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Weierstrass-sections
Introduction

Weierstrass points play an important role in diophantine geometry. Recall
their definition: Assume C is a compact Riemann surface, L a linebundle
on C , and f1....fr ∈ Γ(C ,L) global sections. Then

W (f1, ..., fr ) ∈ Γ(C ,L⊗r ⊗ ω⊗r(r−1)/2
C ) is the global section which in a

local coordinate z and a local trivialisation of L is equal to the Wronskian
of f1, ..., fr , that is the determinant of the matrix 1/j!dfi/dz j . If the fi are
linearly independant then W (f1, ..., fr ) does not vanish. This follows
because for exponents e1 < e2 < ... < er the Wronskian of the powers zei

does not vanish identically. For example for the canonical bundle the

Weierstrass-sections give a map from ∧g (Γ(C , ωC )→ Γ(C , ω
g(g+1)/2
C )

which is used to prove the positivity of the relative ω in semistable families
which are not isotrivial. The archimedean analogue would be that the
Weierstrass-section has norm ≤ 1.
Here we plan to give estimates for the archimedean norm of W (f1, ..., fr )
as well as a non-archimean analogue, that is its divisibility for a semistable
curve over a discrete valuation ring.
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An intrinsic definition

A more intrinsic view of W (f1, ..., fr ) is obtained by considering the
jet-bundle Jr (L) defined by Jr (L) = pr1,∗(pr∗2 (L)/I r

∆), where I∆ denotes
the ideal of the diagonal in C × C , and pri the projections from C × C to
C . Jr (L admits a filtration with subquotients L ⊗ ω⊗i

C , and W (f1, ..., fr )
denotes the determinant of the sections of Jr (L) defined by pr∗2 (fi )). In
positive characteristic W (f1, ..., fr ) may vanish identically, but a variant
with a higher power of ωC is still nonzero: For some big r (for example
r > deg(L) + 1) the space spanned by f1, ..., fr injects in Γ(C , Jr (L)). The
filtration on Jr (L) defined by powers of I∆ induces a filtration on the
space spanned by f1, ..., fr . If the nontrivial jumps of this induced filtration
occur in degrees e1, .....er then our construction gives a canonical section
of L⊗r ⊗ ωe1+...+er

C . This also works for semistable curves.
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Estimates in the hyperbolic metric

We assume that C is hyperbolic, so its genus g > 1. We choose a point
x ∈ C and write C = D/Γ as a quotient of the unit disc under a discrete
cocompact torsionfree subgroup Γ ⊂ PSU(1, 1). This defines a coordinate
z on D which gives a local coordinate (with the same name) z near x . It is
welldefined up to multiplication with a constant of absolute value one. The
hyperbolic metric on D is given by the Kăhler form −2idz ∧ dz̄/(1− |z |2)2.
It is normalised such that the hyperbolic volume of C is 4π(g − 1).
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Linear forms

The holomorphic differentials α ∈ Γ(C , ωC ) induce Γ-invariant
holomorphic differentials α(z)dz with i/2

∫
D/Γ |α(z)|2dz ∧ dz̄ <∞. The

coefficient of z jdz in α(z) =
∑

j ajz
jdz is given by aj = i/2

∫
D α ∧ ᾱj for

some form αj ∈ Γ(C , ωC ). Then up to a factor dzg(g+1)/2 the value of the
Weierstrass-section at x is the determinant of the matrix defined by
integrating holomorphic forms on C against the ᾱj . So its normsquare (in
some metric on ωC ) is the product of the square of the norm of dzg(g+1)/2

with the determinant of the matrix with entries i/2
∫
C αj ∧ ᾱk . If we

change the local coordinate z by a factor of absolute value one this does
not change.
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Squareintegrals

The αj depend on x . We claim that their squareintegral for the hyperbolic
metric is given by

i/2

∫
C
αj ∧ ᾱj = 2g(j + 1).

We first show this for j = 0: The hyperbolic norm of dz at the origin is
2−1/2. If βj runs through an orthonormal basis of Γ(C , ωC ) then the value
of βj at x is

i/2

∫
C
βj ∧ ᾱ0.

If we take the sums of the squares of the hyperbolic norms we get ‖α0‖2.
On the other hand the squareintegrals of the norms of βj are 1, thus the
result for j = 0.
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Continuation

For higher j ’s use that the space of holomorphic differentials
α =

∑
n anzndz forms a topologically irreducible representation of the

group G = PSU(1, 1). The linear forms aj span an irreducible
Harish-Chandra module in the dual space. The group G operates on the
slightly bigger space of differentials holomorphic in a neighbourhood of the
closure of D, that is the series

∑
n bnzndz with |bn|Rn bounded for some

R > 1. The pairing with Γ(D, ωD) is formally given by integration but this
may not converge. For a given x ∈ C the restriction to Γ-invariant forms
maps our Harish-Chandra module to the dual space (that is to the
complex conjugate) of Γ(C , ωC ), and extends to the slightly bigger
topological module. Thus the inner product on this space of differentials
induces a Γ-invariant inner product on the topological model. If we
integrate over G/Γ we obtain a G -invariant inner product which (because
of irreducibility) must be a multiple of usual square-integration. As the αj

are induced by βj = (j + 1)/πz jdz the integrals of the squarenorms of αj

are proportional to the squarenorms of the βj , that is to j + 1.
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From traces to determinants

The hyperbolic squarenorm at x of the Weierstrass-section is equal to the
product of the g(g + 1)’st power of the norm of dz with the determinant
of the inner products of αj ’s. The first factor is 2−g(g+1)/2. For the second
we first replace αj by αj/(j + 1)1/2 and then estimate the determinant of
the g -th power of the trace divided by g (inequality between geometric
and arithmetic mean). Thus the squaranorm of W (x) is bounded above by

2−g(g+1)/2g !g−g (
∑

j

‖αj‖2/(j + 1))g .
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The result

If we form its g ’th root and integrate over C (with the hyperbolic
volumeform) we get as result:

Theorem ∫
C
|W |2/g ≤ 2−(g−1)/2(g !)1/g .

The dependance on the hyperbolic norm goes away if we integrate
|W |4/g(g+1) because this is naturally a density. The resulting upper bound
is

(g !)2/g(g+1)(2π(g − 1))(g−1)/(g+1).
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p-adic theory

Assume that C is a semistable curve over a discrete valuation ring V , with
smooth generic fibre Cη, and special fibre Cs . We assume that the
residue-field k of V is algebraically closed. Burnol observed that for
reducible s the Weierstrass section becomes divisible by a power of the
uniformiser π of V . The structure of irreducible components of Cs is
described by a graph G whose vertices v ∈ V label irreducible components
Cv of Cs and whose oriented edges e ∈ E label double-points. For each
edge the completed local ring of C in the corresponding double point is
isomorphic to V [[u, v ]]/(uv − πre ) for some integer re ≥ 1. We let
X = H1(G,Z) denote its first homology. X is a subgroup of ZE and
consists of sequences ne such that for each vertex v the sum ±ne = 0.
The sum is over edges starting or ending in e, and the signs are given by
the orientation. Furthermore we need the symmetric bilinear form on X
(and on ZE ) defined by b(me , ne) =

∑
E remene . If we replace C by a

regular semistable model (all re = 1) we replace each edge e by a chain of
re edges. This does change neither the homology H1(G,Z) nor the bilinear
form b.
So assume from now on that C is regular. The identity on edges induces a
surjection onto the dual X t ZE → X t , with kernel the image of ZV . Over
Q the form b is nondegenerate and we obtain an orthogonal decomposition

Qe = XQ ⊕ X⊥.
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Determinant of cohomology

It is wellknown that the Weierstrass-section is related to the determinant
of cohomology. If we choose a V -point Q of C and a basis α1, ..., αg of
the regular differentials Γ(C , ωC ) = Γ(C , ωC (Q)) then for each S-point P
of C (S any V -scheme) disjoint from Q the induced map

Og
S → Γ(CS , ωC (Q)/ωC (Q − gP))

has as determinant the Weierstrass-section (at P). On the other hand this
determinant can be identified with the canonical section (the
thetafunction) of the inverse of the determinant of cohomology of
ωC (Q − gP) (This line-bundle has degree g − 1 and thus vanishing
Euler-characteristic). If Q is not disjoint from P we need a slight
modification. Namely the image of the Weierstrass-section

W ∈ Γ(C , ω
g(g+1)/2
C ) in Γ(C , ω

g(g+1)/2
C (gQ)) can be identified with the

canonical section of the inverse of the determinant of cohomology of
ωC (Q − gP).
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Néron-model

We fix one line-bundle M of relative degree g − 1 on C , and try to
estimate the π-power dividing the determinant of cohomology of L ⊗M,
for a linebundle L of degree zero. Such L’s are parametrised by the
Néron-model of the Jacobian J(Cη). The formal completion of this
Néron-model can be described as a quotient G = G̃/ι(X ). Here G̃ is an
extension

0→ T → G̃ → A→ 0,

with A an abelian variety and T the torus with charactergroup X , and it
parametrises line-bundles on C (or its formal completion) whose restriction
to each componet Cv has degree zero. ι is a map

ι : X → G̃ (K )

which up tis the sum of a map into G̃ (V ) and the map into T (K )
described by b (or better πb).
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Degrees

Linebundles of total degree zero on C have a degree vector
deg(L|Cv ) ∈ ZV which lies in the kernel of the projection onto
H0(G,Z) = Z, that is in the image of ZE . Thus the degree-vectors lie in
ZE/X . If C is regular the degree of O(Cv ) is the sum (over all edges
connecting to v , with sign depending on orientation)

∑
±e. To form the

Néronmodel we have to divide by these. If we do this on ZE we obtain as
quotient the dual X t , and thus the connected components are
parametrised by X t/b(X ) as also follows from the description as rigid
quotient.
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Relation Néron - determinant of cohomology

The (inverse of) the determinant of cohomology of L⊗M is a line-bundle
on the Picard-functor which satisfies the theorem of the cube but
unfortunately is not invariant under tensoring with O(Cv )’s. Thus it does
not descend to the Néron-model. In fact we have:
a) The determinant of cohomology remains invariant if we replace L ⊗M
by ωC ⊗ L−1 ⊗M−1, that is L by ωC ⊗ L−2 ⊗M−1.
b) If we replace L by L(−Cv ) the inverse of the determinant of
cohomology is changed by the divisor of π to the power
deg(L ⊗M|Cv ) + 1− gv , where gv denotes the genus of Cv .
c) For a generic linebundle L with deg(L ⊗M|Cv ) = gv − 1 + n+

v the
cohomology vanishes (and thus its determinant becomes a unit). Here n+

v

denotes the number of edges starting in v .
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A cubical bundle

To get a cubical linebundle on the Néron-model we modify the
determinant of cohomology as follows: The degree-vectors of M and
ωC ⊗⊗M−1 differ by the image of a linear combination α =

∑
e mee

where all coefficients me are odd integers. Such a representation is unique
modulo 2X . This holds because the parity of deg(ωC |Cv ) is the number of
edges connecting to v . Also the degree of L is the image of an element
β =

∑
e nee, well determined modulo X .

Then for such a representation modify the determinant of cohomology by
the π-power with exponent one eigth the norm squared of the projection of
α− 2β to X⊥. This is a rational number but its denominator is bounded
so we get a line-bundle over the extension to a finite ramified extension V ′

of V (we only change the basering but keep the Néron-model, that is we
do not pass to the model over V ′ which has more components).
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A cubical bundle 2

One checks that the result is invariant under tensoring with O(Cv )’s.
Namely if we replace L by L(−Cv ) we get new representatives for the
degree-vectors by substracting ±2 from ne , for e an edge starting or
ending at v . Then the sum

∑
e(n2

e − 1)/8 changes by the sum over edges
connecting to v of

(−± ne + 1)/2 = (−deg(ωC ⊗ L−2 ⊗M−2|Cv ) +
∑

e

1)/2

= −(gv − 1)− deg(L ⊗M|Cv ).

(one needs to change β by the image of v in ZE which lies in X⊥). Also
replacing L ⊗M by ωCL−1 ⊗M−1 gives the same. The inverse
determinant of cohomology defines (over K ) a global section of this
bundle (a theta-divisor) which is symmetric in the sense that it is invariant
if we replace L by ωC ⊗M−2 ⊗ L−1. On the generic fibre our bundle
coincides with the theta-bundle giving the polarisation, thus differs from
this theta-bundle by a divisor supported in the special fibre. Because both
bundles have cubical structures the coefficients this divisor are constant.
To determine this constant we use the a), b) c) above.G. Faltings (MPIM) Norms of Weierstrass-sections 30.5./3.6.2013 16 / 19



Uniformisation

The polarisation on the Néron-model is given by a thetafunction which is
rigid analytic defined by a sum ∑

µ∈X

a(µ)µ,

where a(µ) is a multiplicatively quadratic function (or better section of a
linebundle on A) of µ whose quadratic term is πb(µ,µ)/2. On the
component parametrised by ρ ∈ X t its π-valuation in a generic point is, up
to a constant independant of ρ, given by the minimum of b(ρ−α/2 +µ)/2
for µ ∈ X . This follows because the quadratic term in the valuation of a is
b/2 and the thetadivisor is symmetric around α/2. To get the π-adic
valuation on the original determinant of cohomology we have to add one
eigth of the norm square of the projection to X⊥ of α− 2β. The result is
the minimum (over µ ∈ X ) of the normsquare of α− 2β − 2µ.
Furthermore the unknown constant is determined by c) above and we get:
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The result

Theorem

The degree-vectors of L⊗M and ωC ⊗L−1⊗M−1 differ by the image of
a linear combination

∑
e mee where all coefficients me are odd integers.

Such a representation is unique modulo 2X . Then the π-power is the
minimum over all such representations of

∑
e(m2

e − 1)/8.

Proof.

Namely this is true up to a constant which can be determined by property
c). One also can check directly that it satisfies a) (change the sign of the
me) and c) (one can chose me = ±1).
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Remarks

Remarks a) If C is not a regular semistable model one has to change the
sum to

∑
e re(n2

e − 1)/8.
b) The divisibility by powers of π of the Weierstrass-section is due to the
fact that ωC and O(2gP − 2Q) have quite different degrees on various
components.
c) A similar reasoning applies to other linebundles (instead of ωC ).
d) The bound need not be optimal as ωC (Q − gP) is not a generic
linebundle with given degree-vector. For example it depends on the choice
of Q. The most canonical choice is if Q lies in the same component as P,
but this gives the worst estimate.
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