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Polynomial, Rational and Holomorphic hulls

For a compact set K ⇢ Cn, one defines its polynomial hull as

bKP := {z 2 Cn
��� |P(z)|  max

u2K
|P(u)|, P : Cn ! C is a polynomial}

its rational hull as

bKR := {z 2 Cn
��� |R(z)|  max

u2K
|R(u)| R =

P

Q
is a rational function }.

Given an open set U � K , its holomorphic hull in U is

bKU
H := {z 2 U

��� |f (z)|  max

u2K
|f (u)|; f : U ! C is holomorphic}.
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Polynomial and Rational convexity

A compact set K ⇢ Cn is called
rationally (resp. polynomially) convex if

bKR = K , (resp.bKP = K ).

The rational convexity of K is equivalent to the following
condition:

(P) for every point a 2 Cn \ K there exists a polynomial Pa such
that Pa(a) = 0 and Pa|K 6= 0.
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Holomorphic convexity

An open set U ⇢ Cn is called holomorphically convex if bKU
H is

compact for all compact sets K ⇢ U.

A compact set K ⇢ Cn is called holomorphically convex if it is the
intersection of its holomorphically convex open neighborhoods.

polynomially convex =) rationally convex =) holomorphically convex.
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J-convex functions and domains

For a real valued function � : U ! R on an open subset U ⇢ Cn,
we denote dC� := d� � i and set

!� := �ddC� = 2i@@� = 2i
X

i ,j

@2�

@zi@z̄j
dzi ^ dz̄j .

� is called i -convex if !�(v , iv) > 0 for all v 6= 0.

A cooriented hypersurface ⌃ ⇢ Cn (of real codimension 1) is
called i -convex if there exists an i-convex function � defined on
some neighborhood of ⌃ such that ⌃ = {� = c}, and ⌃ is
cooriented by a vector field v satisfying d�(v) > 0.

More generally in a complex manifold (V , J) we use the term
J-convexity.

Traditionally J-convexity for functions and hypersurfaces is called
strict plurisubharmonicity, and strict pseudoconvexity, respectively.
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Terminology

A (compact) cobordism W between @�W and @+W we call a
domain @�W = ?, so that @W = @+W .

Domain in Cn is an embedded domain W ⇢ Cn of real dimension
2n.

A function � : W ! R on a cobordism W is called defining if
@±W are regular level sets and �|@�W = min

W
�, �|@+W = max

W
�.

A domain W ⇢ Cn is called i -convex if its boundary is i-convex.
Any weakly i-convex domain in Cn can be C1-approximated by a
slightly smaller i-convex one.
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Holomorphic vs i -convexity

According to a theorem of E. Levi any
holomorphically convex domain W ⇢ Cn is
weakly i-convex.

Conversely, K. Oka proved in 1953 that
any i-convex domain in Cn is
holomorphically convex.

(same is true for
weakly i-convex domains: Bremermann,
Norguet, Grauert, Docqiuer-Grauert).
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Stein domains and cobordisms

A Stein domain is a compact complex domain (W , J) which
admits a defining J-convex function. A Stein domain in Cn is a
synonym of an i-convex domain.

More generally, a Stein cobordism (W , J) is a smooth cobordism
between @�W and @+W with a complex structure J which admits
a defining J-convex function � : W ! R.
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Symplectic aspects of J-convexity

Given a J-convex function � we have

a Kähler metric H� = g� � i!�, and, in particular, a
symplectic form !�;

the gradient vector field X� = rg��, which is a Liouville
vector field for !�, i.e. LX�

!� = !�, or equivalently
d�� = !�, where �� = ◆X�

!�;

the stable manifolds of its critical points are isotropic. Hence,
indices of all critical points are  n.

level sets {� = C} are contact manifolds, and stable manifolds
intersect the regular level sets along Legendrian spheres.

Corollary: Any i-convex domain W ⇢ Cn admits a defining
Morse function � : W ! R without critical points of index > n.

The union K� ⇢ W is called the skeleton. The flow X�t
� retracts

W onto an arbotrarily small neighborhood of K�.
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Symplectic aspects of J-convexity

Lagrangian stable
manifold of a critical
point of a J-convex
function � intersects
a contact level set
{� = c} along a
Legendrian
submanifold of the
level sets.
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Topological characterization of Stein domains of dim > 2

Theorem (E.,1990)

Any domain in Cn, n > 2 which admits a defining function without
critical points of index > n is isotopic to an i-convex domain.

The key analytic ingredient in the proof is the following

Proposition

Suppose that the i-convex domain W ⇢ Cn is rationally convex
and � ⇢ Cn \ Int W an n-disc which intersects @W transversely
along a Legendrian sphere @�. if � is totally real then W [� has
an arbitrary small i -convex neighborhood
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Criteria polynomially and rationally convex domains

Oka:

An i-convex domain W ⇢ Cn is polynomially convex if and only if
there exists an exhausting i-convex function � : Cn ! R such that
W = {�  0}.

Duval-Sibony, Nemirovski:

An i-convex domain W ⇢ Cn is rationally convex if and only if the
following condition holds:

(R) There exists an i-convex function � : W ! R such that
W = {�  0}, and the form �ddC� on W extends to a
Kähler form ! on the whole Cn.
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Rational convexity of the isotropic skeleton

Proposition

Suppose that the i-convex domain W ⇢ Cn is rationally convex
and � ⇢ Cn \ Int W an n-disc which intersects @W transversely
along a Legendrian sphere @�. Then if � is isotropic then that
W [� has an arbitrary small rationally convex neighborhood

Corollary

Let W be a Stein domain and � : W ! R a defining J-convex
Morse. Suppose that there exists a symplectic embedding
h : (W , !�) ! (Cn, !st). Then the image h(K�) of the skeleton
K� admits an arbitrary small rationally convex neighborhood.

Yakov Eliashberg Stanford University Topology of rationally and polynomially convex domains



Rational convexity of the isotropic skeleton

Proposition

Suppose that the i-convex domain W ⇢ Cn is rationally convex
and � ⇢ Cn \ Int W an n-disc which intersects @W transversely
along a Legendrian sphere @�. Then if � is isotropic then that
W [� has an arbitrary small rationally convex neighborhood

Corollary

Let W be a Stein domain and � : W ! R a defining J-convex
Morse. Suppose that there exists a symplectic embedding
h : (W , !�) ! (Cn, !st). Then the image h(K�) of the skeleton
K� admits an arbitrary small rationally convex neighborhood.

Yakov Eliashberg Stanford University Topology of rationally and polynomially convex domains



Topological characterization of polynomially and rationally
convex domains

Main Theorem

Consider a domain W ⇢ Cn, n > 2.

1 Then W is isotopic to a rationally convex domain if and only
if it admits a defining function without critical points of index
> n.

2 This condition together with condition
(T) Hn(W ) = 0 and Hn�1(W ) has no torsion

is necessary and su�cient for W to be isotopic to
polynomially convex domain.

(a) If W is simply connected, then the condition of Theorem 2 is
equivalent to the existence of a defining Morse function
without critical points of index � n.
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Topology of polynomially and rationally convex domains

Main Theorem

Consider a domain W ⇢ Cn, n > 2.

1 Then W is isotopic to a rationally convex domain if and only
if it admits a defining function without critical points of index
> n.

2 This condition together with condition
(T) Hn(W ) = 0 and Hn�1(W ) has no torsion

is necessary and su�cient for W to be isotopic to
polynomially convex domain.

(b) For any n � 3 there exists a (non-simply connected) domain
W satisfying the condition of Theorem 2 but which does not
admit a defining function without critical points of index � n.
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Flexible Stein domains

There is class of Stein domains (cobordisms) in Cn, n > 2, called
flexible, with the following properties:

Theorem
1 Any domain in Cn, n > 2, which admits a defining function

without critical points of index > n is isotopic to a flexible
Stein domain.

2 Any two smoothly isotopic flexible Stein domains in Cn are
isotopic through i-convex domains.

3 Given any flexible Stein cobordism W ⇢ Cn, any defining
Morse function � : W ! R without critical points of index
> n is equivalent to an i-convex function, i.e. there exists
isotopic to the identity di↵eomorphisms h : W ! W and
g :! R such that g � � � h is i -convex.

In particular, for
flexible Stein cobordisms one has the J-convex h-cobordism
theorem.
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Loose Legendrian knots

In contact manifolds of dimension > 3 there is a remarkable class
of Legendrian knots, discovered by E. Murphy, which satisfies a
certain form of an h-principle. These knots are called loose.

Any Legendrian knot can be made
loose by a local modification
(called stabilization) in an
arbitrarily small neighborhood of
a point. This can be done without
changing the formal Legendrian
isotopy class of the knot.

Theorem (Murphy’s h-principle)

For loose Legendrian knots formal Legendrian isotopy implies
genuine Legendrian isotopy.
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Lagrangian caps

Question. Let B be the round ball in the standard symplectic R2n.
Is there an embedded Lagrangian disc � ⇢ R2n \ Int B with
@� ⇢ @B such that @� is a Legendrian submanifold and �
transversely intersects @B along its boundary?

If n = 2 then such a Lagrangian disc does not exist, because its
existence would contradict the slice Thurston-Bennequin
inequality (Lee Rudolph).

Theorem

Given an i-convex domain W ⇢ Cn and an n-dimensional compact
manifold L with boundary, for Lagrangian embeddings
f : (L, @L) ! Cn \ Int W ) with loose Legendrian boundary
f (@L) ⇢ @W one has an h-principle.

In particular, the triviality of
the complexified tangent bundle TL⌦ C is a necessary and
su�cient condition for existence of a Lagrangian embedding
f : (L, @L) ! (R2n \ Int W , @W ) with Legendrian boundary
f (@L) ⇢ @W.
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Flexible Stein cobordisms

A Stein cobordism (W , J, �) together with a defining J-convex
function � is called elementary if there are no gradient trajectories
of XJ,� connecting critical points of �. Any cobordism can be
sliced into elementary ones.

An elementary Stein cobordism
(W , J, �) is called flexible if the
attaching spheres of stable discs of
all index n critical points form a
loose Legendrian link. There are no
constraints on index < n critical
points.

A general Stein cobordism (W , J) is
called flexible if there exists a
defining function � : W ! R such
that (W , J, �) can be sliced into
elementary flexible Stein
cobordisms.
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Flexible Stein cobordisms

Theorem
1 Any domain in Cn, n > 2, which admits a defining function

without critical points of index > n is isotopic to a flexible
Stein domain.

2 Moreover, any two smoothly isotopic flexible Stein domains in
Cn are isotopic through i-convex domains.

3 Given any flexible Stein cobordism W ⇢ Cn, any defining
Morse function � : W ! R without critical points of index
> n is equivalent to an i-convex function, i.e. there exists
isotopic to the identity di↵eomorphisms h : W ! W and
g :! R such that g � � � h is i -convex. In particular, for
flexible Stein cobordisms one has the J-convex h-cobordism
theorem.

4 Let W ⇢ Cn be a flexible Stein domain and � : W ! R a
defining i-convex function. Then the inclusion W ,! Cn is
isotopic to a symplectic embedding h : (W , !�) ! (Cn, !st).
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Proof of Math Theorem: polynomial convexity

Theorem 3,

Given any flexible Stein cobordism W ⇢ Cn, any defining
Morse function � : W ! R without critical points of index
> n is equivalent to an i-convex function, i.e. there exists
isotopic to the identity di↵eomorphisms h : W ! W and
g :! R such that g � � � h is i-convex.

implies Main Theorem in the polynomially convex domains using
the following

Topological lemma

Let W ⇢ Cn, n > 2, be a domain which admits a defining Morse
function � : W ! R without critical points of index > n and which
satisfies condition (T), i.e. Hn(W ) = 0 and Hn�1(W ) has no
torsion. Then � extends to a Morse function b� : Cn ! R without
critical points of index > n and which is equal to |z |2 at infinity.
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Proof of Math Theorem: rational convexity

Theorem 4,

Let W ⇢ Cn be a flexible Stein domain and � : W ! R a
defining i-convex function. Then the inclusion W ,! Cn is
isotopic to a symplectic embedding h : (W , !�) ! (Cn, !st).

together with the surrounding of isotropic skeletons theorems
implies

Any domain W ⇢ Cn, n > 2, which admits a defining
function without critical points of index > n is isotopic to a
flexible rationally convex domain. Moreover, if W is itself a
flexible Stein domain, then the isotopy can be chosen through
Stein domains.
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Generalizations, open problems and conjectures

Everything can be generalized to global holomorphic and
global meromorphic convexity in arbitrary Stein manifolds.

Conjecture: Any polynomially convex domain in Cn, n > 2 is
flexible.

Question: Is the same holds for simply connected rationally
convex domains?

Conjecture: Let D⇤(S) be the unit cotangent bundle of a
2-dimensional surface D. An embedding
h : D⇤(S) ! (C2, !st) is isotopic to an embedding onto a
rationally convex domain if and only if h|S : S ! C2 is
isotopic to a Lagrangian embedding.
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