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Let Bn be the complex n-ball. The group of biholomorphisms of
Bn is PU(n, 1).

I will be interested in complex manifolds obtained as compact ball
quotients:

S = S(Γ) = Γ\Bn

where Γ ⊂ PU(n, 1) is a torsion free discrete subgroup.
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(symmetric) metric. Denote by Ω the corresponding Kähler form.



The group
PU(n, 1) y Bn

transitively and by biholomorphisms; it preserves the Bergman
(symmetric) metric. Denote by Ω the corresponding Kähler form.

Then 1
2iπΩ induces a (1, 1)-form on S which is the Chern form of

the canonical fiber bundle. It follows from Kodaira’s theorem that
S is a complex projective manifold.
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Arithmetic ball quotients

The ball quotients I will consider are arithmetic ball quotients or
Shimura varieties uniformized by the complex n-ball.

Let E be a CM-field with totally real maximal subfield F ,
[F : Q] = d . Let V be a non-degenerate anisotropic Hermitian
E -vector space of dimension n + 1. Set

G = ResF/QU(V ).

Suppose that

G (R) ∼= U(n, 1)×U(n + 1)d−1.



Let Γ ⊂ G ad(Q) be a torsion free congruence subgroup:

Γ = ΓK := G ad(Q) ∩ K ad, K ⊂ G (Af ) compact-open.

Then
S = S(Γ) = Γ\Bn

is a compact ball quotient.



Let Γ ⊂ G ad(Q) be a torsion free congruence subgroup.

Γ = ΓK := G ad(Q) ∩ K ad, K ⊂ G (Af ) compact-open.

Then
S = S(Γ) = Γ\Bn

is a compact ball quotient.

Shimura-Deligne: S has a canonical model defined over a finite
abelian extension of E .
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Main theorem

A cohomology class on S is of level c if it is the pushforward of a
cohomology class on a c-codimensional subvariety of S .

Definition
Let NcH•(S ,Q) be the subspace of H•(S ,Q) which consists of
classes of level ≥ c .

Note that we have:

NcHk(S ,Q) ⊂ Hk(S ,Q) ∩

 ⊕
a+b=k
a,b≥c

Ha,b(S ,C)

 .

In particular NcHk(S ,Q) = {0} if k < 2c .
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Our main theorem is:

Theorem 1
Let k, c ∈ N s.t. 2k − c < n + 1. Then we have:

NcHk(S ,Q) = Hk(S ,Q) ∩

 ⊕
a+b=k
a,b≥c

Ha,b(S ,C)

 .

Remark. The RHS is not always a Hodge structure (Grothendieck)
whereas the LHS is. So what we prove is a strong version of the
generalized Hodge conjecture that cannot hold in general.



Theorem 1 indeed generalizes the Hodge conjecture: consider the
case where k = 2p and c = p. We have:

Corollary

Let p ∈ [0, n]\]n3 ,
2n
3 [. Then every Hodge class in H2p(S ,Q) is a

linear combination with rational coefficients of the cohomology
classes of subvarieties.



Theorem 1 indeed generalizes the Hodge conjecture: consider the
case where k = 2p and c = p. We have:

Corollary

Let p ∈ [0, n]\]n3 ,
2n
3 [. Then every Hodge class in H2p(S ,Q) is a

linear combination with rational coefficients of the cohomology
classes of subvarieties.

Proof.
By definition NpH2p is the rational span of cohomology classes of
subvarieties. Now:

2k − c = 4p − p = 3p < n + 1⇔ p ∈ [0,
n

3
].

The corollary therefore follows from Theorem 1 and Poincaré
duality.
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Special cycles

Let t ∈ N∗, t ≤ n. To any totally positive subspace U ⊂ V of
dimension t we associate

H = ResF/QU(U⊥) ⊂ ResF/QU(V ) = G .

It corresponds a sub-ball

Bn−t
H ⊂ Bn (negative lines which lie in U⊥).

It is a complex (totally geodesic) submanifold of codimension t.
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Let ΓU = Γ ∩ Had(Q). It corresponds an immersion

ΓU\Bn−t
H # Γ\Bn.

I CU algebraic cycle (defined over an abelian extension of E )

I [CU ] ∈ H2t(S ,Q) ∩ Ht,t(S ,C).



We rather consider composite cycles: let β ∈ Hermr (E ) totally
positive semidefinite. We set

Ωβ =

x = (x1, . . . , xr ) ∈ V r

1
2 ((xi , xj))1,...,r = β and
dimVectE (x1, . . . , xr )︸ ︷︷ ︸

=U(x)

= rank(β)

 .

The group Γ = ΓK acts with finitely many orbits on Ωβ. Given a
K -invariant ϕ ∈ S(V (Af )r ) we define

Cβ,ϕ =
∑
x∈Ωβ

mod Γ

ϕ(x)CU(x).



A classical example
Consider the case where V is orthogonal and positive definite of
dimension n over F = Q, Γ = {1} (K =

∏
p Zp) and r = 1.

If β = k
2 ∈ Sym1(Q) with k ∈ N and ϕ = 1V (

∏
p Zp). Then Cβ,ϕ is

the “number”

r(k) = {x ∈ Zn
∣∣ x2

1 + . . .+ x2
n = k}.



Composite cycles behave well under congruence covers. If Γ′ = ΓK ′

and Γ = ΓK with K ′ ⊂ K , consider the natural projection
p : S(Γ′)→ S(Γ). We have:

p∗(Cβ,ϕ) = Cβ,ϕ.
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Composite cycles behave well under congruence covers. If Γ′ = ΓK ′

and Γ = ΓK with K ′ ⊂ K , consider the natural projection
p : S(Γ′)→ S(Γ). We have:

p∗(Cβ,ϕ) = Cβ,ϕ.

For all β � 0 we finally get a G (Af )-equivariant map{
S(V (Af )r )Q → H2r (Sh(G ),Q) := lim→

Γ
H2r (S(Γ),Q)

ϕ 7→ [β, ϕ] := [Cβ,ϕ].

We extend this construction to positive semidefinite β’s by setting:

[β, ϕ] = Lr−t([Cβ,ϕ]) where t = rank(β)

and L is the cup-product with the Lefschetz class Ω.
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the classes [β, ϕ].



Definition
Let SC 2r (Sh(G )) ⊂ H2r (Sh(G ),Q) be the subspace spanned by
the classes [β, ϕ].

It is a rational subspace that is Hecke stable and it follows from
Kudla-Millson that

SC •(Sh(G )) :=
⊕
r

SC 2r (Sh(G ))

is a subring of H•(Sh(G ),Q).



On the proof of Theorem 1

Our main technical result is the following:

Theorem 2
Let a, b ∈ N (with say a ≥ b) and 3(a + b) + |a− b| < 2(n + 1).

I If a > b (and c = a− b), then the natural cup-product map

SC 2b(Sh(G ))× Hc,0(Sh(G ),C)→ Ha,b
prim(Sh(G ),C)

is surjective.

I If a = b, then the natural cup-product map

SC 2(a−1)(Sh(G ))× H1,1(Sh(G ),C)→ Ha,a
prim(Sh(G ),C)

is surjective.



Remarks. 1. The symmetrical result with a < b and Hc,0 replaced
by H0,c holds as well.



Remarks. 1. The symmetrical result with a < b and Hc,0 replaced
by H0,c holds as well.
2. When a = b, it is not true that SC 2a → Ha,a

prim is surjective:
totally geodesic codimension one cycles don’t span.



Remarks. 1. The symmetrical result with a < b and Hc,0 replaced
by H0,c holds as well.
2. When a = b, it is not true that SC 2a → Ha,a

prim is surjective:
totally geodesic codimension one cycles don’t span.

We furthermore prove:

Proposition

If a, b ∈ N with 3(a + b) + |a− b| < 2(n + 1) then there exists a
rational subspace Y ⊂ Ha+b(Sh(G ),Q) s.t.

Y ⊗Q C = Ha,b(Sh(G ),C)⊕ Hb,a(Sh(G ),C).



Theorem 2 ⇒ Theorem 1

It follows from the above Proposition and Theorem 2 that we
have:

I if a = b the image of the cup-product map

SC 2(a−1)(Sh(G ))×
(
H1,1(Sh(G ),C) ∩ H2(Sh(G ),Q)

)
→ Ha,a(Sh(G ),C)

spans the whole primitive subspace when 6a < 2(n + 1) (i.e.
a < 1

3 (n + 1)).
The Hodge Conjecture then follows from Lefschetz’
(1, 1)-Theorem.



I if a 6= b cup-products of classes in SC 2 min(a,b)(Sh(G )) and in(
H |a−b|,0(Sh(G ),C)⊕ H0,|a−b|(Sh(G ),C)

)
∩H |a−b|(Sh(G ),Q)

span
Ha,b
prim(Sh(G ),C)⊕ Hb,a

prim(Sh(G ),C)

when 3(a + b) + |a− b| < 2(n + 1).



I if a 6= b cup-products of classes in SC 2 min(a,b)(Sh(G )) and in(
H |a−b|,0(Sh(G ),C)⊕ H0,|a−b|(Sh(G ),C)

)
∩H |a−b|(Sh(G ),Q)

span
Ha,b
prim(Sh(G ),C)⊕ Hb,a

prim(Sh(G ),C)

when 3(a + b) + |a− b| < 2(n + 1).
This applies to ⊕

a+b=k
a,b≥c

Ha,b(Sh(G ),C)

as long as

3k + k − 2c < 2(n + 1)⇔ 2k − c < n + 1.

Here k = a + b and |a− b| is maximal if say b = c and
a = k − c.



Theta series

Consider the split Hermitian space W of even dimension 2r over
E . Let

G ′ = ResF/QU(W ).

Given β ≥ 0, it corresponds a Whittaker function Wβ(g ′) on
G ′(R) = U(r , r)d .



Theta series

Consider the split Hermitian space W of even dimension 2r over
E . Let

G ′ = ResF/QU(W ).

Given β ≥ 0, it corresponds a Whittaker function Wβ(g ′) on
G ′(R) = U(r , r)d .

Example

In case r = 1 and d = 1, the symmetric space associated to
G ′(R) = U(1, 1) identifies with the Poincaré upper half plane H
and the function Wβ defines a function on H which turns out to be

τ 7→ e2iπτβ .



Kudla-Millson introduce the generating series

θϕ(g ′) =
∑
β≥0

[β, ϕ]Wβ(g ′)

with values in H r ,r (Sh(G ),C).



A classical example
Consider again the case where V is orthogonal and positive definite
of dimension n over F = Q, Γ = {1} (K =

∏
p Zp) and r = 1.

Then

θϕ(τ) =
∑
x∈Zn

e iπτ(x ,x) =
+∞∑
k=0

r(k)e iπτk

is a classical θ-series.

→ It is modular in τ .



Kudla-Millson introduce the generating series

θϕ(g ′) =
∑
β≥0

[β, ϕ]Wβ(g ′)

with values in H r ,r (Sh(G ),C).

Kudla-Millson:
The map

g ′ 7→ θϕ(g ′) ∈ H r ,r (Sh(G ),C)

defines an automorphic form.



The proof follows from a Poisson summation formula in L2(V (A)r )
applied to φ = ϕKM ⊗ ϕ with

ϕKM ∈ HomU(n)×U(1)(∧r ,rCn,S(V r
∞))

= HomU(n,1)(Ωr ,r (Bn),S(V r
∞))



The proof follows from a Poisson summation formula in L2(V (A)r )
applied to φ = ϕKM ⊗ ϕ with

ϕKM ∈ HomU(n)×U(1)(∧r ,rCn,S(V r
∞))

= HomU(n,1)(Ωr ,r (Bn),S(V r
∞))

It yields a lifting map

{automorphic forms on G ′} → H r ,r (Sh(G ),C)

whose image is Span{[β, ϕ]}.



This fits in the general framework of θ-liftings — as developped by
Howe — from a general unitary group U(W ). But in the general
case there is no more relations with cycles.



This fits in the general framework of θ-liftings — as developped by
Howe — from a general unitary group U(W ). But in the general
case there is no more relations with cycles.

I can now explain the main ideas of the proof of Theorem 2.
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Decompose

H•(Sh(G ),C) =
⊕

π autom
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On the proof of Theorem 2

Decompose

H•(Sh(G ),C) =
⊕

π autom

H•(g,K∞;π∞)⊗ πf .

We first prove:

Theorem 3
Let a, b ∈ N be s.t. 3(a + b) + |a− b| < 2(n + 1). If π is s.t.

Ha,b(g,K∞;π∞) 6= {0},

then π is a θ-lift from a U(W ) of signature (a, b) at infinity.



We then prove that if U(W ) is quasi-split (⇔ W split) then any
θ-lift belongs to the span of KM lifts.



We then prove that if U(W ) is quasi-split (⇔ W split) then any
θ-lift belongs to the span of KM lifts.

[As ϕ is arbitrary, this amounts to local (Archimedean)
computations: show that one may reduce to ϕ∞ = ϕKM. This
boils down to compute part of the (g,K )-cohomology of S(V r

∞).]



Theorem 2 then follows from the classification of Hermitian spaces:

I If a > b, then W decomposes as

W = W split
b,b ⊕Wa−b,0.

I If a = b, then W decomposes as

W = W split
a,a or W = W split

a−1,a−1 ⊕W1,1.



‘Functoriality’ of θ-lift then implies that

I θ(W ) = θ(W split
b,b )︸ ︷︷ ︸

cycle

∧ θ(Wa−b,0)︸ ︷︷ ︸
holom class of deg a−b

I θ(W ) = θ(W split
a,a )︸ ︷︷ ︸

cycle

or θ(W split
a−1,a−1)︸ ︷︷ ︸
cycle

∧ θ(W1,1)︸ ︷︷ ︸
(1,1)−class

.



On the proof of Theorem 3

There are two steps:

I If π is ‘very non tempered’ then π is a θ-lift.
[The precise statement is the analogue for unitary groups of a
theorem of Kudla-Rallis. The main ingredient of the proof is
due to Ichino.]



On the proof of Theorem 3

There are two steps:

I If π is ‘very non tempered’ then π is a θ-lift.
[The precise statement is the analogue for unitary groups of a
theorem of Kudla-Rallis. The main ingredient of the proof is
due to Ichino.]

I Arthur’s classification of automorphic representations implies
that if an automorphic representation is very non tempered at
one place then it is very non tempered everywhere. We are
therefore reduced to study the (non) temperedness of
representations π∞ s.t. H•(g,K∞;π∞) 6= {0}.
→ condition 3(a + b) + |a− b| < 2(n + 1).



A weak form of Arthur’s endoscopic classification of automorphic
representations of classical groups implies:

Weak base change

Let π be an irreducible automorphic representation of G which
occurs as an irreducible subspace of L2(G (Q)\G (A)). Then, there
exists a (unique) global representation Π = ΠΨ of GL(n + 1,AE ),
induced from square integrable automorphic representations
encoded in a parameter

Ψ = µ1 � Rm1 � . . .� µr � Rmr ,

and a finite set of places S s.t. we have:

LS(s, πv ) = LS(s,Πv ).



Here each µj is an irreducible, unitary, cuspidal automorphic
representation of GL(di )/F , Rmj is an irreducible representation of
SL2(C) of dimension mj and n + 1 = m1d1 + . . .+ mrdr .



Given any µj � Rmj we form the induced representation

ind(µj | · |
1
2

(mj−1)

AE
, µj | · |

1
2

(mj−3)

AE
, . . . , µj | · |

1
2

(1−mj )

AE
)

(normalized induction from the standard parabolic subgroup of
type (dj , . . . , dj)). We then write Πj for the unique irreducible
quotient of this representation; it is a square integrable
automorphic representation.



Given any µj � Rmj we form the induced representation

ind(µj | · |
1
2

(mj−1)

AE
, µj | · |

1
2

(mj−3)

AE
, . . . , µj | · |

1
2

(1−mj )

AE
)

(normalized induction from the standard parabolic subgroup of
type (dj , . . . , dj)). We then write Πj for the unique irreducible
quotient of this representation; it is a square integrable
automorphic representation.
We finally define ΠΨ as the induced representation

ind(Π1 ⊗ . . .⊗ Πr )

(normalized induction from the standard parabolic subgroup of
type (m1d1, . . . ,mrdr )).



The Euler product

LS(s,ΠΨ) =
r∏

j=1

∏
v 6∈S

Lv (s −
mj − 1

2
, µj ,v ) . . . Lv (s −

1−mj

2
, µj ,v )

is the product of partial L-functions of the square integrable
automorphic representations associated to the parameters µj �Rmj .



The Euler product

LS(s,ΠΨ) =
r∏

j=1

∏
v 6∈S

Lv (s −
mj − 1

2
, µj ,v ) . . . Lv (s −

1−mj

2
, µj ,v )

is the product of partial L-functions of the square integrable
automorphic representations associated to the parameters µj �Rmj .

Example

If µj is a Dirichlet character then LS(s, µj) is just its usual (partial)
Dirichlet series. In particular if µj = 1 then LS(s, µj) is the
(partial) Riemann zeta function; it has a pole in s = 1.



Kudla-Rallis, Ichino, . . .
Let η be a character of A×E /E

×. Assume that there exists some
integer u > 1 such that the partial L-function LS(s, π × η) is
holomorphic in the half-plane Re(s) > 1

2 (u − 1) and has a pole in
s = 1

2 (u − 1).
Then there exists some (n + 1− u)-dimensional Hermitian space
over E such that π is in the image of the cuspidal theta
correspondence from the group U(W ).



The goal is to construct W such that

ΘV→W (π) 6= 0. (1)

The result then follows by duality.



The goal is to construct W such that

ΘV→W (π) 6= 0. (1)

The result then follows by duality.
To prove (1) we take f in the space of π and compute the square
of the Petersson norm of θ(f ). The latter takes the rough form:

||θ(f )||2 = cRess= u
2
LS(s +

1

2
, π × η),

where c is a non-zero constant involving local coefficients of the
oscillator representation and η some character.



If π∞ is cohomological and is the Langlands’ quotient of a standard
representation with an exponent (z/z̄)p/2(zz̄)(u−1)/2, we have:

Lemma
If 3u > n + 1 + |p| then in the parameter Ψ some of the factor
µj � Rmj is such that mj ≥ u and the representation µj is a
character.



If π∞ is cohomological and is the Langlands’ quotient of a standard
representation with an exponent (z/z̄)p/2(zz̄)(u−1)/2, we have:

Lemma
If 3u > n + 1 + |p| then in the parameter Ψ some of the factor
µj � Rmj is such that mj ≥ u and the representation µj is a
character.

Vogan-Zuckerman: if π∞ is cohomological of degree (a, b) then it
is the Langlands’ quotient of a standard representation with an
exponent (z/z̄)(b−a)/2(zz̄)(n+1−(a+b)−1)/2. This yields the
condition

3(n+1)−3(a+b) > n+1+ |a−b| ⇔ 3(a+b)+ |a−b| < 2(n+1).



THE END


