Norms of Weierstrass-sections

Bismut birthday conference

Gerd Faltings

Max Planck Institute for Mathematics
30.5./3.6.2013

Weierstrass-sections

Introduction

Weierstrass points play an important role in diophantine geometry. Recall their definition: Assume C is a compact Riemann surface, \mathcal{L} a linebundle on C, and $f_{1} \ldots f_{r} \in \Gamma(C, \mathcal{L})$ global sections. Then
$W\left(f_{1}, \ldots, f_{r}\right) \in \Gamma\left(C, \mathcal{L}^{\otimes r} \otimes \omega_{C}^{\otimes r(r-1) / 2}\right)$ is the global section which in a local coordinate z and a local trivialisation of \mathcal{L} is equal to the Wronskian of f_{1}, \ldots, f_{r}, that is the determinant of the matrix $1 / j!d f_{i} / d z^{j}$. If the f_{i} are linearly independant then $W\left(f_{1}, \ldots, f_{r}\right)$ does not vanish. This follows because for exponents $e_{1}<e_{2}<\ldots<e_{r}$ the Wronskian of the powers $z^{e_{i}}$ does not vanish identically. For example for the canonical bundle the Weierstrass-sections give a map from $\wedge^{g}\left(\Gamma\left(C, \omega_{C}\right) \rightarrow \Gamma\left(C, \omega_{C}^{g(g+1) / 2}\right)\right.$ which is used to prove the positivity of the relative ω in semistable families which are not isotrivial. The archimedean analogue would be that the Weierstrass-section has norm ≤ 1.
Here we plan to give estimates for the archimedean norm of $W\left(f_{1}, \ldots, f_{r}\right)$ as well as a non-archimean analogue, that is its divisibility for a semistable curve over a discrete valuation ring.

An intrinsic definition

A more intrinsic view of $W\left(f_{1}, \ldots, f_{r}\right)$ is obtained by considering the jet-bundle $J_{r}(\mathcal{L})$ defined by $J_{r}(\mathcal{L})=p r_{1, *}\left(p r_{2}^{*}(\mathcal{L}) / I_{\Delta}^{r}\right)$, where I_{Δ} denotes the ideal of the diagonal in $C \times C$, and $p r_{i}$ the projections from $C \times C$ to C. $J_{r}\left(\mathcal{L}\right.$ admits a filtration with subquotients $\mathcal{L} \otimes \omega_{C}^{\otimes i}$, and $W\left(f_{1}, \ldots, f_{r}\right)$ denotes the determinant of the sections of $J_{r}(\mathcal{L})$ defined by $\left.p r_{2}^{*}\left(f_{i}\right)\right)$. In positive characteristic $W\left(f_{1}, \ldots, f_{r}\right)$ may vanish identically, but a variant with a higher power of ω_{C} is still nonzero: For some big r (for example $r>\operatorname{deg}(\mathcal{L})+1)$ the space spanned by f_{1}, \ldots, f_{r} injects in $\Gamma\left(C, J_{r}(\mathcal{L})\right)$. The filtration on $J_{r}(\mathcal{L})$ defined by powers of I_{Δ} induces a filtration on the space spanned by f_{1}, \ldots, f_{r}. If the nontrivial jumps of this induced filtration occur in degrees $e_{1}, \ldots . . e_{r}$ then our construction gives a canonical section of $\mathcal{L}^{\otimes r} \otimes \omega_{C}^{e_{1}+\ldots+e_{r}}$. This also works for semistable curves.

Estimates in the hyperbolic metric

We assume that C is hyperbolic, so its genus $g>1$. We choose a point $x \in C$ and write $C=\mathbb{D} / \Gamma$ as a quotient of the unit disc under a discrete cocompact torsionfree subgroup $\Gamma \subset P S U(1,1)$. This defines a coordinate z on \mathbb{D} which gives a local coordinate (with the same name) z near x. It is welldefined up to multiplication with a constant of absolute value one. The hyperbolic metric on \mathbb{D} is given by the Kăhler form $-2 i d z \wedge d \bar{z} /\left(1-|z|^{2}\right)^{2}$. It is normalised such that the hyperbolic volume of C is $4 \pi(g-1)$.

Linear forms

The holomorphic differentials $\alpha \in \Gamma\left(C, \omega_{C}\right)$ induce Γ-invariant holomorphic differentials $\alpha(z) d z$ with $i / 2 \int_{\mathbb{D} / \Gamma}|\alpha(z)|^{2} d z \wedge d \bar{z}<\infty$. The coefficient of $z^{j} d z$ in $\alpha(z)=\sum_{j} a_{j} z^{j} d z$ is given by $a_{j}=i / 2 \int_{\mathbb{D}} \alpha \wedge \bar{\alpha}_{j}$ for some form $\alpha_{j} \in \Gamma\left(C, \omega_{C}\right)$. Then up to a factor $d z^{g(g+1) / 2}$ the value of the Weierstrass-section at x is the determinant of the matrix defined by integrating holomorphic forms on C against the $\bar{\alpha}_{j}$. So its normsquare (in some metric on ω_{C}) is the product of the square of the norm of $d z^{g(g+1) / 2}$ with the determinant of the matrix with entries $i / 2 \int_{C} \alpha_{j} \wedge \bar{\alpha}_{k}$. If we change the local coordinate z by a factor of absolute value one this does not change.

Squareintegrals

The α_{j} depend on x. We claim that their squareintegral for the hyperbolic metric is given by

$$
i / 2 \int_{C} \alpha_{j} \wedge \bar{\alpha}_{j}=2 g(j+1)
$$

We first show this for $j=0$: The hyperbolic norm of $d z$ at the origin is $2^{-1 / 2}$. If β_{j} runs through an orthonormal basis of $\Gamma\left(C, \omega_{C}\right)$ then the value of β_{j} at x is

$$
i / 2 \int_{C} \beta_{j} \wedge \bar{\alpha}_{0}
$$

If we take the sums of the squares of the hyperbolic norms we get $\left\|\alpha_{0}\right\|^{2}$. On the other hand the squareintegrals of the norms of β_{j} are 1 , thus the result for $j=0$.

Continuation

For higher j 's use that the space of holomorphic differentials $\alpha=\sum_{n} a_{n} z^{n} d z$ forms a topologically irreducible representation of the group $G=P S U(1,1)$. The linear forms a_{j} span an irreducible Harish-Chandra module in the dual space. The group G operates on the slightly bigger space of differentials holomorphic in a neighbourhood of the closure of \mathbb{D}, that is the series $\sum_{n} b_{n} z^{n} d z$ with $\left|b_{n}\right| R^{n}$ bounded for some $R>1$. The pairing with $\Gamma\left(\mathbb{D}, \omega_{\mathbb{D}}\right)$ is formally given by integration but this may not converge. For a given $x \in C$ the restriction to Γ-invariant forms maps our Harish-Chandra module to the dual space (that is to the complex conjugate) of $\Gamma\left(C, \omega_{C}\right)$, and extends to the slightly bigger topological module. Thus the inner product on this space of differentials induces a Γ-invariant inner product on the topological model. If we integrate over G / Γ we obtain a G-invariant inner product which (because of irreducibility) must be a multiple of usual square-integration. As the α_{j} are induced by $\beta_{j}=(j+1) / \pi z^{j} d z$ the integrals of the squarenorms of α_{j} are proportional to the squarenorms of the β_{j}, that is to $j+1$.

From traces to determinants

The hyperbolic squarenorm at x of the Weierstrass-section is equal to the product of the $g(g+1)$ 'st power of the norm of $d z$ with the determinant of the inner products of α_{j} 's. The first factor is $2^{-g(g+1) / 2}$. For the second we first replace α_{j} by $\alpha_{j} /(j+1)^{1 / 2}$ and then estimate the determinant of the g-th power of the trace divided by g (inequality between geometric and arithmetic mean). Thus the squaranorm of $W(x)$ is bounded above by

$$
2^{-g(g+1) / 2} g!g^{-g}\left(\sum_{j}\left\|\alpha_{j}\right\|^{2} /(j+1)\right)^{g} .
$$

The result

If we form its g 'th root and integrate over C (with the hyperbolic volumeform) we get as result:

Theorem

$$
\int_{C}|W|^{2 / g} \leq 2^{-(g-1) / 2}(g!)^{1 / g}
$$

The dependance on the hyperbolic norm goes away if we integrate $|W|^{4 / g(g+1)}$ because this is naturally a density. The resulting upper bound is

$$
(g!)^{2 / g(g+1)}(2 \pi(g-1))^{(g-1) /(g+1)} .
$$

p-adic theory

Assume that C is a semistable curve over a discrete valuation ring V, with smooth generic fibre C_{η}, and special fibre C_{s}. We assume that the residue-field k of V is algebraically closed. Burnol observed that for reducible s the Weierstrass section becomes divisible by a power of the uniformiser π of V. The structure of irreducible components of C_{s} is described by a graph \mathcal{G} whose vertices $v \in V$ label irreducible components C_{V} of C_{s} and whose oriented edges $e \in E$ label double-points. For each edge the completed local ring of C in the corresponding double point is isomorphic to $V[[u, v]] /\left(u v-\pi^{r_{e}}\right)$ for some integer $r_{e} \geq 1$. We let $X=H_{1}(\mathcal{G}, \mathbb{Z})$ denote its first homology. X is a subgroup of \mathbb{Z}^{E} and consists of sequences n_{e} such that for each vertex v the sum $\pm n_{e}=0$. The sum is over edges starting or ending in e, and the signs are given by the orientation. Furthermore we need the symmetric bilinear form on X (and on $\left.\mathbb{Z}^{E}\right)$ defined by $b\left(m_{e}, n_{e}\right)=\sum_{E} r_{e} m_{e} n_{e}$. If we replace C by a regular semistable model (all $r_{e}=1$) we replace each edge e by a chain of r_{e} edges. This does change neither the homology $H_{1}(\mathcal{G}, \mathbb{Z})$ nor the bilinear form b.

Determinant of cohomology

It is wellknown that the Weierstrass-section is related to the determinant of cohomology. If we choose a V-point Q of C and a basis $\alpha_{1}, \ldots, \alpha_{g}$ of the regular differentials $\Gamma\left(C, \omega_{C}\right)=\Gamma\left(C, \omega_{C}(Q)\right)$ then for each S-point P of $C(S$ any V-scheme) disjoint from Q the induced map

$$
\mathcal{O}_{S}^{g} \rightarrow \Gamma\left(C_{S}, \omega_{C}(Q) / \omega_{C}(Q-g P)\right)
$$

has as determinant the Weierstrass-section (at P). On the other hand this determinant can be identified with the canonical section (the thetafunction) of the inverse of the determinant of cohomology of $\omega_{C}(Q-g P)$ (This line-bundle has degree $g-1$ and thus vanishing Euler-characteristic). If Q is not disjoint from P we need a slight modification. Namely the image of the Weierstrass-section $W \in \Gamma\left(C, \omega_{C}^{g(g+1) / 2}\right)$ in $\Gamma\left(C, \omega_{C}^{g(g+1) / 2}(g Q)\right)$ can be identified with the canonical section of the inverse of the determinant of cohomology of $\omega_{C}(Q-g P)$.

Néron-model

We fix one line-bundle \mathcal{M} of relative degree $g-1$ on C, and try to estimate the π-power dividing the determinant of cohomology of $\mathcal{L} \otimes \mathcal{M}$, for a linebundle \mathcal{L} of degree zero. Such \mathcal{L} 's are parametrised by the Néron-model of the Jacobian $J\left(C_{\eta}\right)$. The formal completion of this Néron-model can be described as a quotient $G=\tilde{G} / \iota(X)$. Here \tilde{G} is an extension

$$
0 \rightarrow T \rightarrow \tilde{G} \rightarrow A \rightarrow 0
$$

with A an abelian variety and T the torus with charactergroup X, and it parametrises line-bundles on C (or its formal completion) whose restriction to each componet C_{v} has degree zero. ι is a map

$$
\iota: X \rightarrow \tilde{G}(K)
$$

which up tis the sum of a map into $\tilde{G}(V)$ and the map into $T(K)$ described by b (or better π^{b}).

Degrees

Linebundles of total degree zero on C have a degree vector $\operatorname{deg}\left(\mathcal{L} \mid C_{v}\right) \in \mathbb{Z}^{V}$ which lies in the kernel of the projection onto $H_{0}(\mathcal{G}, \mathbb{Z})=\mathbb{Z}$, that is in the image of \mathbb{Z}^{E}. Thus the degree-vectors lie in \mathbb{Z}^{E} / X. If C is regular the degree of $\mathcal{O}\left(C_{v}\right)$ is the sum (over all edges connecting to v, with sign depending on orientation) $\sum \pm e$. To form the Néronmodel we have to divide by these. If we do this on \mathbb{Z}^{E} we obtain as quotient the dual X^{t}, and thus the connected components are parametrised by $X^{t} / b(X)$ as also follows from the description as rigid quotient.

Relation Néron - determinant of cohomology

The (inverse of) the determinant of cohomology of $\mathcal{L} \otimes \mathcal{M}$ is a line-bundle on the Picard-functor which satisfies the theorem of the cube but unfortunately is not invariant under tensoring with $\mathcal{O}\left(C_{v}\right)$'s. Thus it does not descend to the Néron-model. In fact we have:
a) The determinant of cohomology remains invariant if we replace $\mathcal{L} \otimes \mathcal{M}$ by $\omega_{C} \otimes \mathcal{L}^{-1} \otimes \mathcal{M}^{-1}$, that is \mathcal{L} by $\omega_{C} \otimes \mathcal{L}^{-2} \otimes \mathcal{M}^{-1}$.
b) If we replace \mathcal{L} by $\mathcal{L}\left(-C_{v}\right)$ the inverse of the determinant of cohomology is changed by the divisor of π to the power $\operatorname{deg}\left(\mathcal{L} \otimes \mathcal{M} \mid C_{v}\right)+1-g_{v}$, where g_{v} denotes the genus of C_{v}.
c) For a generic linebundle \mathcal{L} with $\operatorname{deg}\left(\mathcal{L} \otimes \mathcal{M} \mid C_{v}\right)=g_{v}-1+n_{v}^{+}$the cohomology vanishes (and thus its determinant becomes a unit). Here n_{v}^{+} denotes the number of edges starting in v.

A cubical bundle

To get a cubical linebundle on the Néron-model we modify the determinant of cohomology as follows: The degree-vectors of \mathcal{M} and $\omega_{C} \otimes \otimes \mathcal{M}^{-1}$ differ by the image of a linear combination $\alpha=\sum_{e} m_{e} e$ where all coefficients m_{e} are odd integers. Such a representation is unique modulo $2 X$. This holds because the parity of $\operatorname{deg}\left(\omega_{C} \mid C_{v}\right)$ is the number of edges connecting to v. Also the degree of \mathcal{L} is the image of an element $\beta=\sum_{e} n_{e} e$, well determined modulo X.
Then for such a representation modify the determinant of cohomology by the π-power with exponent one eigth the norm squared of the projection of $\alpha-2 \beta$ to X^{\perp}. This is a rational number but its denominator is bounded so we get a line-bundle over the extension to a finite ramified extension V^{\prime} of V (we only change the basering but keep the Néron-model, that is we do not pass to the model over V^{\prime} which has more components).

A cubical bundle 2

One checks that the result is invariant under tensoring with $\mathcal{O}\left(C_{v}\right)$'s. Namely if we replace \mathcal{L} by $\mathcal{L}\left(-C_{v}\right)$ we get new representatives for the degree-vectors by substracting ± 2 from n_{e}, for e an edge starting or ending at v. Then the sum $\sum_{e}\left(n_{e}^{2}-1\right) / 8$ changes by the sum over edges connecting to v of

$$
\begin{aligned}
\left(- \pm n_{e}+1\right) / 2 & =\left(-\operatorname{deg}\left(\omega_{C} \otimes \mathcal{L}^{-2} \otimes \mathcal{M}^{-2} \mid C_{v}\right)+\sum_{e} 1\right) / 2 \\
& =-\left(g_{v}-1\right)-\operatorname{deg}\left(\mathcal{L} \otimes \mathcal{M} \mid C_{v}\right)
\end{aligned}
$$

(one needs to change β by the image of v in \mathbb{Z}^{E} which lies in X^{\perp}). Also replacing $\mathcal{L} \otimes \mathcal{M}$ by $\omega_{C} \mathcal{L}^{-1} \otimes \mathcal{M}^{-1}$ gives the same. The inverse determinant of cohomology defines (over K) a global section of this bundle (a theta-divisor) which is symmetric in the sense that it is invariant if we replace \mathcal{L} by $\omega_{C} \otimes \mathcal{M}^{-2} \otimes \mathcal{L}^{-1}$. On the generic fibre our bundle coincides with the theta-bundle giving the polarisation, thus differs from this theta-bundle by a divisor supported in the special fibre. Because both bundles have cubical structures the coefficients this divisor are constant.

Uniformisation

The polarisation on the Néron-model is given by a thetafunction which is rigid analytic defined by a sum

$$
\sum_{\mu \in X} a(\mu) \mu
$$

where $a(\mu)$ is a multiplicatively quadratic function (or better section of a linebundle on A) of μ whose quadratic term is $\pi^{b(\mu, \mu) / 2}$. On the component parametrised by $\rho \in X^{t}$ its π-valuation in a generic point is, up to a constant independant of ρ, given by the minimum of $b(\rho-\alpha / 2+\mu) / 2$ for $\mu \in X$. This follows because the quadratic term in the valuation of a is $b / 2$ and the thetadivisor is symmetric around $\alpha / 2$. To get the π-adic valuation on the original determinant of cohomology we have to add one eigth of the norm square of the projection to X^{\perp} of $\alpha-2 \beta$. The result is the minimum (over $\mu \in X$) of the normsquare of $\alpha-2 \beta-2 \mu$. Furthermore the unknown constant is determined by c) above and we get:

The result

Theorem

The degree-vectors of $\mathcal{L} \otimes \mathcal{M}$ and $\omega_{C} \otimes \mathcal{L}^{-1} \otimes \mathcal{M}^{-1}$ differ by the image of a linear combination $\sum_{e} m_{e} e$ where all coefficients m_{e} are odd integers. Such a representation is unique modulo $2 X$. Then the π-power is the minimum over all such representations of $\sum_{e}\left(m_{e}^{2}-1\right) / 8$.

Proof.

Namely this is true up to a constant which can be determined by property c). One also can check directly that it satisfies a) (change the sign of the m_{e}) and c) (one can chose $m_{e}= \pm 1$).

Remarks

Remarks a) If C is not a regular semistable model one has to change the sum to $\sum_{e} r_{e}\left(n_{e}^{2}-1\right) / 8$.
b) The divisibility by powers of π of the Weierstrass-section is due to the fact that ω_{C} and $\mathcal{O}(2 g P-2 Q)$ have quite different degrees on various components.
c) A similar reasoning applies to other linebundles (instead of ω_{C}).
d) The bound need not be optimal as $\omega_{C}(Q-g P)$ is not a generic linebundle with given degree-vector. For example it depends on the choice of Q. The most canonical choice is if Q lies in the same component as P, but this gives the worst estimate.

