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Happy Birthday, Jean-Michel!

“One could say that mathematics is the music of the mind”
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The determinant

Following Grothendieck, Knudsen and Mumford showed in 1976 that the
determinant line bundle of complexes of vector bundles on a projective
variety X is natural with respect to quasi-isomorphisms. In particular, the
determinant is well-defined in the derived category.

Goals of this talk

Construct the n-stack of deformations of a complex of holomorphic
vector bundles of length n on a compact complex manifold X.

Extend Kuranishi’s construction of the analytic stack of deformations
of a vector bundle to complexes of vector bundles.

Define the determinant on this n-stack.

This is a joint project with Kai Behrend.
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Banach algebras and Lie groups

First, we must explain what an n-stack is.

The open subset G(A) of invertible elements of a Banach algebra A is a
Lie group. A Lie group is an example of a 1-stack (more or less the same
thing as a Lie groupoid).

When A∗ is a differential graded Banach algebra, what replaces G(A)?

We will associate an analytic n-stack (Lie n-groupoid) to a differential
graded Banach algebra A∗ concentrated in degrees (−n,∞). In fact, we
will represent this n-stack by its nerve N•A. This is a simplicial Banach
analytic space.
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The nerve of a group

If n is a natural number, let [n] be the category whose objects are the
natural numbers {0, . . . , n}, with a single morphism from i to j if i ≤ j.

0 // 1 // 2 // · · · // n

The nerve of a group G is the simplicial set whose n-simplices are the
functors from [n] to G (thought of as a category with a single object).

This set is denoted NnG. In fact, NnG ∼= Gn. We have N0G is the
identity element, and N1G is the set of elements of G.

This representation is more finite than one might fear: it is not hard to see
that one may reconstruct the group from the 2-skeleton of its nerve.

We may also define the nerve of a groupoid (or of any small category): in
this case, N0G is the set of objects of the groupoid.

Higher analytic stacks 5 / 24



The nerve of a group

If n is a natural number, let [n] be the category whose objects are the
natural numbers {0, . . . , n}, with a single morphism from i to j if i ≤ j.

0 // 1 // 2 // · · · // n

The nerve of a group G is the simplicial set whose n-simplices are the
functors from [n] to G (thought of as a category with a single object).

This set is denoted NnG. In fact, NnG ∼= Gn. We have N0G is the
identity element, and N1G is the set of elements of G.

This representation is more finite than one might fear: it is not hard to see
that one may reconstruct the group from the 2-skeleton of its nerve.

We may also define the nerve of a groupoid (or of any small category): in
this case, N0G is the set of objects of the groupoid.

Higher analytic stacks 5 / 24



The nerve of a group

If n is a natural number, let [n] be the category whose objects are the
natural numbers {0, . . . , n}, with a single morphism from i to j if i ≤ j.

0 // 1 // 2 // · · · // n

The nerve of a group G is the simplicial set whose n-simplices are the
functors from [n] to G (thought of as a category with a single object).

This set is denoted NnG. In fact, NnG ∼= Gn. We have N0G is the
identity element, and N1G is the set of elements of G.

This representation is more finite than one might fear: it is not hard to see
that one may reconstruct the group from the 2-skeleton of its nerve.

We may also define the nerve of a groupoid (or of any small category): in
this case, N0G is the set of objects of the groupoid.

Higher analytic stacks 5 / 24



The nerve of a group

If n is a natural number, let [n] be the category whose objects are the
natural numbers {0, . . . , n}, with a single morphism from i to j if i ≤ j.

0 // 1 // 2 // · · · // n

The nerve of a group G is the simplicial set whose n-simplices are the
functors from [n] to G (thought of as a category with a single object).

This set is denoted NnG. In fact, NnG ∼= Gn. We have N0G is the
identity element, and N1G is the set of elements of G.

This representation is more finite than one might fear: it is not hard to see
that one may reconstruct the group from the 2-skeleton of its nerve.

We may also define the nerve of a groupoid (or of any small category): in
this case, N0G is the set of objects of the groupoid.

Higher analytic stacks 5 / 24



The nerve of a group

If n is a natural number, let [n] be the category whose objects are the
natural numbers {0, . . . , n}, with a single morphism from i to j if i ≤ j.

0 // 1 // 2 // · · · // n

The nerve of a group G is the simplicial set whose n-simplices are the
functors from [n] to G (thought of as a category with a single object).

This set is denoted NnG. In fact, NnG ∼= Gn. We have N0G is the
identity element, and N1G is the set of elements of G.

This representation is more finite than one might fear: it is not hard to see
that one may reconstruct the group from the 2-skeleton of its nerve.

We may also define the nerve of a groupoid (or of any small category): in
this case, N0G is the set of objects of the groupoid.

Higher analytic stacks 5 / 24



Horns

The n-simplex ∆n is the simplicial set whose m-simplices are functors
from [m] to [n]. It has a single non-degenerate n-simplex (corresponding
to the identity map from [n] to itself), and all of its non-degenerate
simplices are faces of this one.

In particular, we have the ith face ∂i∆
n, which is the (n− 1)-simplex

opposite the ith vertex: its geometric realization is the convex hull of the
vertices {0, . . . , ı̂, . . . , n}.

The horn Λni ⊂ ∆n is the union of all of the faces of the n-simplex that
contain the ith vertex:

Λni =
⋃
j 6=i

∂j∆
n.
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Let X• be a simplicial set. For each 0 ≤ i ≤ n, there is a natural map

λn,i(X•) : Xn → Hom(Λni , X•)

from the n-simplices of the simplicial set to its horns.

For example, λ1,0 and λ1,1 take a 1-simplex to its source and target.

Theorem (Grothendieck)

A simplicial set X• is the nerve of a groupoid if and only if the maps

λn,i(X•)

are bijections for n > 1. It is the nerve of a group if, in addition, X0
∼= ∗.
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Several important notions from geometry and algebra are obtained by
tweaking this theorem. For example, X• is the nerve of a category if and
only if the maps λn,i(X•) are bijections for 0 < i < n.

More relevant to this talk: a simplicial manifold X• is the nerve of a Lie
groupoid if and only if the maps λn,i(X•) are diffeomorphisms for n > 1,
and surjective submersions for n = 1.

The following definition is due to Duskin, in the discrete case, and
Henriques, in the smooth case.

Definition

A k-groupoid is a simplicial set such that

λn,i(X•) : Xn → Hom(Λni , X•)

is a surjection for n > 0, and a bijection for n > k.

A Lie k-groupoid is a simplicial Banach analytic space such that
λn,i(X•) is a surjective submersion for n > 0, and an isomorphism for
n > k.

Higher analytic stacks 9 / 24



Several important notions from geometry and algebra are obtained by
tweaking this theorem. For example, X• is the nerve of a category if and
only if the maps λn,i(X•) are bijections for 0 < i < n.

More relevant to this talk: a simplicial manifold X• is the nerve of a Lie
groupoid if and only if the maps λn,i(X•) are diffeomorphisms for n > 1,
and surjective submersions for n = 1.

The following definition is due to Duskin, in the discrete case, and
Henriques, in the smooth case.

Definition

A k-groupoid is a simplicial set such that

λn,i(X•) : Xn → Hom(Λni , X•)

is a surjection for n > 0, and a bijection for n > k.

A Lie k-groupoid is a simplicial Banach analytic space such that
λn,i(X•) is a surjective submersion for n > 0, and an isomorphism for
n > k.

Higher analytic stacks 9 / 24



Several important notions from geometry and algebra are obtained by
tweaking this theorem. For example, X• is the nerve of a category if and
only if the maps λn,i(X•) are bijections for 0 < i < n.

More relevant to this talk: a simplicial manifold X• is the nerve of a Lie
groupoid if and only if the maps λn,i(X•) are diffeomorphisms for n > 1,
and surjective submersions for n = 1.

The following definition is due to Duskin, in the discrete case, and
Henriques, in the smooth case.

Definition

A k-groupoid is a simplicial set such that

λn,i(X•) : Xn → Hom(Λni , X•)

is a surjection for n > 0, and a bijection for n > k.

A Lie k-groupoid is a simplicial Banach analytic space such that
λn,i(X•) is a surjective submersion for n > 0, and an isomorphism for
n > k.

Higher analytic stacks 9 / 24



Several important notions from geometry and algebra are obtained by
tweaking this theorem. For example, X• is the nerve of a category if and
only if the maps λn,i(X•) are bijections for 0 < i < n.

More relevant to this talk: a simplicial manifold X• is the nerve of a Lie
groupoid if and only if the maps λn,i(X•) are diffeomorphisms for n > 1,
and surjective submersions for n = 1.

The following definition is due to Duskin, in the discrete case, and
Henriques, in the smooth case.

Definition

A k-groupoid is a simplicial set such that

λn,i(X•) : Xn → Hom(Λni , X•)

is a surjection for n > 0, and a bijection for n > k.

A Lie k-groupoid is a simplicial Banach analytic space such that
λn,i(X•) is a surjective submersion for n > 0, and an isomorphism for
n > k.

Higher analytic stacks 9 / 24



The Maurer-Cartan set of a differential graded algebra

A Maurer-Cartan element of a differential graded algebra A∗ is an element
µ ∈ A1 of degree 1 satisfying the equation

δµ+ µ2 = 0.

Of course, this equation is familiar from the theory of connections on
vector bundles: it is the equation for a connection to be flat.

Let δµ : A∗ → A∗+1 be the operator δ + [µ,−]. Then δ2
µ = 0.

Maurer-Cartan elements of A∗ correspond to deformations of the
differential δ.

Definition

If A∗ is a differential graded algebra, MC(A) is the set of
Maurer-Cartan elements.

If A∗ is a Banach differential graded algebra, MC(A) is the Banach
analytic space of Maurer-Cartan elements.
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Examples of differential graded algebras
Let X be a topological space, with open cover U = {Ui ⊂ X}i∈I .

Let A∗ be a sheaf of differential graded algebras over X. The normalized
Čech complex of A is the graded vector space

Čk(U ,A) =

k⊕
q=0

⊕
i0,...,iq∈I

ij−1 6= ij for 1 ≤ j ≤ q

Γ(Ui0 ∩ · · · ∩ Uiq ,Ak−q).

The differential is

(da)i0...iq = δai0...iq +

q∑
j=0

(−1)q−j ai0...̂ıj ...iq |Ui0
∩···∩Uiq

and the product is

(a ∪ b)i0...iq =

q∑
p=0

(−1)pq ai0...ip |Ui0
∩···∩Uip

· bip...ik |Ui0
∩···∩Uik

.
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Čk(U ,A) =

k⊕
q=0

⊕
i0,...,iq∈I

ij−1 6= ij for 1 ≤ j ≤ q

Γ(Ui0 ∩ · · · ∩ Uiq ,Ak−q).

The differential is

(da)i0...iq = δai0...iq +

q∑
j=0

(−1)q−j ai0...̂ıj ...iq |Ui0
∩···∩Uiq

and the product is

(a ∪ b)i0...iq =

q∑
p=0

(−1)pq ai0...ip |Ui0
∩···∩Uip

· bip...ik |Ui0
∩···∩Uik

.

Higher analytic stacks 11 / 24



The fat simplex

The special case where X is the geometric n-simplex

∆n = {(t0, . . . , tn) ∈ [0, 1]n+1 | t0 + · · ·+ tn = 1}

covered by the open subsets Ui = {ti > 0} (the complements of the faces)
plays a special role in this talk.

Let �n be the fat simplex

�n = cosk0 ∆n.

It is the nerve of the groupoid whose objects are the vertices of ∆n, with a
single isomorphism between any two vertices.

The fat interval �1 is sometimes written J . Its geometric realization is the
sphere S∞: it has two non-degenerate simplices in each dimension
(0, 1, 0, . . . ) and (1, 0, 1, . . . ).
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The nerve of a differential graded algebra
The Čech complex Č∗({U0, . . . , Un}, A) is isomorphic to C∗(�n, A). We
have

Ck(�n, A) =

k⊕
q=0

⊕
0≤i0,...,iq<n

ij−1 6= ij for 1 ≤ j ≤ q

Ak−q.

Definition

The nerve NnA of a differential graded algebra A∗ is the simplicial set

NnA = MC(C∗(�n, A)).

More explicitly, an n-simplex in NnA is a collection

� = (ai0...ik ∈ A
1−k | 0 ≤ i0, . . . , ik ≤ n and ij 6= ij+1),

satisfying the equations

δai0...ik +
∑k

j=0(−1)k−j ai0...̂ıj ...ik +
∑k

j=0(−1)jk ai0...ijaij ...ik = 0.
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1−k | 0 ≤ i0, . . . , ik ≤ n and ij 6= ij+1),

satisfying the equations

δai0...ik +
∑k

j=0(−1)k−j ai0...̂ıj ...ik +
∑k

j=0(−1)jk ai0...ijaij ...ik = 0.
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0-simplices and 1-simplices in the nerve

A 0-simplex in N•A is a Maurer-Cartan element of A∗:

N0A ∼= MC(A).

Given a 1-simplex (ai0...ik) ∈ MC(C∗(�1, A)), the elements µ = a0 and
ν = a1 are Maurer-Cartan elements.

A morphism f : µ→ ν between Maurer-Cartan elements µ, ν ∈ MC(A) is
an element f ∈ A0 satisfying

δν · f = f · δµ.

The elements f = 1 + a01 and g = 1 + a10 associated to a 1-simplex
define morphisms f : µ→ ν and g : ν → µ.
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Quasi-isomorphisms

A quasi-isomorphism f : µ→ ν is a morphism such that there exists a
morphism g : ν → µ and homotopies h, k ∈ A−1 satisfying the equations

δµh = 1− gf δνk = 1− fg.

The morphisms f and g associated to a 1-simplex are quasi-inverse to
each other: take h = a010 and k = a101.

Theorem

A morphism f : µ→ ν is a quasi-isomorphism if and only if there is a
1-simplex (ai0...ik) ∈ MC(C∗(�1, A)) with µ = a0, ν = a1, and
f = 1 + a01.

When A∗ is a differential graded Banach algebra, the set of
quasi-isomorphisms is an open subset of MC(A)×MC(A)×A0,
generalizing the corresponding statement for invertible elements of a
Banach algebra.
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The nerve when Ai = 0, i < 0

If Ai = 0 for i < 0, the element f ∈ A0 associated to a 1-simplex is a unit,
with inverse g. This proves the following theorem.

Theorem

If Ai = 0, i < 0, then N•A is the nerve of the Deligne groupoid,
associated to the action of the group G(A) = {f ∈ A0 | f is invertible} on
the Maurer-Cartan set MC(A):

NnA ∼= MC(A)×G(A)n.
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The stack of vector bundles

Consider the differential graded algebra of Čech cochains

A∗ = Č∗(U ,End(ON )),

where U is a Stein cover of a complex manifold X.

The Maurer-Cartan elements of A∗ are the 1-cocycles, i.e. vector bundles
on X of rank N :

MC(Č∗(U ,End(ON ))) ∼= Ž1(U ,GL(O, N)).

The group G(Č∗(U ,End(ON ))) of units is the group Č0(U ,GL(O, N)) of
gauge transformations. We recover Kodaira and Spencer’s moduli stack of
vector bundles.

Working with the differential graded algebra Č∗(U ,Ω∗ ⊗ End(ON ))
instead, we obtain the stack of vector bundles of rank N on X with
connection.
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The general case

Theorem

Let A∗ be a differential graded algebra.

If Ai = 0 for i ≤ −k, the nerve of A∗ is a k-groupoid.

If Ai = 0 for i ≤ −k and i > 0, the nerve of A∗ is a k-group.

Let A∗ be a differential graded Banach algebra.

If Ai = 0 for i ≤ −k, the nerve of A∗ is a Lie k-groupoid.

Even in the general case, N0A ∼= MC(A). But the set of 1-simplices is
now more complicated, and corresponds to elements of A0 which are only
quasi-invertible.
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Moduli of complexes of holomorphic vector bundles
Let X be a compact complex manifold, and let E∗ be a complex of
holomorphic vector bundles of length n.

Let A0,q(X,End(E)) be the (0, q)-forms with values in the graded vector
bundle End(E), with coefficients in the Sobolev space Hs−q.

Theorem

If s > dimC(X), A0,∗(X,End(E)) is a differential graded Banach algebra.

There is also a generalization where the complexes E∗ are allowed to vary.

It follows that N•A
0,∗(X,End(E)) is a Lie n-groupoid. Of course, it is

infinite-dimensional, so it is difficult to compare it to algebraic objects. For
this, we should apply the technique of Kuranishi: let

Ñ•A
0,∗(X,End(E)) ⊂ N•A0,∗(X,End(E))

be the Lie n-subgroupoid obtained by imposing the gauge condition

∂̄∗ai0...ik = 0

on n-simplices.Higher analytic stacks 19 / 24
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Equivalence of Lie n-groupoids

Let ∆m,n = ∆m ×∆n be the prism. Let Λm,ni be the cup

Λm,ni = (Λmi ×∆n) ∪ (∆m × ∂∆n) ⊂ ∆m,n.

Definition

A simplicial morphism f : X• → Y• between Lie k-groupoids is an
equivalence if, for each n ≥ 0, the morphism

Xn ×Yn Hom(∆1,n, Y )→ Hom(∂∆n, X)×Hom(∂∆n,Y ) Hom(Λ1,n
0 , Y )

is a surjective submersion.

Equivalence of Lie 0-groupoids is isomorphism of Banach analytic spaces.

The equivalences form a saturated subcategory of the category of Lie
k-groupoids: if f : X → Y and g : Y → Z are morphisms such that gf is
an equivalence and either f or g is an equivalence, then so is the other.
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Kuranishi gauge as an equivalence

Warning: The statement of the following theorem is only approximate.

Theorem

Ñ•A
0,∗(X,End(E)) is a finite-dimensional Lie n-groupoid.

The inclusion Ñ•A
0,∗(X,End(E)) ⊂ N•A0,∗(X,End(E)) is an

equivalence of Lie n-groupoids.

This is an analytic version of a theorem of Hirschowitz and Simpson (there
is also a “derived version” of this theorem by Toën, Vacquié and Vezzosi).

Higher analytic stacks 21 / 24



Kuranishi gauge as an equivalence

Warning: The statement of the following theorem is only approximate.

Theorem
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The determinant line bundle

Maurer-Cartan elements of A0,∗(X,End(E)) are twisted deformations:

µ = µ[0] + µ[1] + . . . ,

where µ[q] ∈ A0,q(X,Hom(E∗, E∗+1−q)).

The section µ[0] deforms the differential of E∗, µ[1] deforms the
∂̄-operator, µ[2] is a homotopy expressing the error in the Kodaira-Spencer
equation for µ[1] et cetera. Such twisted deformations are familiar from
the work of Bismut, Gillet and Soulé.

We want to define the determinant of a twisted complex, in such a way
that it is invariant under quasi-isomorphism. This was done by Knudsen
and Mumford in 1976, following Grothendieck. Their formulas used
choices of local frames. Knudsen gave a direct construction in 2002 which
relied instead on auxilliary choices associated to the quasi-isomorphism.

This auxilliary data is just a lift of the quasi-isomorphism to a 1-simplex in
our nerve.
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The determinant of the twisted complex Eµ is the line bundle

det(E) =
⊗
i even

Λrk(Ei)Ei ⊗
⊗
i odd

(
Λrk(Ei)Ei

)−1

with holomorphic structure defined by the Maurer-Cartan form

Str(µ[1]) ∈ A0,1(X).

Theorem

Let f : µ→ ν be the quasi-isomorphism of twisted deformations associated
to a 1-simplex �. There is a canonical trivialization of the determinant line
bundle det(Eµ)−1 ⊗ det(Eν) associated to the contracting homotopy(

h a0101

g −k

)
=

(
a010 a0101

1 + a10 −a101

)
for the differential

δE + ∂̄ + ad

(
µ f
0 −ν

)
.

Higher analytic stacks 23 / 24



Maybe this is evidence that the nerve we have explained here is the “right”
realization of the moduli n-stack of (twisted) deformations of a complex of
holomorphic vector bundles.
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