Norms of Weierstrass-sections

Bismut birthday conference

Gerd Faltings

Max Planck Institute for Mathematics

30.5./3.6.2013

Weierstrass-sections

Introduction

Weierstrass points play an important role in diophantine geometry. Recall their definition: Assume C is a compact Riemann surface, \mathcal{L} a linebundle on C, and $f_1 \dots f_r \in \Gamma(C, \mathcal{L})$ global sections. Then $W(f_1, ..., f_r) \in \Gamma(C, \mathcal{L}^{\otimes r} \otimes \omega_C^{\otimes r(r-1)/2})$ is the global section which in a local coordinate z and a local trivialisation of \mathcal{L} is equal to the Wronskian of $f_1, ..., f_r$, that is the determinant of the matrix $1/j! df_i/dz^j$. If the f_i are linearly independant then $W(f_1, ..., f_r)$ does not vanish. This follows because for exponents $e_1 < e_2 < ... < e_r$ the Wronskian of the powers z^{e_i} does not vanish identically. For example for the canonical bundle the Weierstrass-sections give a map from $\wedge^g(\Gamma(\mathcal{C},\omega_{\mathcal{C}}) \to \Gamma(\mathcal{C},\omega_{\mathcal{C}}^{g(g+1)/2}))$ which is used to prove the positivity of the relative ω in semistable families which are not isotrivial. The archimedean analogue would be that the Weierstrass-section has norm ≤ 1 .

Here we plan to give estimates for the archimedean norm of $W(f_1, ..., f_r)$ as well as a non-archimean analogue, that is its divisibility for a semistable curve over a discrete valuation ring.

G. Faltings (MPIM)

A more intrinsic view of $W(f_1, ..., f_r)$ is obtained by considering the jet-bundle $J_r(\mathcal{L})$ defined by $J_r(\mathcal{L}) = pr_{1,*}(pr_2^*(\mathcal{L})/I_{\Delta}^r)$, where I_{Δ} denotes the ideal of the diagonal in $C \times C$, and pr_i the projections from $C \times C$ to C. $J_r(\mathcal{L} \text{ admits a filtration with subquotients } \mathcal{L} \otimes \omega_C^{\otimes i}$, and $W(f_1, ..., f_r)$ denotes the determinant of the sections of $J_r(\mathcal{L})$ defined by $pr_2^*(f_i)$). In positive characteristic $W(f_1, ..., f_r)$ may vanish identically, but a variant with a higher power of ω_C is still nonzero: For some big r (for example $r > deg(\mathcal{L}) + 1$) the space spanned by $f_1, ..., f_r$ injects in $\Gamma(C, J_r(\mathcal{L}))$. The filtration on $J_r(\mathcal{L})$ defined by powers of I_{Δ} induces a filtration on the space spanned by $f_1, ..., f_r$. If the nontrivial jumps of this induced filtration occur in degrees e_1, \dots, e_r then our construction gives a canonical section of $\mathcal{L}^{\otimes r} \otimes \omega_{\mathcal{C}}^{e_1 + \ldots + e_r}$. This also works for semistable curves.

We assume that *C* is hyperbolic, so its genus g > 1. We choose a point $x \in C$ and write $C = \mathbb{D}/\Gamma$ as a quotient of the unit disc under a discrete cocompact torsionfree subgroup $\Gamma \subset PSU(1,1)$. This defines a coordinate z on \mathbb{D} which gives a local coordinate (with the same name) z near x. It is welldefined up to multiplication with a constant of absolute value one. The hyperbolic metric on \mathbb{D} is given by the Kähler form $-2idz \wedge d\overline{z}/(1-|z|^2)^2$. It is normalised such that the hyperbolic volume of C is $4\pi(g-1)$.

The holomorphic differentials $\alpha \in \Gamma(C, \omega_C)$ induce Γ -invariant holomorphic differentials $\alpha(z)dz$ with $i/2 \int_{\mathbb{D}/\Gamma} |\alpha(z)|^2 dz \wedge d\overline{z} < \infty$. The coefficient of $z^j dz$ in $\alpha(z) = \sum_i a_j z^j dz$ is given by $a_j = i/2 \int_{\mathbb{D}} \alpha \wedge \bar{\alpha}_j$ for some form $\alpha_i \in \Gamma(C, \omega_C)$. Then up to a factor $dz^{g(g+1)/2}$ the value of the Weierstrass-section at x is the determinant of the matrix defined by integrating holomorphic forms on C against the $\bar{\alpha}_i$. So its normsquare (in some metric on ω_{C}) is the product of the square of the norm of $dz^{g(g+1)/2}$ with the determinant of the matrix with entries $i/2 \int_C \alpha_i \wedge \bar{\alpha}_k$. If we change the local coordinate z by a factor of absolute value one this does not change.

The α_j depend on x. We claim that their squareintegral for the hyperbolic metric is given by

$$i/2\int_{\mathcal{C}}\alpha_j\wedge\bar{\alpha}_j=2g(j+1).$$

We first show this for j = 0: The hyperbolic norm of dz at the origin is $2^{-1/2}$. If β_j runs through an orthonormal basis of $\Gamma(C, \omega_C)$ then the value of β_j at x is

$$i/2\int_C \beta_j\wedge \bar{\alpha}_0.$$

If we take the sums of the squares of the hyperbolic norms we get $||\alpha_0||^2$. On the other hand the squareintegrals of the norms of β_j are 1, thus the result for j = 0.

Continuation

For higher *j*'s use that the space of holomorphic differentials $\alpha = \sum_{n} a_n z^n dz$ forms a topologically irreducible representation of the group G = PSU(1, 1). The linear forms a_i span an irreducible Harish-Chandra module in the dual space. The group G operates on the slightly bigger space of differentials holomorphic in a neighbourhood of the closure of \mathbb{D} , that is the series $\sum_{n} b_n z^n dz$ with $|b_n| R^n$ bounded for some R > 1. The pairing with $\Gamma(\mathbb{D}, \omega_{\mathbb{D}})$ is formally given by integration but this may not converge. For a given $x \in C$ the restriction to Γ -invariant forms maps our Harish-Chandra module to the dual space (that is to the complex conjugate) of $\Gamma(C, \omega_C)$, and extends to the slightly bigger topological module. Thus the inner product on this space of differentials induces a Γ -invariant inner product on the topological model. If we integrate over G/Γ we obtain a G-invariant inner product which (because of irreducibility) must be a multiple of usual square-integration. As the α_i are induced by $\beta_i = (i+1)/\pi z^j dz$ the integrals of the squarenorms of α_i are proportional to the squarenorms of the β_i , that is to i + 1.

The hyperbolic squarenorm at x of the Weierstrass-section is equal to the product of the g(g + 1)'st power of the norm of dz with the determinant of the inner products of α_j 's. The first factor is $2^{-g(g+1)/2}$. For the second we first replace α_j by $\alpha_j/(j + 1)^{1/2}$ and then estimate the determinant of the g-th power of the trace divided by g (inequality between geometric and arithmetic mean). Thus the squaranorm of W(x) is bounded above by

$$2^{-g(g+1)/2}g!g^{-g}(\sum_{j} \|\alpha_{j}\|^{2}/(j+1))^{g}.$$

If we form its g'th root and integrate over C (with the hyperbolic volumeform) we get as result:

Theorem

$$\int_C |W|^{2/g} \leq 2^{-(g-1)/2} (g!)^{1/g}.$$

The dependance on the hyperbolic norm goes away if we integrate $|W|^{4/g(g+1)}$ because this is naturally a density. The resulting upper bound is

$$(g!)^{2/g(g+1)}(2\pi(g-1))^{(g-1)/(g+1)}.$$

p-adic theory

Assume that C is a semistable curve over a discrete valuation ring V, with smooth generic fibre C_{η} , and special fibre C_s . We assume that the residue-field k of V is algebraically closed. Burnol observed that for reducible s the Weierstrass section becomes divisible by a power of the uniformiser π of V. The structure of irreducible components of C_s is described by a graph \mathcal{G} whose vertices $v \in V$ label irreducible components C_v of C_s and whose oriented edges $e \in E$ label double-points. For each edge the completed local ring of C in the corresponding double point is isomorphic to $V[[u, v]]/(uv - \pi^{r_e})$ for some integer $r_e \geq 1$. We let $X = H_1(\mathcal{G}, \mathbb{Z})$ denote its first homology. X is a subgroup of \mathbb{Z}^E and consists of sequences n_e such that for each vertex v the sum $\pm n_e = 0$. The sum is over edges starting or ending in *e*, and the signs are given by the orientation. Furthermore we need the symmetric bilinear form on X(and on \mathbb{Z}^{E}) defined by $b(m_{e}, n_{e}) = \sum_{F} r_{e}m_{e}n_{e}$. If we replace C by a regular semistable model (all $r_e = 1$) we replace each edge e by a chain of r_e edges. This does change neither the homology $H_1(\mathcal{G},\mathbb{Z})$ nor the bilinear form b.

Determinant of cohomology

It is wellknown that the Weierstrass-section is related to the determinant of cohomology. If we choose a V-point Q of C and a basis $\alpha_1, ..., \alpha_g$ of the regular differentials $\Gamma(C, \omega_C) = \Gamma(C, \omega_C(Q))$ then for each S-point P of C (S any V-scheme) disjoint from Q the induced map

$$\mathcal{O}_{S}^{g} \rightarrow \Gamma(\mathcal{C}_{S}, \omega_{\mathcal{C}}(\mathcal{Q}) / \omega_{\mathcal{C}}(\mathcal{Q} - g\mathcal{P}))$$

has as determinant the Weierstrass-section (at *P*). On the other hand this determinant can be identified with the canonical section (the thetafunction) of the inverse of the determinant of cohomology of $\omega_C(Q - gP)$ (This line-bundle has degree g - 1 and thus vanishing Euler-characteristic). If *Q* is not disjoint from *P* we need a slight modification. Namely the image of the Weierstrass-section $W \in \Gamma(C, \omega_C^{g(g+1)/2})$ in $\Gamma(C, \omega_C^{g(g+1)/2}(gQ))$ can be identified with the canonical section of the inverse of the determinant of cohomology of $\omega_C(Q - gP)$.

Néron-model

We fix one line-bundle \mathcal{M} of relative degree g - 1 on C, and try to estimate the π -power dividing the determinant of cohomology of $\mathcal{L} \otimes \mathcal{M}$, for a linebundle \mathcal{L} of degree zero. Such \mathcal{L} 's are parametrised by the Néron-model of the Jacobian $J(C_{\eta})$. The formal completion of this Néron-model can be described as a quotient $G = \tilde{G}/\iota(X)$. Here \tilde{G} is an extension

$$0 \rightarrow T \rightarrow \tilde{G} \rightarrow A \rightarrow 0,$$

with A an abelian variety and T the torus with charactergroup X, and it parametrises line-bundles on C (or its formal completion) whose restriction to each componet C_{ν} has degree zero. ι is a map

$$\iota:X\to \tilde{G}(K)$$

which up tis the sum of a map into $\tilde{G}(V)$ and the map into T(K) described by b (or better π^{b}).

Linebundles of total degree zero on C have a degree vector $deg(\mathcal{L}|C_v) \in \mathbb{Z}^V$ which lies in the kernel of the projection onto $H_0(\mathcal{G},\mathbb{Z}) = \mathbb{Z}$, that is in the image of \mathbb{Z}^E . Thus the degree-vectors lie in \mathbb{Z}^E/X . If C is regular the degree of $\mathcal{O}(C_v)$ is the sum (over all edges connecting to v, with sign depending on orientation) $\sum \pm e$. To form the Néronmodel we have to divide by these. If we do this on \mathbb{Z}^E we obtain as quotient the dual X^t , and thus the connected components are parametrised by $X^t/b(X)$ as also follows from the description as rigid quotient.

The (inverse of) the determinant of cohomology of $\mathcal{L} \otimes \mathcal{M}$ is a line-bundle on the Picard-functor which satisfies the theorem of the cube but unfortunately is not invariant under tensoring with $\mathcal{O}(C_v)$'s. Thus it does not descend to the Néron-model. In fact we have:

a) The determinant of cohomology remains invariant if we replace L ⊗ M by ω_C ⊗ L⁻¹ ⊗ M⁻¹, that is L by ω_C ⊗ L⁻² ⊗ M⁻¹.
b) If we replace L by L(-C_v) the inverse of the determinant of cohomology is changed by the divisor of π to the power deg(L ⊗ M|C_v) + 1 - g_v, where g_v denotes the genus of C_v.
c) For a generic linebundle L with deg(L ⊗ M|C_v) = g_v - 1 + n_v⁺ the cohomology vanishes (and thus its determinant becomes a unit). Here n_v⁺ denotes the number of edges starting in v.

To get a cubical linebundle on the Néron-model we modify the determinant of cohomology as follows: The degree-vectors of \mathcal{M} and $\omega_C \otimes \otimes \mathcal{M}^{-1}$ differ by the image of a linear combination $\alpha = \sum_e m_e e$ where all coefficients m_e are odd integers. Such a representation is unique modulo 2X. This holds because the parity of $deg(\omega_C | C_v)$ is the number of edges connecting to v. Also the degree of \mathcal{L} is the image of an element $\beta = \sum_e n_e e$, well determined modulo X.

Then for such a representation modify the determinant of cohomology by the π -power with exponent one eight the norm squared of the projection of $\alpha - 2\beta$ to X^{\perp} . This is a rational number but its denominator is bounded so we get a line-bundle over the extension to a finite ramified extension V'of V (we only change the basering but keep the Néron-model, that is we do not pass to the model over V' which has more components).

A cubical bundle 2

One checks that the result is invariant under tensoring with $\mathcal{O}(C_v)$'s. Namely if we replace \mathcal{L} by $\mathcal{L}(-C_v)$ we get new representatives for the degree-vectors by substracting ± 2 from n_e , for e an edge starting or ending at v. Then the sum $\sum_e (n_e^2 - 1)/8$ changes by the sum over edges connecting to v of

$$(-\pm n_e+1)/2 = (-deg(\omega_C \otimes \mathcal{L}^{-2} \otimes \mathcal{M}^{-2}|C_v) + \sum_e 1)/2$$

 $=-(g_{
u}-1)-deg(\mathcal{L}\otimes\mathcal{M}|\mathcal{C}_{
u}).$

(one needs to change β by the image of v in \mathbb{Z}^E which lies in X^{\perp}). Also replacing $\mathcal{L} \otimes \mathcal{M}$ by $\omega_C \mathcal{L}^{-1} \otimes \mathcal{M}^{-1}$ gives the same. The inverse determinant of cohomology defines (over K) a global section of this bundle (a theta-divisor) which is symmetric in the sense that it is invariant if we replace \mathcal{L} by $\omega_C \otimes \mathcal{M}^{-2} \otimes \mathcal{L}^{-1}$. On the generic fibre our bundle coincides with the theta-bundle giving the polarisation, thus differs from this theta-bundle by a divisor supported in the special fibre. Because both bundles have cubical structures the coefficients this divisor are constant.

G. Faltings (MPIM)

The polarisation on the Néron-model is given by a thetafunction which is rigid analytic defined by a sum

 $\sum_{\mu\in X} a(\mu)\mu,$

where $a(\mu)$ is a multiplicatively quadratic function (or better section of a linebundle on A) of μ whose quadratic term is $\pi^{b(\mu,\mu)/2}$. On the component parametrised by $\rho \in X^t$ its π -valuation in a generic point is, up to a constant independant of ρ , given by the minimum of $b(\rho - \alpha/2 + \mu)/2$ for $\mu \in X$. This follows because the quadratic term in the valuation of a is b/2 and the thetadivisor is symmetric around $\alpha/2$. To get the π -adic valuation on the original determinant of cohomology we have to add one eigth of the norm square of the projection to X^{\perp} of $\alpha - 2\beta$. The result is the minimum (over $\mu \in X$) of the normsquare of $\alpha - 2\beta - 2\mu$. Furthermore the unknown constant is determined by c) above and we get:

Theorem

The degree-vectors of $\mathcal{L} \otimes \mathcal{M}$ and $\omega_C \otimes \mathcal{L}^{-1} \otimes \mathcal{M}^{-1}$ differ by the image of a linear combination $\sum_e m_e e$ where all coefficients m_e are odd integers. Such a representation is unique modulo 2X. Then the π -power is the minimum over all such representations of $\sum_e (m_e^2 - 1)/8$.

Proof.

Namely this is true up to a constant which can be determined by property c). One also can check directly that it satisfies a) (change the sign of the m_e) and c) (one can chose $m_e = \pm 1$).

Remarks a) If C is not a regular semistable model one has to change the sum to $\sum_{e} r_e (n_e^2 - 1)/8$.

b) The divisibility by powers of π of the Weierstrass-section is due to the fact that ω_C and $\mathcal{O}(2gP - 2Q)$ have quite different degrees on various components.

c) A similar reasoning applies to other linebundles (instead of ω_C). d) The bound need not be optimal as $\omega_C(Q - gP)$ is not a generic linebundle with given degree-vector. For example it depends on the choice of Q. The most canonical choice is if Q lies in the same component as P, but this gives the worst estimate.