorname{det} H, g_{V}^{H}}}-\int_{M} \operatorname{ch}_{1}^{O}\left(F, g^{F}\right) \cdot\left(\nabla^{T M} h\right)^{*} \psi\left(\nabla^{T M}, g^{T M}\right)
\end{aligned}
$$

1.1.5 Bismut-Zhang Variational Formula

Let $g^{T M}$ and g^{F} be parametrised by a manifold B Get Euler class $e\left(T M, \nabla^{T M}\right) \in \Omega^{n}(M \times B ; o(T M))$ Get $\operatorname{ch}_{1}^{O}\left(F, g^{F}\right)=\operatorname{tr}\left(\omega^{F}\right) \in \Omega^{1}(M \times B)$
Let $g_{L^{2}}^{H}$ be the L^{2}-metric on $H=H^{\bullet}(M ; F)$, parametrised by B

1.1.5 Bismut-Zhang Variational Formula

Let $g^{T M}$ and g^{F} be parametrised by a manifold B
Get Euler class $e\left(T M, \nabla^{T M}\right) \in \Omega^{n}(M \times B ; O(T M))$
$\operatorname{Get~ch}_{1}^{\circ}\left(F, g^{F}\right)=\operatorname{tr}\left(\omega^{F}\right) \in \Omega^{1}(M \times B)$
Let $g_{L^{2}}^{H}$ be the L^{2}-metric on $H=H^{\bullet}(M ; F)$, parametrised by B
Theorem (Bismut-Zhang '92)
The Ray-Singer torsion depends on $g^{T M}$ and g^{F} by

$$
\begin{aligned}
d \mathcal{T}\left(M, F ; g^{T M}, g^{F}\right)=\int_{M} e\left(T M, \nabla^{T M}\right) & \operatorname{ch}_{1}^{O}\left(F, g^{F}\right) \\
& -\operatorname{ch}_{1}^{O}\left(H, g_{L^{2}}^{H}\right) \in \Omega^{1}(B)
\end{aligned}
$$

1.1.5 Bismut-Zhang Variational Formula

Let $g^{T M}$ and g^{F} be parametrised by a manifold B
Get Euler class $e\left(T M, \nabla^{T M}\right) \in \Omega^{n}(M \times B ; o(T M))$
Get $\operatorname{ch}_{1}^{O}\left(F, g^{F}\right)=\operatorname{tr}\left(\omega^{F}\right) \in \Omega^{1}(M \times B)$
Let $g_{L^{2}}^{H}$ be the L^{2}-metric on $H=H^{\bullet}(M ; F)$, parametrised by B
Theorem (Bismut-Zhang '92)
The Ray-Singer torsion depends on $g^{T M}$ and g^{F} by

$$
\begin{aligned}
d \mathcal{T}\left(M, F ; g^{T M}, g^{F}\right)=\int_{M} e\left(T M, \nabla^{T M}\right) & \operatorname{ch}_{1}^{O}\left(F, g^{F}\right) \\
& -\operatorname{ch}_{1}^{O}\left(H, g_{L^{2}}^{H}\right) \in \Omega^{1}(B)
\end{aligned}
$$

Remark
This looks like a family index theorem for the Euler operator

1.2.1 Characteristic Classes for Flat Vector Bundles

Let $\left(F, \nabla^{F}\right)$ be a flat vector bundle on M
If g^{F} is a metric on F, define the adjoint connection

$$
\nabla^{F, *}=\nabla^{F}+\omega^{F}=\nabla^{F}+\left(g^{F}\right)^{-1} \nabla^{F} g^{F}
$$

1.2.1 Characteristic Classes for Flat Vector Bundles

Let $\left(F, \nabla^{F}\right)$ be a flat vector bundle on M
If g^{F} is a metric on F, define the adjoint connection

$$
\nabla^{F, *}=\nabla^{F}+\omega^{F}=\nabla^{F}+\left(g^{F}\right)^{-1} \nabla^{F} g^{F}
$$

Let $\widetilde{c h}$ denote the Chern-Simons form with

$$
d \widetilde{\operatorname{ch}}\left(V, \nabla^{V_{0}}, \nabla^{V_{1}}\right)=\operatorname{ch}\left(V, \nabla^{V_{1}}\right)-\operatorname{ch}\left(V, \nabla^{V_{0}}\right)
$$

1.2.1 Characteristic Classes for Flat Vector Bundles

Let $\left(F, \nabla^{F}\right)$ be a flat vector bundle on M
If g^{F} is a metric on F, define the adjoint connection

$$
\nabla^{F, *}=\nabla^{F}+\omega^{F}=\nabla^{F}+\left(g^{F}\right)^{-1} \nabla^{F} g^{F}
$$

Let $\widetilde{c h}$ denote the Chern-Simons form with

$$
d \widetilde{\operatorname{ch}}\left(V, \nabla^{V_{0}}, \nabla^{V_{1}}\right)=\operatorname{ch}\left(V, \nabla^{V_{1}}\right)-\operatorname{ch}\left(V, \nabla^{V_{0}}\right)
$$

Both ∇^{F} and $\nabla^{F, *}$ are flat, so

$$
d \widetilde{\operatorname{ch}}\left(F, \nabla^{F}, \nabla^{F, *}\right)=\operatorname{ch}\left(F, \nabla^{F, *}\right)-\operatorname{ch}\left(F, \nabla^{F}\right)=0
$$

1.2.1 Characteristic Classes for Flat Vector Bundles

Let $\left(F, \nabla^{F}\right)$ be a flat vector bundle on M
If g^{F} is a metric on F, define the adjoint connection

$$
\nabla^{F, *}=\nabla^{F}+\omega^{F}=\nabla^{F}+\left(g^{F}\right)^{-1} \nabla^{F} g^{F}
$$

Let $\widetilde{c h}$ denote the Chern-Simons form with

$$
d \widetilde{\operatorname{ch}}\left(V, \nabla^{V_{0}}, \nabla^{V_{1}}\right)=\operatorname{ch}\left(V, \nabla^{V_{1}}\right)-\operatorname{ch}\left(V, \nabla^{V_{0}}\right)
$$

Both ∇^{F} and $\nabla^{F, *}$ are flat, so

$$
d \widetilde{\operatorname{ch}}\left(F, \nabla^{F}, \nabla^{F, *}\right)=\operatorname{ch}\left(F, \nabla^{F, *}\right)-\operatorname{ch}\left(F, \nabla^{F}\right)=0
$$

Definition (Kamber-Tondeur '74, Bismut-Lott '95)

$$
\operatorname{ch}^{\circ}\left(F, g^{F}\right)=\pi i \widetilde{\operatorname{ch}}\left(F, \nabla^{F}, \nabla^{F, *}\right) \in \Omega^{\text {odd }}(M)
$$

1.2.1 Characteristic Classes for Flat Vector Bundles

Let $\left(F, \nabla^{F}\right)$ be a flat vector bundle on M
If g^{F} is a metric on F, define the adjoint connection

$$
\nabla^{F, *}=\nabla^{F}+\omega^{F}=\nabla^{F}+\left(g^{F}\right)^{-1} \nabla^{F} g^{F}
$$

Let $\widetilde{c h}$ denote the Chern-Simons form with

$$
d \widetilde{\mathrm{ch}}\left(V, \nabla^{V_{0}}, \nabla^{V_{1}}\right)=\operatorname{ch}\left(V, \nabla^{V_{1}}\right)-\operatorname{ch}\left(V, \nabla^{V_{0}}\right)
$$

Both ∇^{F} and $\nabla^{F, *}$ are flat, so

$$
d \widetilde{\operatorname{ch}}\left(F, \nabla^{F}, \nabla^{F, *}\right)=\operatorname{ch}\left(F, \nabla^{F, *}\right)-\operatorname{ch}\left(F, \nabla^{F}\right)=0
$$

Definition (Kamber-Tondeur '74, Bismut-Lott '95)

$$
\operatorname{ch}^{\circ}\left(F, g^{F}\right)=\pi i \widetilde{\operatorname{ch}}\left(F, \nabla^{F}, \nabla^{F, *}\right) \in \Omega^{\text {odd }}(M)
$$

The class $\operatorname{ch}^{\circ}(F)=\left[\operatorname{ch}^{\circ}\left(F, g^{F}\right)\right]$ is independent of g^{F} If g^{F} is parallel then $\operatorname{ch}^{\circ}\left(F, g^{F}\right)=0$

1.2.2 The Exterior Differential as a Superconnection

Let $p: E \rightarrow B$ be a smooth submersion with compact fibres M
Let $T M=$ ker $d p$ denote the vertical tangent bundle Choose a horizontal subbundle $T^{H} E \cong p^{*} T B$ with

$$
T E=T M \oplus T^{H} E
$$

1.2.2 The Exterior Differential as a Superconnection

Let $p: E \rightarrow B$ be a smooth submersion with compact fibres M
Let $T M=\operatorname{ker} d p$ denote the vertical tangent bundle
Choose a horizontal subbundle $T^{H} E \cong p^{*} T B$ with

$$
T E=T M \oplus T^{H} E
$$

This induces splittings

$$
\begin{aligned}
\Lambda^{\bullet} T^{*} E & \cong \Lambda^{\bullet} T^{*} M \hat{\otimes} p^{*} \Lambda^{\bullet} T B \\
\text { and } \quad \Omega^{\bullet}(E ; F) & \cong \Omega^{\bullet}\left(B ; \Omega^{\bullet}(E / B ; F)\right)
\end{aligned}
$$

with $\Omega^{\bullet}(E / B ; F)=p_{*} \Lambda^{\bullet} T^{*} M \rightarrow B$ a bundle of infinite rank

1.2.2 The Exterior Differential as a Superconnection

Let $p: E \rightarrow B$ be a smooth submersion with compact fibres M
Let $T M=$ ker $d p$ denote the vertical tangent bundle
Choose a horizontal subbundle $T^{H} E \cong p^{*} T B$ with

$$
T E=T M \oplus T^{H} E
$$

This induces splittings

$$
\begin{array}{rlrl}
& \Lambda^{\bullet} T^{*} E & \cong \Lambda^{\bullet} \cdot T^{*} M \hat{\otimes} P^{*} \Lambda^{\bullet} T B \\
& \text { and } \quad & \Omega^{\bullet}(E ; F) & \cong \Omega^{\bullet}\left(B ; \Omega^{\bullet}(E / B ; F)\right)
\end{array}
$$

with $\Omega^{\bullet}(E / B ; F)=p_{*} \Lambda^{\bullet} T^{*} M \rightarrow B$ a bundle of infinite rank
The exterior differential d_{E} becomes a superconnection

$$
\mathbb{A}^{\prime}=d_{E}=d_{M}+\mathcal{L}=-\iota_{[-,-,]^{T M}}
$$

This superconnection is flat because $\left(\mathbb{A}^{\prime}\right)^{2}=d_{E}^{2}=0$

1.2.3 The Bismut Superconnection

Let N^{M} be the vertical number operator on $\Omega^{\bullet}(E / B ; F)$ with

$$
\left.N^{M}\right|_{\Omega^{k}(E / B ; F)}=k \text { id }
$$

Rescaling the superconnection \mathbb{A}^{\prime} gives $\mathbb{A}_{t}^{\prime}=t^{N^{M} / 2} \mathbb{A}^{\prime} t^{-N^{M} / 2}$

1.2.3 The Bismut Superconnection

Let N^{M} be the vertical number operator on $\Omega^{\bullet}(E / B ; F)$ with

$$
\left.N^{M}\right|_{\Omega^{k}(E / B ; F)}=k \text { id }
$$

Rescaling the superconnection \mathbb{A}^{\prime} gives $\mathbb{A}_{t}^{\prime}=t^{N^{M} / 2} \mathbb{A}^{\prime} t^{-N^{M} / 2}$
Choose a vertical metric $g^{T M}$ and a metric g^{F} on F
These metrics induce an L^{2}-metric on $\Omega^{\bullet}(E / B ; F) \rightarrow B$
Let $\mathbb{A}_{t}^{\prime \prime}$ be the adjoint superconnection of \mathbb{A}_{t}^{\prime} and put

$$
\mathbb{X}_{t}=\mathbb{A}_{t}^{\prime \prime}-\mathbb{A}_{t}^{\prime} \in \Omega^{\bullet}\left(B ; \operatorname{End} \Omega^{\bullet}(E / B ; F)\right)
$$

1.2.3 The Bismut Superconnection

Let N^{M} be the vertical number operator on $\Omega^{\bullet}(E / B ; F)$ with

$$
\left.N^{M}\right|_{\Omega^{k}(E / B ; F)}=k \text { id }
$$

Rescaling the superconnection \mathbb{A}^{\prime} gives $\mathbb{A}_{t}^{\prime}=t^{N^{M} / 2} \mathbb{A}^{\prime} t^{-N^{M} / 2}$
Choose a vertical metric $g^{T M}$ and a metric g^{F} on F These metrics induce an L^{2}-metric on $\Omega^{\bullet}(E / B ; F) \rightarrow B$ Let $\mathbb{A}_{t}^{\prime \prime}$ be the adjoint superconnection of \mathbb{A}_{t}^{\prime} and put

$$
\mathbb{X}_{t}=\mathbb{A}_{t}^{\prime \prime}-\mathbb{A}_{t}^{\prime} \in \Omega^{\bullet}\left(B ; \operatorname{End} \Omega^{\bullet}(E / B ; F)\right)
$$

Remark (Bismut-Lott '95)
$\mathbb{A}_{t}=\frac{1}{2}\left(\mathbb{A}_{t}^{\prime \prime}+\mathbb{A}_{t}^{\prime}\right)$ (almost) equals the Bismut superconnection Its curvature is $\mathbb{A}_{t}^{2}=-\mathbb{X}_{t}^{2} / 4$.

1.2.3 The Bismut Superconnection

Let N^{M} be the vertical number operator on $\Omega^{\bullet}(E / B ; F)$ with

$$
\left.N^{M}\right|_{\Omega^{k}(E / B ; F)}=k \text { id }
$$

Rescaling the superconnection \mathbb{A}^{\prime} gives $\mathbb{A}_{t}^{\prime}=t^{N^{M} / 2} \mathbb{A}^{\prime} t^{-N^{M} / 2}$
Choose a vertical metric $g^{T M}$ and a metric g^{F} on F These metrics induce an L^{2}-metric on $\Omega^{\bullet}(E / B ; F) \rightarrow B$ Let $\mathbb{A}_{t}^{\prime \prime}$ be the adjoint superconnection of \mathbb{A}_{t}^{\prime} and put

$$
\mathbb{X}_{t}=\mathbb{A}_{t}^{\prime \prime}-\mathbb{A}_{t}^{\prime} \in \Omega^{\bullet}\left(B ; \operatorname{End} \Omega^{\bullet}(E / B ; F)\right)
$$

Remark (Bismut-Lott '95)
$\mathbb{A}_{t}=\frac{1}{2}\left(\mathbb{A}_{t}^{\prime \prime}+\mathbb{A}_{t}^{\prime}\right)$ (almost) equals the Bismut superconnection Its curvature is $\mathbb{A}_{t}^{2}=-\mathbb{X}_{t}^{2} / 4$.
The part $\mathbb{X}_{t}^{[0]} \in \Omega^{0}\left(B ;\right.$ End $\left.\Omega^{\bullet}(E / B ; F)\right)$ of horizontal degree 0 is $\sqrt{t}\left(d^{*}-d\right)$, a fibrewise skewadjoint Hodge-Dirac operator

1.2.3 The Bismut Superconnection

Let N^{M} be the vertical number operator on $\Omega^{\bullet}(E / B ; F)$ with

$$
\left.N^{M}\right|_{\Omega^{k}(E / B ; F)}=k \text { id }
$$

Rescaling the superconnection \mathbb{A}^{\prime} gives $\mathbb{A}_{t}^{\prime}=t^{N^{M} / 2} \mathbb{A}^{\prime} t^{-N^{M} / 2}$
Choose a vertical metric $g^{T M}$ and a metric g^{F} on F These metrics induce an L^{2}-metric on $\Omega^{\bullet}(E / B ; F) \rightarrow B$ Let $\mathbb{A}_{t}^{\prime \prime}$ be the adjoint superconnection of \mathbb{A}_{t}^{\prime} and put

$$
\mathbb{X}_{t}=\mathbb{A}_{t}^{\prime \prime}-\mathbb{A}_{t}^{\prime} \in \Omega^{\bullet}\left(B ; \operatorname{End} \Omega^{\bullet}(E / B ; F)\right)
$$

Remark (Bismut-Lott '95)
$\mathbb{A}_{t}=\frac{1}{2}\left(\mathbb{A}_{t}^{\prime \prime}+\mathbb{A}_{t}^{\prime}\right)$ (almost) equals the Bismut superconnection Its curvature is $\mathbb{A}_{t}^{2}=-\mathbb{X}_{t}^{2} / 4$.
The part $\mathbb{X}_{t}^{[0]} \in \Omega^{0}\left(B\right.$; End $\left.\Omega^{\bullet}(E / B ; F)\right)$ of horizontal degree 0 is $\sqrt{t}\left(d^{*}-d\right)$, a fibrewise skewadjoint Hodge-Dirac operator Let $f(z)=z e^{z^{2}}$, then $f^{\prime}\left(\mathbb{X}_{t} / 2\right)$ is closely related to the heat operator used in Bismut's proof of the family index theorem

1.2.4 Bismut-Lott Torsion

Let $H=H^{\bullet}(E / B ; F) \rightarrow B$ denote the fibrewise cohomology and

$$
\chi(H)=\sum(-1)^{i} \text { rk } H^{i}, \quad \chi^{\prime}(H)=\sum(-1)^{i} \text { i rk } H^{i}
$$

1.2.4 Bismut-Lott Torsion

Let $H=H^{\bullet}(E / B ; F) \rightarrow B$ denote the fibrewise cohomology and

$$
\chi(H)=\sum(-1)^{i} \text { rk } H^{i}, \quad \chi^{\prime}(H)=\sum(-1)^{i} i \text { rk } H^{i}
$$

Definition (Bismut-Lott '95)

$$
\begin{gathered}
\mathcal{T}\left(T^{H} E, g^{T M}, g^{F}\right)=-\int_{0}^{1}\left(\frac{4 s(1-s)}{2 \pi i}\right)^{\frac{N^{B}}{2}} \int_{0}^{\infty}\left(\operatorname{str}\left(N^{M} f^{\prime}\left(\mathbb{X}_{t} / 2\right)\right)\right. \\
\left.-\chi^{\prime}(H)-\left(\frac{n}{2} \chi(H)-\chi^{\prime}(H)\right) f^{\prime}(\sqrt{-t / 4})\right) \frac{d t}{2 t} d s
\end{gathered}
$$

1.2.4 Bismut-Lott Torsion

Let $H=H^{\bullet}(E / B ; F) \rightarrow B$ denote the fibrewise cohomology and

$$
\chi(H)=\sum(-1)^{i} \text { rk } H^{i}, \quad \chi^{\prime}(H)=\sum(-1)^{i} i \text { rk } H^{i}
$$

Definition (Bismut-Lott '95)

$$
\begin{gathered}
\mathcal{T}\left(T^{H} E, g^{T M}, g^{F}\right)=-\int_{0}^{1}\left(\frac{4 s(1-s)}{2 \pi i}\right)^{\frac{N^{B}}{2}} \int_{0}^{\infty}\left(\operatorname{str}\left(N^{M} f^{\prime}\left(\mathbb{X}_{t} / 2\right)\right)\right. \\
\left.-\chi^{\prime}(H)-\left(\frac{n}{2} \chi(H)-\chi^{\prime}(H)\right) f^{\prime}(\sqrt{-t / 4})\right) \frac{d t}{2 t} d s
\end{gathered}
$$

The component $\mathcal{T}\left(T^{H} E, g^{T M}, g^{F}\right)^{[0]}$ of degree 0 represents (the logarithm of) the Ray-Singer torsion of the fibre.

1.2.4 Bismut-Lott Torsion

Let $H=H^{\bullet}(E / B ; F) \rightarrow B$ denote the fibrewise cohomology and

$$
\chi(H)=\sum(-1)^{i} \text { rk } H^{i}, \quad \chi^{\prime}(H)=\sum(-1)^{i} i \text { rk } H^{i}
$$

Definition (Bismut-Lott '95)

$$
\begin{gathered}
\mathcal{T}\left(T^{H} E, g^{T M}, g^{F}\right)=-\int_{0}^{1}\left(\frac{4 s(1-s)}{2 \pi i}\right)^{\frac{N^{B}}{2}} \int_{0}^{\infty}\left(\operatorname{str}\left(N^{M} f^{\prime}\left(\mathbb{X}_{t} / 2\right)\right)\right. \\
\left.-\chi^{\prime}(H)-\left(\frac{n}{2} \chi(H)-\chi^{\prime}(H)\right) f^{\prime}(\sqrt{-t / 4})\right) \frac{d t}{2 t} d s
\end{gathered}
$$

The component $\mathcal{T}\left(T^{H} E, g^{T M}, g^{F}\right)^{[0]}$ of degree 0 represents (the logarithm of) the Ray-Singer torsion of the fibre.

Computable for bundles with compact structure groups by [Bunke '99, '00] and [Bismut-G '04]

1.2.5 Bismut-Lott Index Theorem

Recall the L^{2}-metric $g_{L^{2}}^{H}$ on $H \cong \operatorname{ker} \mathbb{X}^{[0]} \rightarrow B$

1.2.5 Bismut-Lott Index Theorem

Recall the L^{2}-metric $g_{L^{2}}^{H}$ on $H \cong \operatorname{ker} \mathbb{X}^{[0]} \rightarrow B$
Theorem (Bismut-Lott '95)

$$
\begin{aligned}
d \mathcal{T}\left(T^{H} E, g^{T M}, g^{F}\right)=\int_{E / B} e(T M, & \left.\nabla^{T M}\right) \operatorname{ch}^{\circ}\left(F, g^{F}\right) \\
& -\operatorname{ch}^{\circ}\left(H, g_{L^{2}}^{H}\right) \in \Omega^{\text {odd }}(M)
\end{aligned}
$$

1.2.5 Bismut-Lott Index Theorem

Recall the L^{2}-metric $g_{L^{2}}^{H}$ on $H \cong \operatorname{ker} \mathbb{X}^{[0]} \rightarrow B$
Theorem (Bismut-Lott '95)

$$
\begin{aligned}
& d \mathcal{T}\left(T^{H} E, g^{T M}, g^{F}\right)=\int_{E / B} e\left(T M, \nabla^{T M}\right) \operatorname{ch}^{\circ}\left(F, g^{F}\right) \\
&-\operatorname{ch}^{O}\left(H, g_{L^{2}}^{H}\right) \in \Omega^{\text {odd }}(M)
\end{aligned}
$$

Remark (Bismut-Lott '95)
Generalises the variational formula for the Ray-Singer torsion

1.2.5 Bismut-Lott Index Theorem

Recall the L^{2}-metric $g_{L^{2}}^{H}$ on $H \cong \operatorname{ker} \mathbb{X}^{[0]} \rightarrow B$
Theorem (Bismut-Lott '95)

$$
\begin{aligned}
d \mathcal{T}\left(T^{H} E, g^{T M}, g^{F}\right)=\int_{E / B} e(T M, & \left.\nabla^{T M}\right) \operatorname{ch}^{\circ}\left(F, g^{F}\right) \\
& -\operatorname{ch}^{\circ}\left(H, g_{L^{2}}^{H}\right) \in \Omega^{\text {odd }}(M)
\end{aligned}
$$

Remark (Bismut-Lott '95)
Generalises the variational formula for the Ray-Singer torsion Passing to cohomology, we get

$$
\operatorname{ch}^{0}(H)=\int_{E / B} e(T M) \operatorname{ch}^{\circ}(F)
$$

1.3.1 Algebraic K-Theory

Flat vector bundles on X are classified by homotopy classes of maps from X to $B G L \mathbb{C}_{\delta}$, that is, by $\left[X, B G L \mathbb{C}_{\delta}\right]$

1.3.1 Algebraic K-Theory

Flat vector bundles on X are classified by homotopy classes of maps from X to $B G L \mathbb{C}_{\delta}$, that is, by $\left[X, B G L \mathbb{C}_{\delta}\right]$ Algebraic K-theory classes on X are classified by $\left[X, B G L \mathbb{C}_{\delta}^{+}\right]$ Here .+ denotes the Quillen Plus Construction
The natural map $B G L \mathbb{C}_{\delta} \rightarrow B G L \mathbb{C}_{\delta}^{+}$turns a flat vector bundle F into an algebraic K-theory class $[F]$.

1.3.1 Algebraic K-Theory

Flat vector bundles on X are classified by homotopy classes of maps from X to $B G L \mathbb{C}_{\delta}$, that is, by $\left[X, B G L \mathbb{C}_{\delta}\right]$ Algebraic K-theory classes on X are classified by $\left[X, B G L \mathbb{C}_{\delta}^{+}\right]$ Here . + denotes the Quillen Plus Construction The natural map $B G L \mathbb{C}_{\delta} \rightarrow B G L \mathbb{C}_{\delta}^{+}$turns a flat vector bundle F into an algebraic K-theory class $[F]$.
For $p: E \rightarrow B$ as above, there is a Becker-Gottlieb transfer

$$
\operatorname{tr}_{B G}:\left[E, B G L \mathbb{C}_{\delta}^{+}\right] \rightarrow\left[B, B G L \mathbb{C}_{\delta}^{+}\right]
$$

1.3.1 Algebraic K-Theory

Flat vector bundles on X are classified by homotopy classes of maps from X to $B G L \mathbb{C}_{\delta}$, that is, by $\left[X, B G L \mathbb{C}_{\delta}\right]$
Algebraic K-theory classes on X are classified by $\left[X, B G L \mathbb{C}_{\delta}^{+}\right]$ Here .+ denotes the Quillen Plus Construction
The natural map $B G L \mathbb{C}_{\delta} \rightarrow B G L \mathbb{C}_{\delta}^{+}$turns a flat vector bundle F into an algebraic K-theory class $[F]$.

For $p: E \rightarrow B$ as above, there is a Becker-Gottlieb transfer

$$
\operatorname{tr}_{B G}:\left[E, B G L \mathbb{C}_{\delta}^{+}\right] \rightarrow\left[B, B G L \mathbb{C}_{\delta}^{+}\right]
$$

Similarly for ordinary cohomology classes,

$$
\operatorname{tr}_{B G}=\int_{E / B} e(T M) \cup \cdot: H^{\bullet}(E ; \mathbb{R}) \rightarrow H^{\bullet}(B ; \mathbb{R})
$$

as in the Bismut-Lott index theorem

1.3.2 Dwyer-Weiss-Williams Index Theorem

Theorem (Dwyer-Weiss-Williams '03)
If $p: E \rightarrow B$ is a smooth fibre bundle with compact fibres, then

$$
\left[H^{\bullet}(E / B ; F)\right]=\operatorname{tr}_{B G}[F] \in\left[B, B G L \mathbb{C}_{\delta}^{+}\right]
$$

Applying ch°, we recover the cohomological version of the Bismut-Lott index theorem

1.3.2 Dwyer-Weiss-Williams Index Theorem

Theorem (Dwyer-Weiss-Williams '03)
If $p: E \rightarrow B$ is a smooth fibre bundle with compact fibres, then

$$
\left[H^{\bullet}(E / B ; F)\right]=\operatorname{tr}_{B G}[F] \in\left[B, B G L \mathbb{C}_{\delta}^{+}\right]
$$

Applying ch°, we recover the cohomological version of the Bismut-Lott index theorem

Note that both sides above exist for topological fibre bundles The smooth structure is needed for the theorem to hold

1.3.2 Dwyer-Weiss-Williams Index Theorem

Theorem (Dwyer-Weiss-Williams '03)
If $p: E \rightarrow B$ is a smooth fibre bundle with compact fibres, then

$$
\left[H^{\bullet}(E / B ; F)\right]=\operatorname{tr}_{B G}[F] \in\left[B, B G L \mathbb{C}_{\delta}^{+}\right]
$$

Applying ch°, we recover the cohomological version of the Bismut-Lott index theorem

Note that both sides above exist for topological fibre bundles The smooth structure is needed for the theorem to hold

This theorem is not known for general algebraic K-theory classes that do not come from flat vector bundles

1.3.2 Dwyer-Weiss-Williams Index Theorem

Theorem (Dwyer-Weiss-Williams '03)
If $p: E \rightarrow B$ is a smooth fibre bundle with compact fibres, then

$$
\left[H^{\bullet}(E / B ; F)\right]=\operatorname{tr}_{B G}[F] \in\left[B, B G L \mathbb{C}_{\delta}^{+}\right]
$$

Applying ch°, we recover the cohomological version of the Bismut-Lott index theorem

Note that both sides above exist for topological fibre bundles The smooth structure is needed for the theorem to hold

This theorem is not known for general algebraic K-theory classes that do not come from flat vector bundles

If both sides vanish, one can define a Dwyer-Weiss-Williams Smooth Torsion.

1.4.1 Framed Functions

Let $p: E \rightarrow B$ be a fibre bundle as above Sometimes there exists no fibrewise Morse function $h: M \rightarrow \mathbb{R}$

1.4.1 Framed Functions

Let $p: E \rightarrow B$ be a fibre bundle as above Sometimes there exists no fibrewise Morse function $h: M \rightarrow \mathbb{R}$

Definition (Igusa '87)
A generalised fibrewise Morse function is a function $h: M \rightarrow \mathbb{R}$ such that each fibrewise singularity is of Morse or of birth-death type

1.4.1 Framed Functions

Let $p: E \rightarrow B$ be a fibre bundle as above Sometimes there exists no fibrewise Morse function $h: M \rightarrow \mathbb{R}$

Definition (Igusa '87)
A generalised fibrewise Morse function is a function $h: M \rightarrow \mathbb{R}$ such that each fibrewise singularity is of Morse or of birth-death type

It is a framed function if moreover the unstable vertical tangent bundle $T^{u} M \rightarrow C$ along the fibrewise critical set C is trivial

1.4.1 Framed Functions

Let $p: E \rightarrow B$ be a fibre bundle as above Sometimes there exists no fibrewise Morse function $h: M \rightarrow \mathbb{R}$

Definition (Igusa '87)
A generalised fibrewise Morse function is a function $h: M \rightarrow \mathbb{R}$ such that each fibrewise singularity is of Morse or of birth-death type

It is a framed function if moreover the unstable vertical tangent bundle $T^{u} M \rightarrow C$ along the fibrewise critical set C is trivial
Theorem (Igusa '87
Framed functions exist if $\operatorname{dim} M>\operatorname{dim} B$.

1.4.1 Framed Functions

Let $p: E \rightarrow B$ be a fibre bundle as above
Sometimes there exists no fibrewise Morse function $h: M \rightarrow \mathbb{R}$
Definition (Igusa '87)
A generalised fibrewise Morse function is a function $h: M \rightarrow \mathbb{R}$ such that each fibrewise singularity is of Morse or of birth-death type

It is a framed function if moreover the unstable vertical tangent bundle $T^{u} M \rightarrow C$ along the fibrewise critical set C is trivial
Theorem (Igusa '87; Eliashberg-Mishachef '00)
Framed functions exist if $\operatorname{dim} M>\operatorname{dim} B$.
Generalised Morse functions always exist.

1.4.2 Igusa-Klein Torsion

Let $p: E \rightarrow B$ be a fibre bundle as above
Let $F \rightarrow E$ be flat, g^{F} parallel, $H=H^{\bullet}(E / B ; F)=0$
Let $h: M \rightarrow \mathbb{R}$ be a framed function

1.4.2 Igusa-Klein Torsion

Let $p: E \rightarrow B$ be a fibre bundle as above
Let $F \rightarrow E$ be flat, g^{F} parallel, $H=H^{\bullet}(E / B ; F)=0$
Let $h: M \rightarrow \mathbb{R}$ be a framed function
These data induce a "classifying map" $\xi: B \rightarrow W h^{h}(\mathbb{C}, U)$ where $W h^{h}(\mathbb{C}, U)$ is called the acyclic unitary Whitehead space

1.4.2 Igusa-Klein Torsion

Let $p: E \rightarrow B$ be a fibre bundle as above
Let $F \rightarrow E$ be flat, g^{F} parallel, $H=H^{\bullet}(E / B ; F)=0$
Let $h: M \rightarrow \mathbb{R}$ be a framed function
These data induce a "classifying map" $\xi: B \rightarrow W h^{h}(\mathbb{C}, U)$ where $W h^{h}(\mathbb{C}, U)$ is called the acyclic unitary Whitehead space
There exists a nontrivial class $\tau \in H^{4 \bullet}\left(W h^{h}(\mathbb{C}, U) ; \mathbb{R}\right)$

1.4.2 Igusa-Klein Torsion

Let $p: E \rightarrow B$ be a fibre bundle as above
Let $F \rightarrow E$ be flat, g^{F} parallel, $H=H^{\bullet}(E / B ; F)=0$
Let $h: M \rightarrow \mathbb{R}$ be a framed function
These data induce a "classifying map" $\xi: B \rightarrow W h^{h}(\mathbb{C}, U)$ where $W h^{h}(\mathbb{C}, U)$ is called the acyclic unitary Whitehead space
There exists a nontrivial class $\tau \in H^{4 \bullet}\left(W h^{h}(\mathbb{C}, U) ; \mathbb{R}\right)$
Definition (Klein '89, Igusa-Klein '93, ... , Igusa '02)

$$
\tau(E / B, F)=\xi^{*} \tau
$$

1.4.2 Igusa-Klein Torsion

Let $p: E \rightarrow B$ be a fibre bundle as above
Let $F \rightarrow E$ be flat, g^{F} parallel, $H=H^{\bullet}(E / B ; F)=0$
Let $h: M \rightarrow \mathbb{R}$ be a framed function
These data induce a "classifying map" $\xi: B \rightarrow W h^{h}(\mathbb{C}, U)$ where $W h^{h}(\mathbb{C}, U)$ is called the acyclic unitary Whitehead space
There exists a nontrivial class $\tau \in H^{4 \bullet}\left(W h^{h}(\mathbb{C}, U) ; \mathbb{R}\right)$
Definition (Klein '89, Igusa-Klein '93, ... , Igusa '02)

$$
\tau(E / B, F)=\xi^{*} \tau
$$

Application (Igusa '02, G-Igusa, G-Igusa-Williams)
$\tau(E / B ; F)$ distinguishes smooth structures of different bundles with fibre M and base B that are homeomorphic as bundles

1.4.2 Igusa-Klein Torsion

Let $p: E \rightarrow B$ be a fibre bundle as above
Let $F \rightarrow E$ be flat, g^{F} parallel, $H=H^{\bullet}(E / B ; F)=0$
Let $h: M \rightarrow \mathbb{R}$ be a framed function
These data induce a "classifying map" $\xi: B \rightarrow W h^{h}(\mathbb{C}, U)$ where $W h^{h}(\mathbb{C}, U)$ is called the acyclic unitary Whitehead space
There exists a nontrivial class $\tau \in H^{4 \bullet}\left(W h^{h}(\mathbb{C}, U) ; \mathbb{R}\right)$
Definition (Klein '89, Igusa-Klein '93, ... , Igusa '02)

$$
\tau(E / B, F)=\xi^{*} \tau
$$

Application (Igusa '02, G-Igusa, G-Igusa-Williams)
$\tau(E / B ; F)$ distinguishes smooth structures of different bundles with fibre M and base B that are homeomorphic as bundles

Question: is $\tau(E / B, F)$ related to $\mathcal{T}\left(T^{H} E, g^{T M}, g^{F}\right)$?

1.5.1 Families of Thom-Smale Complexes

Let $p: E \rightarrow B, F, T^{H} E, g^{T M}$ and g^{F} be as above
Let $h: E \rightarrow \mathbb{R}$ be a fibrewise Morse function
Assume that $\nabla^{T M} h$ satisfies Smale transversality on each fibre Then the Thom-Smale complexes (V, δ) on the fibres form a locally trivial family with $V=\left.\hat{p}_{*} F\right|_{C}$

1.5.1 Families of Thom-Smale Complexes

Let $p: E \rightarrow B, F, T^{H} E, g^{T M}$ and g^{F} be as above
Let $h: E \rightarrow \mathbb{R}$ be a fibrewise Morse function
Assume that $\nabla^{T M} h$ satisfies Smale transversality on each fibre Then the Thom-Smale complexes (V, δ) on the fibres form a locally trivial family with $V=\left.\hat{p}_{*} F\right|_{C}$
Hence $A^{\prime}=\delta+\nabla^{V}$ is a flat superconnection on $V \rightarrow B$.
Define $A_{t}^{\prime}=\sqrt{t} \delta+\nabla^{V}, A_{t}^{\prime \prime}=\sqrt{t} \delta^{*}+\nabla^{V, *}$ and $X_{t}=A_{t}^{\prime \prime}-A_{t}^{\prime}$

1.5.1 Families of Thom-Smale Complexes

Let $p: E \rightarrow B, F, T^{H} E, g^{T M}$ and g^{F} be as above
Let $h: E \rightarrow \mathbb{R}$ be a fibrewise Morse function
Assume that $\nabla^{T M} h$ satisfies Smale transversality on each fibre
Then the Thom-Smale complexes (V, δ) on the fibres form a locally trivial family with $V=\left.\hat{p}_{*} F\right|_{C}$
Hence $A^{\prime}=\delta+\nabla^{V}$ is a flat superconnection on $V \rightarrow B$.
Define $A_{t}^{\prime}=\sqrt{t} \delta+\nabla^{V}, A_{t}^{\prime \prime}=\sqrt{t} \delta^{*}+\nabla^{V, *}$ and $X_{t}=A_{t}^{\prime \prime}-A_{t}^{\prime}$

Definition (Bismut-Lott '95)

$$
\begin{aligned}
T\left(A^{\prime}, g^{\vee}\right)= & -\int_{0}^{1}\left(\frac{4 s(1-s)}{2 \pi i}\right)^{\frac{\lambda^{B}}{2}} \int_{0}^{\infty}\left(\operatorname{str}\left(N^{v} f^{\prime}\left(X_{t} / 2\right)\right)\right. \\
& \left.-\chi^{\prime}(H)-\left(\chi^{\prime}(V)-\chi^{\prime}(H)\right) f^{\prime}(\sqrt{-t / 4})\right) \frac{d t}{2 t} d s
\end{aligned}
$$

1.5.1 Families of Thom-Smale Complexes

Let $p: E \rightarrow B, F, T^{H} E, g^{T M}$ and g^{F} be as above
Let $h: E \rightarrow \mathbb{R}$ be a fibrewise Morse function
Assume that $\nabla^{T M} h$ satisfies Smale transversality on each fibre
Then the Thom-Smale complexes (V, δ) on the fibres
form a locally trivial family with $V=\left.\hat{p}_{*} F\right|_{C}$
Hence $A^{\prime}=\delta+\nabla^{V}$ is a flat superconnection on $V \rightarrow B$.
Define $A_{t}^{\prime}=\sqrt{t} \delta+\nabla^{V}, A_{t}^{\prime \prime}=\sqrt{t} \delta^{*}+\nabla^{V, *}$ and $X_{t}=A_{t}^{\prime \prime}-A_{t}^{\prime}$

Definition (Bismut-Lott '95)

$$
\begin{aligned}
T\left(A^{\prime}, g^{v}\right)=- & \int_{0}^{1}\left(\frac{4 s(1-s)}{2 \pi i}\right)^{\frac{N^{B}}{2}} \int_{0}^{\infty}\left(\operatorname{str}\left(N^{\vee} f^{\prime}\left(X_{t} / 2\right)\right)\right. \\
& \left.-\chi^{\prime}(H)-\left(\chi^{\prime}(V)-\chi^{\prime}(H)\right) f^{\prime}(\sqrt{-t / 4})\right) \frac{d t}{2 t} d s
\end{aligned}
$$

This is analogous to the definition of $\mathcal{T}\left(T^{H} E, g^{T M}, g^{F}\right)$

1.5.2 A Comparison Formula

Let ζ denote the Riemann ζ-function
Define an additive characteristic class ${ }^{\circ} \mathrm{J}$ by

$$
{ }^{0} J=\frac{1}{2} \sum_{k=1}^{\infty} \zeta^{\prime}(-2 k) \operatorname{ch}(\cdot)^{[4 k]} \in H^{4 \bullet}(\cdot ; \mathbb{R})
$$

Let ch^{0} denote the Chern-Simons form for ch° such that

$$
d{\widetilde{\operatorname{ch}^{\circ}}}^{\circ}\left(F, g_{0}^{F}, g_{1}^{F}\right)=\operatorname{ch}^{\circ}\left(F, g_{1}^{F}\right)-\operatorname{ch}^{O}\left(F, g_{0}^{F}\right)
$$

1.5.2 A Comparison Formula

Let ζ denote the Riemann ζ-function
Define an additive characteristic class ${ }^{0} \mathrm{~J}$ by

$$
{ }^{0} J=\frac{1}{2} \sum_{k=1}^{\infty} \zeta^{\prime}(-2 k) \operatorname{ch}(\cdot)^{[4 k]} \in H^{4 \bullet}(\cdot ; \mathbb{R})
$$

Let $\widetilde{c h}^{\circ}$ denote the Chern-Simons form for ch° such that

$$
d{\widetilde{\operatorname{ch}^{\circ}}}\left(F, g_{0}^{F}, g_{1}^{F}\right)=\operatorname{ch}^{O}\left(F, g_{1}^{F}\right)-\operatorname{ch}^{O}\left(F, g_{0}^{F}\right)
$$

Theorem (Bismut-G '01)

$$
\begin{aligned}
& \mathcal{T}\left(T^{H} E, g^{T M}, g^{F}\right)=T\left(A^{\prime}, g^{V}\right)+\hat{p}_{*}{ }^{0} J\left(T^{S} M-T^{u} M\right) \text { rk } F \\
& +\int_{E / B}\left(\nabla^{T M} h\right)^{*} \psi\left(\nabla^{T M}, g^{T M}\right) \cdot \operatorname{ch}^{O}\left(F, g^{F}\right)+\widetilde{\operatorname{ch}^{O}}\left(H, g_{L^{2}}^{H}, g_{V}^{H}\right)
\end{aligned}
$$

1.5.2 A Comparison Formula

Let ζ denote the Riemann ζ-function
Define an additive characteristic class ${ }^{0} \mathrm{~J}$ by

$$
{ }^{0} J=\frac{1}{2} \sum_{k=1}^{\infty} \zeta^{\prime}(-2 k) \operatorname{ch}(\cdot)^{[4 k]} \in H^{4 \bullet}(\cdot ; \mathbb{R})
$$

Let $\widetilde{\mathrm{ch}^{\circ}}$ denote the Chern-Simons form for ch° such that

$$
d{\widetilde{\operatorname{ch}^{\circ}}}\left(F, g_{0}^{F}, g_{1}^{F}\right)=\operatorname{ch}^{O}\left(F, g_{1}^{F}\right)-\operatorname{ch}^{O}\left(F, g_{0}^{F}\right)
$$

Theorem (Bismut-G '01)

$$
\begin{aligned}
& \mathcal{T}\left(T^{H} E, g^{T M}, g^{F}\right)=T\left(A^{\prime}, g^{V}\right)+\hat{p}_{*}{ }^{0} J\left(T^{S} M-T^{u} M\right) \text { rk } F \\
& +\int_{E / B}\left(\nabla^{T M} h\right)^{*} \psi\left(\nabla^{T M}, g^{T M}\right) \cdot \operatorname{ch}^{\circ}\left(F, g^{F}\right)+\widetilde{\operatorname{ch}^{\circ}}\left(H, g_{L^{2}}^{H}, g_{V}^{H}\right)
\end{aligned}
$$

This generalises the Bismut-Zhang comparison formula

1.5.3 Igusa's Framing Principle

The fibrewise Morse function h above is not necessarily framed.

1.5.3 Igusa's Framing Principle

The fibrewise Morse function h above is not necessarily framed.
For a generalised fibrewise Morse function $h: E \rightarrow \mathbb{R}$ and a fibrewise acyclic flat bundle $F \rightarrow E$ with parallel metric g^{F} one still gets $\xi_{h} \in\left[B, W h^{h}(\mathbb{C}, U)\right]$ and considers $\xi_{h}^{*} \tau \in H^{\bullet}(B ; \mathbb{R})$

1.5.3 Igusa's Framing Principle

The fibrewise Morse function h above is not necessarily framed.
For a generalised fibrewise Morse function $h: E \rightarrow \mathbb{R}$ and a fibrewise acyclic flat bundle $F \rightarrow E$ with parallel metric g^{F} one still gets $\xi_{h} \in\left[B, W h^{h}(\mathbb{C}, U)\right]$ and considers $\xi_{h}^{*} \tau \in H^{\bullet}(B ; \mathbb{R})$
We still define $\tau(E / B ; F) \in H^{\bullet}(B ; \mathbb{R})$ using a framed function

1.5.3 Igusa's Framing Principle

The fibrewise Morse function h above is not necessarily framed.
For a generalised fibrewise Morse function $h: E \rightarrow \mathbb{R}$ and a fibrewise acyclic flat bundle $F \rightarrow E$ with parallel metric g^{F} one still gets $\xi_{h} \in\left[B, W h^{h}(\mathbb{C}, U)\right]$ and considers $\xi_{h}^{*} \tau \in H^{\bullet}(B ; \mathbb{R})$
We still define $\tau(E / B ; F) \in H^{\bullet}(B ; \mathbb{R})$ using a framed function
Theorem (Igusa '02)

$$
\xi_{h}^{*} \tau=\tau(E / B ; F)+2 \hat{p}_{*}{ }^{0} J\left(T^{u} M\right) \text { rk } F
$$

1.5.3 Igusa's Framing Principle

The fibrewise Morse function h above is not necessarily framed.
For a generalised fibrewise Morse function $h: E \rightarrow \mathbb{R}$ and a fibrewise acyclic flat bundle $F \rightarrow E$ with parallel metric g^{F} one still gets $\xi_{h} \in\left[B, W h^{h}(\mathbb{C}, U)\right]$ and considers $\xi_{h}^{*} \tau \in H^{\bullet}(B ; \mathbb{R})$ We still define $\tau(E / B ; F) \in H^{\bullet}(B ; \mathbb{R})$ using a framed function Theorem (Igusa '02)

$$
\xi_{h}^{*} \tau=\tau(E / B ; F)+2 \hat{p}_{*}{ }^{0} J\left(T^{u} M\right) \text { rk } F
$$

If F is fibrewise acyclic and g^{F} is parallel, then $T\left(A^{\prime}, g^{V}\right)=\xi_{h}^{*} \tau$ (see below), and hence

$$
\begin{aligned}
\mathcal{T}\left(T^{H} E, g^{T M}, g^{F}\right) & =\xi_{h}^{*} \tau+\hat{p}_{*}{ }^{0} J\left(T^{s} M-T^{u} M\right) \text { rk } F \\
& =\tau(E / B ; F)+\operatorname{tr}_{B G}{ }^{0} J(T M) \text { rk } F
\end{aligned}
$$

1.5.3 Igusa's Framing Principle

The fibrewise Morse function h above is not necessarily framed.
For a generalised fibrewise Morse function $h: E \rightarrow \mathbb{R}$ and a fibrewise acyclic flat bundle $F \rightarrow E$ with parallel metric g^{F} one still gets $\xi_{h} \in\left[B, W h^{h}(\mathbb{C}, U)\right]$ and considers $\xi_{h}^{*} \tau \in H^{\bullet}(B ; \mathbb{R})$ We still define $\tau(E / B ; F) \in H^{\bullet}(B ; \mathbb{R})$ using a framed function Theorem (Igusa '02)

$$
\xi_{h}^{*} \tau=\tau(E / B ; F)+2 \hat{p}_{*}{ }^{0} J\left(T^{u} M\right) \text { rk } F
$$

If F is fibrewise acyclic and g^{F} is parallel, then $T\left(A^{\prime}, g^{V}\right)=\xi_{h}^{*} \tau$ (see below), and hence

$$
\begin{aligned}
\mathcal{T}\left(T^{H} E, g^{T M}, g^{F}\right) & =\xi_{h}^{*} \tau+\hat{p}_{*}{ }^{0} J\left(T^{s} M-T^{u} M\right) \text { rk } F \\
& =\tau(E / B ; F)+\operatorname{tr}_{B G}{ }^{0} J(T M) \text { rk } F
\end{aligned}
$$

One can modify the smooth structure of $p: E \rightarrow B$ in such a way that $\xi_{h}^{*} \tau$ remains fixed and only $\hat{p}_{*}^{0} J\left(T^{u} M\right)$ changes

2.1.1 A more general Comparison Formula?

Most $p: E \rightarrow B$ do not admit a fibrewise Morse function such that $\nabla^{T M} h$ satisfies Thom-Smale transversality on each fibre Whenever $T\left(A^{\prime}, g^{F}\right)$ and $\tau(E / B ; F)$ are both defined, they are zero

2.1.1 A more general Comparison Formula ?

Most $p: E \rightarrow B$ do not admit a fibrewise Morse function such that $\nabla^{T M} h$ satisfies Thom-Smale transversality on each fibre Whenever $T\left(A^{\prime}, g^{F}\right)$ and $\tau(E / B ; F)$ are both defined, they are zero

Problem

- Generalise $T\left(V, A^{\prime}, g^{F}\right)$ using framed functions

2.1.1 A more general Comparison Formula ?

Most $p: E \rightarrow B$ do not admit a fibrewise Morse function such that $\nabla^{T M} h$ satisfies Thom-Smale transversality on each fibre Whenever $T\left(A^{\prime}, g^{F}\right)$ and $\tau(E / B ; F)$ are both defined, they are zero

Problem

- Generalise $T\left(V, A^{\prime}, g^{F}\right)$ using framed functions
- Relate $T\left(V, A^{\prime}, g^{F}\right)$ to $\tau(E / B ; F)$ if both are defined

2.1.1 A more general Comparison Formula?

Most $p: E \rightarrow B$ do not admit a fibrewise Morse function such that $\nabla^{T M} h$ satisfies Thom-Smale transversality on each fibre Whenever $T\left(A^{\prime}, g^{F}\right)$ and $\tau(E / B ; F)$ are both defined, they are zero

Problem

- Generalise $T\left(V, A^{\prime}, g^{F}\right)$ using framed functions
- Relate $T\left(V, A^{\prime}, g^{F}\right)$ to $\tau(E / B ; F)$ if both are defined
- Prove the comparison formula

$$
\begin{aligned}
& \mathcal{T}\left(T^{H} E, g^{T M}, g^{F}\right)=T\left(V, A^{\prime}, g^{V}\right)+\widetilde{\operatorname{ch}^{O}}\left(H, g_{L^{2}}^{H}, g_{V}^{H}\right) \\
& +\int_{E / B}\left(\nabla^{T M} h\right)^{*} \psi\left(\nabla^{T M}, g^{T M}\right) \cdot \operatorname{ch}^{O}\left(F, g^{F}\right) \\
& \quad+\hat{p}_{*}^{0} J\left(T^{s} M-T^{u} M\right) \text { rk } F
\end{aligned}
$$

2.1.2 Birth-Death Singularities

Two problems with generalised fibrewise Morse functions

- lack of Smale transversality on some fibres

2.1.2 Birth-Death Singularities

Two problems with generalised fibrewise Morse functions

- lack of Smale transversality on some fibres
- birth-death singularities

2.1.2 Birth-Death Singularities

Two problems with generalised fibrewise Morse functions

- lack of Smale transversality on some fibres
- birth-death singularities

Birth-death singularities can be separated algebraically from the rest of the Thom-Smale complex such that

$$
\left(V_{+}, A_{+}^{\prime}, g_{+}^{V}\right) \cong\left(V_{-}, A_{-}^{\prime}, g_{-}^{V}\right) \oplus\left(F \oplus F,\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)+\nabla^{F \oplus F}, g^{F \oplus F}\right)
$$

We call the right summand an elementary complex

2.1.2 Birth-Death Singularities

Two problems with generalised fibrewise Morse functions

- lack of Smale transversality on some fibres
- birth-death singularities

Birth-death singularities can be separated algebraically from the rest of the Thom-Smale complex such that

$$
\left(V_{+}, A_{+}^{\prime}, g_{+}^{V}\right) \cong\left(V_{-}, A_{-}^{\prime}, g_{-}^{V}\right) \oplus\left(F \oplus F,\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)+\nabla^{F \oplus F}, g^{F \oplus F}\right)
$$

We call the right summand an elementary complex It suffices to ensure that elementary complexes never contribute in the following constructions

2.1.3 Lack of Transversality

Non-transversality leads to varying Thom-Smale complexes

2.1.3 Lack of Transversality

Non-transversality leads to varying Thom-Smale complexes

2.1.3 Lack of Transversality

Non-transversality leads to varying Thom-Smale complexes

The exceptional flow line can be used to construct an isomorphism between the two Thom-Smale complexes

2.1.3 Lack of Transversality

Non-transversality leads to varying Thom-Smale complexes

The exceptional flow line can be used to construct an isomorphism between the two Thom-Smale complexes
It is of the form id $+a_{1}$, and a_{1} decreases the value of h
A smoothing procedure produces a flat superconnection

$$
A^{\prime}=a_{0}(b)+\nabla^{V}+a_{1}(b)
$$

2.1.4 The Thom-Smale superconnection

A small loop in B can lead to nontrivial holonomy in Aut V However, non-transversal flow lines of codimension 2 give a cochain homotopy back to id v

2.1.4 The Thom-Smale superconnection

A small loop in B can lead to nontrivial holonomy in Aut V However, non-transversal flow lines of codimension 2 give a cochain homotopy back to id v

Similarly, one gets higher and higher homotopies over small simplices in B from non-transversalities of higher codimension

2.1.4 The Thom-Smale superconnection

A small loop in B can lead to nontrivial holonomy in Aut V However, non-transversal flow lines of codimension 2 give a cochain homotopy back to id v
Similarly, one gets higher and higher homotopies over small simplices in B from non-transversalities of higher codimension
Smoothing this gives a full-fledged flat superconnection

$$
A^{\prime}=a_{0}+\left(\nabla^{V}+a_{1}\right)+a_{2}+\ldots, \quad a_{i} \in \Omega^{i}\left(B ; \text { End }^{1-i} V\right)
$$

The a_{i} strictly respect a local filtration on V induced by h

2.1.4 The Thom-Smale superconnection

A small loop in B can lead to nontrivial holonomy in Aut V However, non-transversal flow lines of codimension 2 give a cochain homotopy back to id v

Similarly, one gets higher and higher homotopies over small simplices in B from non-transversalities of higher codimension
Smoothing this gives a full-fledged flat superconnection

$$
A^{\prime}=a_{0}+\left(\nabla^{V}+a_{1}\right)+a_{2}+\ldots, \quad a_{i} \in \Omega^{i}\left(B ; \text { End }^{1-i} V\right)
$$

The a_{i} strictly respect a local filtration on V induced by h
Such superconnections are classified by $[B ; W h(\mathbb{C}, G L)]$ Restricting to fibrewise acyclic flat bundles F with parallel metric g^{F} leads to Igusa's $\left[B ; W h^{h}(\mathbb{C}, U)\right]$

2.2.1 Generalising Torsion Forms

Consider $A_{t}^{\prime}, A_{t}^{\prime \prime}$ and $X_{t}=A_{t}^{\prime \prime}-A_{t}^{\prime}$ on V as above, with

$$
X_{t}=t^{\frac{1}{2}}\left(a_{0}^{*}-a_{0}\right)+\left(\nabla^{v, *}+a_{1}^{*}-\nabla^{V}-a_{1}\right)+t^{-\frac{1}{2}}\left(a_{2}^{*}-a_{2}\right)+\ldots
$$

2.2.1 Generalising Torsion Forms

Consider $A_{t}^{\prime}, A_{t}^{\prime \prime}$ and $X_{t}=A_{t}^{\prime \prime}-A_{t}^{\prime}$ on V as above, with

$$
X_{t}=t^{\frac{1}{2}}\left(a_{0}^{*}-a_{0}\right)+\left(\nabla^{v, *}+a_{1}^{*}-\nabla^{V}-a_{1}\right)+t^{-\frac{1}{2}}\left(a_{2}^{*}-a_{2}\right)+\ldots
$$

Problem
For $t \rightarrow 0$, the integrand $\operatorname{str}\left(N^{\vee} f^{\prime}\left(X_{t} / 2\right)\right)$ of the finite-dimensional Bismut-Lott torsion diverges

2.2.1 Generalising Torsion Forms

Consider $A_{t}^{\prime}, A_{t}^{\prime \prime}$ and $X_{t}=A_{t}^{\prime \prime}-A_{t}^{\prime}$ on V as above, with

$$
X_{t}=t^{\frac{1}{2}}\left(a_{0}^{*}-a_{0}\right)+\left(\nabla^{V, *}+a_{1}^{*}-\nabla^{V}-a_{1}\right)+t^{-\frac{1}{2}}\left(a_{2}^{*}-a_{2}\right)+\ldots
$$

Problem
For $t \rightarrow 0$, the integrand $\operatorname{str}\left(N^{\vee} f^{\prime}\left(X_{t} / 2\right)\right)$ of the finite-dimensional Bismut-Lott torsion diverges

Solution

Replace the integral over $[0,1]$ in the construction of $T\left(A^{\prime}, g^{F}\right)$

2.2.1 Generalising Torsion Forms

Consider $A_{t}^{\prime}, A_{t}^{\prime \prime}$ and $X_{t}=A_{t}^{\prime \prime}-A_{t}^{\prime}$ on V as above, with
$X_{t}=t^{\frac{1}{2}}\left(a_{0}^{*}-a_{0}\right)+\left(\nabla^{V, *}+a_{1}^{*}-\nabla^{V}-a_{1}\right)+t^{-\frac{1}{2}}\left(a_{2}^{*}-a_{2}\right)+\ldots$

Problem
For $t \rightarrow 0$, the integrand $\operatorname{str}\left(N^{V} f^{\prime}\left(X_{t} / 2\right)\right)$ of the finite-dimensional Bismut-Lott torsion diverges

Solution

Replace the integral over $[0,1]$ in the construction of $T\left(A^{\prime}, g^{F}\right)$
First idea: finite-dimensional Witten deformation
Works, but dependence on h prevents definition on $W h(\mathbb{C}, G L)$

2.2.1 Generalising Torsion Forms

Consider $A_{t}^{\prime}, A_{t}^{\prime \prime}$ and $X_{t}=A_{t}^{\prime \prime}-A_{t}^{\prime}$ on V as above, with
$X_{t}=t^{\frac{1}{2}}\left(a_{0}^{*}-a_{0}\right)+\left(\nabla^{V, *}+a_{1}^{*}-\nabla^{V}-a_{1}\right)+t^{-\frac{1}{2}}\left(a_{2}^{*}-a_{2}\right)+\ldots$

Problem
For $t \rightarrow 0$, the integrand $\operatorname{str}\left(N^{V} f^{\prime}\left(X_{t} / 2\right)\right)$ of the finite-dimensional Bismut-Lott torsion diverges

Solution

Replace the integral over $[0,1]$ in the construction of $T\left(A^{\prime}, g^{F}\right)$
First idea: finite-dimensional Witten deformation
Works, but dependence on h prevents definition on $W h(\mathbb{C}, G L)$
The following approach is equivalent, but independent of h

2.2.2 An Adapted Superconnection

For $s, t \in[0,1]$, we define a new superconnection

$$
\begin{aligned}
{ }^{2} A= & t\left((1-s) A^{\prime}+s A^{\prime \prime}\right) \\
& +(1-t)\left((1-s) \nabla^{v}+s \nabla^{v, *}\right)+(2 s-1) N^{v} d \log t
\end{aligned}
$$

2.2.2 An Adapted Superconnection

For $s, t \in[0,1]$, we define a new superconnection

$$
\begin{aligned}
{ }^{2} A= & t\left((1-s) A^{\prime}+s A^{\prime \prime}\right) \\
& +(1-t)\left((1-s) \nabla^{v}+s \nabla^{v, *}\right)+(2 s-1) N^{v} d \log t
\end{aligned}
$$

For $s=0$, it strictly respects the local filtration by h
For $s=1$, it strictly respects the orthogonal filtration
In particular, $\left.{ }^{2} A^{2}\right|_{s=0}$ and $\left.{ }^{2} A^{2}\right|_{s=1}$ are strictly triangular

2.2.2 An Adapted Superconnection

For $s, t \in[0,1]$, we define a new superconnection

$$
\begin{aligned}
{ }^{2} A= & t\left((1-s) A^{\prime}+s A^{\prime \prime}\right) \\
& +(1-t)\left((1-s) \nabla^{v}+s \nabla^{v, *}\right)+(2 s-1) N^{v} d \log t
\end{aligned}
$$

For $s=0$, it strictly respects the local filtration by h
For $s=1$, it strictly respects the orthogonal filtration
In particular, $\left.{ }^{2} A^{2}\right|_{s=0}$ and $\left.{ }^{2} A^{2}\right|_{s=1}$ are strictly triangular
For $t=1$, it interpolates between A^{\prime} and $A^{\prime \prime}$
For $t=0$, it interpolates between ∇^{\vee} and $\nabla^{V, *}$
In particular

$$
\begin{aligned}
&(2 \pi i)^{\frac{1-N^{B}}{2}} \int_{s=0}^{1} \frac{1}{2} \operatorname{str}\left(e^{-2 A^{2} \mid t=0}\right) \\
&=\pi i \widetilde{\mathrm{ch}}\left(F, \nabla^{F}, \nabla^{F, *}\right)=\operatorname{ch}^{\circ}\left(\nabla^{F}, g^{F}\right)
\end{aligned}
$$

2.2.3 Torsion for General Thom-Smale Complexes

Let $p: E \rightarrow B, F \rightarrow E, h: E \rightarrow \mathbb{R}$ and g^{V} be as above Then define X_{t} and ${ }^{2} A$ as before

2.2.3 Torsion for General Thom-Smale Complexes

Let $p: E \rightarrow B, F \rightarrow E, h: E \rightarrow \mathbb{R}$ and g^{V} be as above Then define X_{t} and ${ }^{2} A$ as before

Definition

$T\left(V, A^{\prime}, g^{V}\right)$

$$
\begin{aligned}
& =-(2 \pi i)^{-\frac{N^{B}}{2}} \int_{0}^{1} \int_{1}^{\infty}\left(\operatorname{str}\left(N^{V} f^{\prime}\left(\sqrt{s(1-s)} X_{t}\right)\right)-\chi^{\prime}(H)\right. \\
& \left.\quad-\left(\chi^{\prime}(V)-\chi^{\prime}(H)\right) f^{\prime}(\sqrt{-s(1-s) t})\right) \frac{d t}{2 t} d s \\
& -(2 \pi i)^{-\frac{N^{B}}{2}} \int_{0}^{1} \int_{0}^{1}\left(\frac{1}{2} \operatorname{str}_{V}\left(e^{-{ }^{2} A^{2}}\right)\right. \\
& \left.\quad-\left(\chi^{\prime}(V)-\chi^{\prime}(H)\right)\left(f^{\prime}(\sqrt{-s(1-s) t})-1\right) \frac{d t}{2 t} d s\right)
\end{aligned}
$$

2.2.3 Torsion for General Thom-Smale Complexes

Let $p: E \rightarrow B, F \rightarrow E, h: E \rightarrow \mathbb{R}$ and g^{V} be as above Then define X_{t} and ${ }^{2} A$ as before

Definition

$T\left(V, A^{\prime}, g^{V}\right)$

$$
\begin{aligned}
& =-(2 \pi i)^{-\frac{N^{B}}{2}} \int_{0}^{1} \int_{1}^{\infty}\left(\operatorname{str}\left(N^{V} f^{\prime}\left(\sqrt{s(1-s)} X_{t}\right)\right)-\chi^{\prime}(H)\right. \\
& \left.\quad-\left(\chi^{\prime}(V)-\chi^{\prime}(H)\right) f^{\prime}(\sqrt{-s(1-s) t})\right) \frac{d t}{2 t} d s \\
& -(2 \pi i)^{-\frac{N^{B}}{2}} \int_{0}^{1} \int_{0}^{1}\left(\frac{1}{2} \operatorname{str}_{V}\left(e^{-A^{2} A^{2}}\right)\right. \\
& \left.\quad-\left(\chi^{\prime}(V)-\chi^{\prime}(H)\right)\left(f^{\prime}(\sqrt{-s(1-s) t})-1\right) \frac{d t}{2 t} d s\right)
\end{aligned}
$$

This form vanishes on elementary complexes Hence it extends to a smooth torsion form on B

2.3.1 The Transgression Formula

Theorem

$$
d T\left(V, A^{\prime}, g^{V}\right)=\operatorname{ch}^{\circ}\left(V, g^{V}\right)-\operatorname{ch}^{\circ}\left(H, g^{H}\right)
$$

2.3.1 The Transgression Formula

Theorem

$$
d T\left(V, A^{\prime}, g^{V}\right)=\operatorname{ch}^{O}\left(V, g^{V}\right)-\operatorname{ch}^{\circ}\left(H, g^{H}\right)
$$

Proof.

The picture describes the integration in the definition of $T\left(V, A^{\prime}, g^{V}\right)$

2.3.1 The Transgression Formula

Theorem

$$
d T\left(V, A^{\prime}, g^{V}\right)=\operatorname{ch}^{\circ}\left(V, g^{V}\right)-\operatorname{ch}^{\circ}\left(H, g^{H}\right)
$$

Proof.

The picture describes the integration in the definition of $T\left(V, A^{\prime}, g^{V}\right)$
The integrand (up to correction terms) is the Chern form of a superconnection on V that interpolates between the superconnections in the corners of the two rectangles

2.3.1 The Transgression Formula

Theorem

$$
d T\left(V, A^{\prime}, g^{V}\right)=\operatorname{ch}^{\circ}\left(V, g^{V}\right)-\operatorname{ch}^{\circ}\left(H, g^{H}\right)
$$

Proof.
The picture describes the integration in the definition of $T\left(V, A^{\prime}, g^{V}\right)$
The integrand (up to correction terms) is the Chern form of a superconnection on V that interpolates between the superconnections in the corners of the two rectangles
The Statement follows from the fibrewise Stokes theorem

2.3.2 Another Proof of the Bismut-Lott Theorem

Theorem

$$
\begin{aligned}
& d\left(T\left(V, A^{\prime}, g^{V}\right)+\widetilde{c h}^{\circ}\left(H, g_{L^{2}}^{H}, g_{V}^{H}\right)\right. \\
& \left.\quad+\int_{E / B}\left(\nabla^{T M} h\right)^{*} \psi\left(\nabla^{T M}, g^{T M}\right) \cdot \operatorname{ch}^{\circ}\left(F, g^{F}\right)\right) \\
& \quad=\int_{E / B} e\left(T M, \nabla^{T M}\right) \operatorname{ch}^{\circ}\left(F, g^{F}\right)-\operatorname{ch}^{\circ}\left(H, g_{L^{2}}^{H}\right)
\end{aligned}
$$

2.3.2 Another Proof of the Bismut-Lott Theorem

Theorem

$$
\begin{aligned}
& d\left(T\left(V, A^{\prime}, g^{V}\right)+\widetilde{c h}^{\circ}\left(H, g_{L^{2}}^{H}, g_{V}^{H}\right)\right. \\
& \left.\quad+\int_{E / B}\left(\nabla^{T M} h\right)^{*} \psi\left(\nabla^{T M}, g^{T M}\right) \cdot \operatorname{ch}^{\circ}\left(F, g^{F}\right)\right) \\
& \quad=\int_{E / B} e\left(T M, \nabla^{T M}\right) \operatorname{ch}^{\circ}\left(F, g^{F}\right)-\operatorname{ch}^{\circ}\left(H, g_{L^{2}}^{H}\right)
\end{aligned}
$$

Passing to cohomology, we see as before that

$$
\operatorname{ch}^{\circ}(H)=\int_{E / B} e(T M) \operatorname{ch}^{o}(F)=\operatorname{tr}_{B G} \operatorname{ch}^{\circ}(F)
$$

2.3.2 Another Proof of the Bismut-Lott Theorem

Theorem

$$
\begin{aligned}
& d\left(T\left(V, A^{\prime}, g^{V}\right)+\widetilde{\operatorname{ch}^{\circ}}\left(H, g_{L^{2}}^{H}, g_{V}^{H}\right)\right. \\
& \left.\quad+\int_{E / B}\left(\nabla^{T M} h\right)^{*} \psi\left(\nabla^{T M}, g^{T M}\right) \cdot \operatorname{ch}^{\circ}\left(F, g^{F}\right)\right) \\
& \quad=\int_{E / B} e\left(T M, \nabla^{T M}\right) \operatorname{ch}^{\circ}\left(F, g^{F}\right)-\operatorname{ch}^{\circ}\left(H, g_{L^{2}}^{H}\right)
\end{aligned}
$$

Passing to cohomology, we see as before that

$$
\operatorname{ch}^{o}(H)=\int_{E / B} e(T M) \operatorname{ch}^{o}(F)=\operatorname{tr}_{B G} \operatorname{ch}^{o}(F)
$$

Proof.
This follows using the properties of $\widetilde{c h}^{\circ}\left(H, g_{L^{2}}^{H}, g_{V}^{H}\right)$ and of the Mathai-Quillen current $\psi\left(\nabla^{T M}, g^{T M}\right)$

2.3.3 A Comparison Formula?

Comparing the left hand sides of the two versions of the Bismut-Lott index theorem, we could guess a relation between $\mathcal{T}\left(T^{H} E, g^{T M}, g^{F}\right)$ and $T\left(V, A^{\prime}, g^{V}\right)$

2.3.3 A Comparison Formula?

Comparing the left hand sides of the two versions of the Bismut-Lott index theorem, we could guess a relation between $\mathcal{T}\left(T^{H} E, g^{T M}, g^{F}\right)$ and $T\left(V, A^{\prime}, g^{V}\right)$
But from the comparison formula of [Bismut-G '01] and Igusa's splitting principle, we also expect the ${ }^{0} J$-class to appear

2.3.3 A Comparison Formula?

Comparing the left hand sides of the two versions of the Bismut-Lott index theorem, we could guess a relation between $\mathcal{T}\left(T^{H} E, g^{T M}, g^{F}\right)$ and $T\left(V, A^{\prime}, g^{V}\right)$
But from the comparison formula of [Bismut-G '01] and Igusa's splitting principle, we also expect the ${ }^{0} J$-class to appear

Conjecture

$$
\begin{aligned}
& \mathcal{T}\left(T^{H} E, g^{T M}, g^{F}\right)=T\left(V, A^{\prime}, g^{V}\right)+\widetilde{\operatorname{ch}^{\circ}}\left(H, g_{L^{2}}^{H}, g_{V}^{H}\right) \\
& +\int_{E / B}\left(\nabla^{T M} h\right)^{*} \psi\left(\nabla^{T M}, g^{T M}\right) \cdot \operatorname{ch}^{O}\left(F, g^{F}\right) \\
& +\hat{p}_{*}{ }^{0} J\left(T^{s} M-T^{u} M\right) \text { rk } F
\end{aligned}
$$

2.3.3 A Comparison Formula?

Comparing the left hand sides of the two versions of the Bismut-Lott index theorem, we could guess a relation between $\mathcal{T}\left(T^{H} E, g^{T M}, g^{F}\right)$ and $T\left(V, A^{\prime}, g^{V}\right)$
But from the comparison formula of [Bismut-G '01] and Igusa's splitting principle, we also expect the ${ }^{0} J$-class to appear

Conjecture

$$
\begin{aligned}
\mathcal{T}\left(T^{H} E, g^{T M}, g^{F}\right)=T\left(V, A^{\prime}, g^{V}\right) & \left.+{\widetilde{\operatorname{ch}^{\circ}}\left(H, g_{L^{2}}^{H}, g_{V}^{H}\right)}_{+\int_{E / B}\left(\nabla^{T M} h\right)^{*} \psi\left(\nabla^{T M},\right.}, g^{T M}\right) \cdot \operatorname{ch}^{O}\left(F, g^{F}\right) \\
& +\hat{p}_{*}{ }^{0} J\left(T^{s} M-T^{u} M\right) \text { rk } F
\end{aligned}
$$

The proof should use Witten deformation and an adapted quasi-isomorphism

$$
I:\left(\Omega^{\bullet}\left(B ; \Omega^{\bullet}(E / B ; F)\right), \mathbb{A}^{\prime}\right) \rightarrow\left(\Omega^{\bullet}(B, V), A^{\prime}\right)
$$

2.4.1 Cohomological Invariants

Assume that F carries a parallel decreasing filtration $\mathcal{F} F$ and that all subquotients $\mathcal{F}^{k} F / \mathcal{F}^{k+1} F$ carry parallel metrics

2.4.1 Cohomological Invariants

Assume that F carries a parallel decreasing filtration $\mathcal{F} F$ and that all subquotients $\mathcal{F}^{k} F / \mathcal{F}^{k+1} F$ carry parallel metrics Then there exists a form $L\left(\mathcal{F F}, g^{F}\right)$ such that

$$
d L\left(\mathcal{F F}, g^{F}\right)=\operatorname{ch}^{\circ}\left(F, g^{F}\right)
$$

and $L\left(\mathcal{F} F, g^{F}\right)$ is unique up to exact forms in degrees ≥ 2.

2.4.1 Cohomological Invariants

Assume that F carries a parallel decreasing filtration $\mathcal{F} F$ and that all subquotients $\mathcal{F}^{k} F / \mathcal{F}^{k+1} F$ carry parallel metrics Then there exists a form $L\left(\mathcal{F F}, g^{F}\right)$ such that

$$
d L\left(\mathcal{F F}, g^{F}\right)=\operatorname{ch}^{\circ}\left(F, g^{F}\right)
$$

and $L\left(\mathcal{F} F, g^{F}\right)$ is unique up to exact forms in degrees ≥ 2.

Definition

Assume that both F and H are filtered as above. Then put

$$
\begin{aligned}
& \mathcal{T}(E / B, F)=\left[\mathcal{T}\left(T^{H} E, g^{T M}, g^{F}\right)+L\left(\mathcal{F H}, g_{L^{2}}^{H}\right)-L\left(\mathcal{F F}, g^{F}\right)\right]^{[\geq 2]} \\
& T(E / B, F, h)=\left[T\left(V, A^{\prime}, g^{V}\right)+L\left(\mathcal{F H}, g_{L^{2}}^{H}\right)-\hat{p}_{*} L\left(\mathcal{F} F, g^{F}\right)\right]^{[\geq 2]}
\end{aligned}
$$

2.4.1 Cohomological Invariants

Assume that F carries a parallel decreasing filtration $\mathcal{F} F$ and that all subquotients $\mathcal{F}^{k} F / \mathcal{F}^{k+1} F$ carry parallel metrics Then there exists a form $L\left(\mathcal{F F}, g^{F}\right)$ such that

$$
d L\left(\mathcal{F F}, g^{F}\right)=\operatorname{ch}^{\circ}\left(F, g^{F}\right)
$$

and $L\left(\mathcal{F} F, g^{F}\right)$ is unique up to exact forms in degrees ≥ 2.

Definition

Assume that both F and H are filtered as above. Then put

$$
\begin{aligned}
& \mathcal{T}(E / B, F)=\left[\mathcal{T}\left(T^{H} E, g^{T M}, g^{F}\right)+L\left(\mathcal{F H}, g_{L^{2}}^{H}\right)-L\left(\mathcal{F F}, g^{F}\right)\right]^{[\geq 2]} \\
& T(E / B, F, h)=\left[T\left(V, A^{\prime}, g^{V}\right)+L\left(\mathcal{F H}, g_{L^{2}}^{H}\right)-\hat{p}_{*} L\left(\mathcal{F} F, g^{F}\right)\right]^{[\geq 2]}
\end{aligned}
$$

If h is framed, put $T(E / B ; F)=T(E / B, F, h)$ independent of h

2.4.2 A Cheeger-Müller Type Theorem

Theorem
If h is framed and both torsions below are defined, then

$$
T(E / H, F)=\tau(E / H, F)
$$

2.4.2 A Cheeger-Müller Type Theorem

Theorem
If h is framed and both torsions below are defined, then

$$
T(E / H, F)=\tau(E / H, F)
$$

If h is framed and the conjecture above holds, then

$$
\mathcal{T}(E / H, F)+\operatorname{tr}_{B G}{ }^{0} J(T M) \text { rk } F=T(E / H, F)
$$

2.4.2 A Cheeger-Müller Type Theorem

Theorem
If h is framed and both torsions below are defined, then

$$
T(E / H, F)=\tau(E / H, F)
$$

If h is framed and the conjecture above holds, then

$$
\mathcal{T}(E / H, F)+\operatorname{tr}_{B G}{ }^{0} J(T M) \text { rk } F=T(E / H, F)
$$

These formulas fit with Igusa's axiomatic approach

2.4.2 A Cheeger-Müller Type Theorem

Theorem

If h is framed and both torsions below are defined, then

$$
T(E / H, F)=\tau(E / H, F)
$$

If h is framed and the conjecture above holds, then

$$
\mathcal{T}(E / H, F)+\operatorname{tr}_{B G}{ }^{0} J(T M) \mathrm{rk} F=T(E / H, F)
$$

These formulas fit with Igusa's axiomatic approach
Theorem (Igusa '08)
Each torsion invariant for families with $H^{\bullet}(E / B ; \mathbb{C}) \rightarrow B$ trivial (or, more generally, unipotent) that satisfies the additivity and the transfer axiom is a linear combination of $\tau(E / B, \mathbb{C})$ and the generalised Miller-Morita-Mumford class $\operatorname{tr}_{B G}{ }^{0} J(T M)$

Thanks for your attention

