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Background

(X , L) a compact polarised manifold of complex dimension n.

When does X admit a constant scalar curvature Kähler metric
in the class c1(L)?

Special case: L = K±1
X . Then CSC is equivalent to

Kähler-Einstein: Ricci= ∓ω.
L = KX —-negative Ricci curvature. Always exist (Aubin, Yau).
L = K−1

X —positive Ricci curvature (X Fano). Do not always
exist.

Yau’s conjecture Existence⇔ “stability′′ of X .
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Similar conjectures for constant scalar curvature. Various
candidate definitions of “stability”. (In particular, recent work of
Szekelyhidi, see later.)
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Chen, Donaldson, Sun (2012). Proof of Yau’s conjecture for
Fano manifolds.

Theorem 0 X (Fano) admits Kähler-Einstein metric iff stable.

(The direction KE ⇐ stable, in the sharp form here, is due to
Berman.)

In this lecture we discuss a different, related, result.
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Let Σ be a quasi-projective variety parametrising a family of
Fano manifolds Xσ with Aut(Xσ) finite.
Let Σ′ ⊂ Σ be the subset defined by the existence of a KE
metric. It is well-known that Σ′ is open in the C∞ topology.

Theorem 1 Σ′ is Zariski-open in Σ.

Theorem 1 has been proved by Y.Odaka (arxiv 1211.4833)
using Theorem 0. We want to explain a different proof.
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Remarks

The arguments of [Chen, Donaldson, Sun 2012] make
heavy use of pluripotential theory, metrics with cone
singularities, . . . . We avoid these here.

The method here is related to another approach to a
version of Theorem 0, but an interesting difficulty arises,
which we want to explain.

Many of the arguments apply to constant scalar curvature
metrics.
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Theorem 2 Let Σ parametrise a family of polarised manifolds
with Aut(Xσ) finite. Let Σ′ ⊂ Σ be the subset such that Xσ
admits a CSC metric ωσ. Suppose there is a C such that for all
σ ∈ Σ′ we have

|Ricci| ≤ C;

Diam(Xσ, ωσ) ≤ C.

Then Σ′ is Zariski open.

This has only theoretical interest for the moment, since the only
case when one knows the hypotheses apply is the Fano case.
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We need preliminaries in:
I. Algebraic geometry
II. “Hermitian projective geometry”
III. Differential geometry and asymptotics.

Simon Donaldson Volume estimates, Chow invariants and moduli of Kähler-Einstein metrics



I. Algebraic geometry.
Write Chow for the Chow variety of n-dimensional varieties of
degree d in PN .

“stability” is related to the orbit structure of the SL(N + 1) action
on Chow.

Given V ⊂ PN we define the incidence variety
IV ⊂ Gr(N − n,N + 1). It is a hypersurface cut out by a
polynomial F in sdΛN−n(CN+1). In this way we get an
embedding

Chow→ P(sdΛN−n(CN+1)).

V is “Chow stable” if the map

g 7→ g(F ) SL(N + 1)→ sdΛN−n(CN+1),

is proper.
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Numerical criterion

Let gt ∈ SL(N + 1) be a meromorphic function of t ∈ Δ ⊂ C.
Define an integer Ch(gt) to be the largest order of a pole of the
components of gt(F ) at t = 0.

Chow stability is equivalent to saying that Ch(gt) > 0 for all
such maps.

There is a formulation in terms of families

V ⊂ PN ×Δ π : V → Δ

such that π−1(t) ∼= V for t 6= 0.
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Then the invariant is given by the formula

Ch(V) =
1

N + 1
c1(π∗(L))−

1
(n + 1)!

π∗(c1(L)
n+1),

where L is the hyperplane bundle and the formula is interpreted
using the trivialisation over Δ∗.
Now replace L by Lk to define Chk (V).
The Futaki invariant is

Fut(V) = lim
k→∞

Chk (V).
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II “Hermitian projective geometry”

Consider V ⊂ PN , where PN has a fixed Fubini-Study metric.
We define M(V ) ∈ su(N + 1) by

M(V )αβ =
(

i
∫

V

zαzβ
|z|2

dμFS

)

Trace−free
.

(Significance : M is a “moment map” for the action of
SU(N + 1) on the Chow variety.)

Suppose π : V → Δ corresponds to gt = L(t)tAR(t) with
L,R, L−1,R−1 holomorphic across t = 0 and A hermitian.
Then we have

Ch(V) ≤ 〈M(V0), iA〉. (∗)
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If L = R = 1 we have a C∗-equivariant family V. This is the
situation usually considered in the literature. In this case
equality holds in (*). The inequality in the general case is
related to the “Hilbert-Mumford Theorem”. For our purposes we
do not want to restrict to C∗-equivariant families.
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III. Differential geometry.
Suppose that ω is a constant scalar curvature metric on X and
the hypotheses of Theorem 2 apply. We consider the
embedding

Tk : X → PNk = P(H0(X , Lk )∗),

where H0(X , Lk ) is given a hermitian metric from the L2 norm
on sections.

Proposition A (Main estimate)

‖M(Tk (X )‖1 ≤ Ck−2 log k ,

where
‖diag(λi)‖1 =

∑
|λi |.

Proposition B If X is the generic fibre of a degeneration
X → Δ then Fut(X ) > 0.

We will come back to these.
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Main point
Suppose σi ∈ Σ′ and σi → σ∞. Thus Xi = Xσi have CSC
metrics ωi . We have Tk (Xi) ∈ Chowk . For each fixed k we can
suppose that there is a limit Wk ∈ Chowk .
Problems

1 Wk might vary with k .
2 Wk might not lie in the closure of the orbit of Xσ∞ due to

possible “splitting of orbits”.
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To handle (1): we can suppose that (Xi , ωi) have a
Gromov-Hausdorff limit Z . The results of Donaldson and Sun
(2012) imply that Z has a natural algebraic structure and for
some k0 we have Wk

∼= Z for k = mk0, all m ≥ 1. There is no
loss of generality in supposing that k0 = 1
(Generalisations of these facts about Gromov-Hausdorff limits
are also fundamental in the proof of Theorem 0.)
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To handle (ii): There is a Zariski open subset Σ0 ⊂ Σ such that
for σ ∈ Σ0:

The orbit of [Xσ] in the Chow variety has maximal degree.

Any degeneration X of Xσ can be deformed to a
degeneration of Xτ for τ close to σ.
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Remark In an analogous discussion for rank 2 bundles over a
curve , degenerations correspond to line sub-bundles. Then the
analogue of Σ0 is defined by bundles which have “generic
sub-bundles”.
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To prove Theorem 1 we need to show that if σi ∈ Σ′ and
σi → σ∞ with σ∞ ∈ Σ0 then σ∞ ∈ Σ′. If not, we get a non-trivial
degeneration X of Xσ∞ with central fibre W . For each power k
we can represent this with a generator Ak and one shows that
the operator norm is bounded by ‖Ak‖op ≤ ck . By Proposition A
we get

Chk (X ) ≤ 〈M(W ),Ak 〉 ≤ Ckk−2 log k = Ck−1 log k ,

so
Fut(X ) ≤ 0.

On the other hand, since σ∞ ∈ Σ0, the degeneration X can be
deformed to a degeneration of Xi for large i . The Futaki
invariant is deformation invariant, so by Proposition B we have
Fut(X ) > 0, which is a contradiction.
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Discussion of Proposition B
When X has a C∗ action, this is a result of Stoppa. The proof in
the general case is a variant of Stoppa’s. One approach is to
use a much more general result of Szekelyhidi. He defines a
notion of stability based on filtrations of the ring

⊕
k H0(X , Lk )

and a degeneration X defines a filtration.
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Discussion of Proposition A
The “density of states” function is

ρk =
∑
|sα|2,

where (sα) is any orthonormal basis of sections of Lk .
The Tian-Zelditch-Lu expansion For any fixed metric we have
an asymptotic expansion as k →∞

ρk ∼ 1+ a1k−1 + a2k−2 + . . . ,

where a1 = S/2.
Note. Replacing L by Lk corresponds to scaling lengths by

√
k .
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Suppose A = diag(λα) with respect to a basis sα and that
Tr(A) = 0.
Then

〈M(Tk (X )),A〉 =
∫

X
HdμFS,

where
H = ρ−1

∑
λα|sα|2.

For simplicity, suppose that the scalar curvature is zero.
Since 0 =

∑
λα =

∫
X Hρωn we need to show that

∫

X
H(ρωn − dμFS) ≤ Ck−2 log k‖H‖L∞

i.e. that ∫

X
|ρωn − dμFS| ≤ Ck−2 log k . (∗∗)

We can write

ρωn − dμFS = ρω
n − (ω + k−1∂∂ log ρ)n.
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The volume estimate
For r > 0 define Ωr ⊂ X by

Ωr = {x ∈ X : |Riem| ≤ r−2 on Br (x)}.

In other words, scaling Br (x) to unit size we get a ball with
uniformly bounded geometry. Write ρk = 1+ ηk .

Uniform asymptotic estimates : If r ≥ k−1/2 then on Ωr we
have

|∇jη| ≤ Ck−2r−4−j .

This expresses the “locality” in the analysis of the asymptotic
expansion.
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Proposition C (Chen-Donaldson/Cheeger-Naber)
We have

Vol(X \ Ωr ) ≤ Cr4.

One ingredient in the proof is the L2 bound on Riemcoming
from Chern-Weil theory.
The estimate (**) follows by elementary arguments.
(For example the region in X where the uniform asymptotic
estimate gives no information has volume
Vol(X \ Ωk−1/2) ≤ Ck−2.)
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