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Chapter 1

Topology

In this chapter we give a few definitions of general topology including compactness and separability. One
important particular case of topological spaces are the metric spaces for which most of the definitions
can be rephrased in term of sequences. We will also introduce the notion of completeness and we give
three theorems using it in a crucial way: the Banach fixed point theorem, Baire’s theorem and a theorem
about the extension of uniformly continuous functions.

1.1 Basic definitions

1.1.1 General topology

We start with recalling a few basic definitions of general topology.

Definition 1.1.1 (Topology). Given a set X, we say that a subset τ of P(X) is a topology on X if

1. ∅ and X are in τ .

2. τ is stable by finite intersection.

3. τ is stable by union.

Then we say that (X, τ) is a topological space. The elements of τ are called open sets, and their comple-
mentary are the closed sets.

Definition 1.1.2 (Interior and closure). Given a topological space (X, τ) and a set A ⊂ X, we define

1. the interior of A by A◦ := {x ∈ A : there exists U ∈ τ such that x ∈ U ⊂ A};

2. the closure of A by A := {x ∈ X : for any U ∈ τ with x ∈ U, then U ∩A 6= ∅}.

We say that x ∈ A is an adherent point and x ∈ A◦ an interior point.

Let us observe that A◦ ⊂ A ⊂ A.

Definition 1.1.3 (Density). Given a topological space (X, τ) and a set A ⊂ X, we say that A is dense
in X for the topology τ if A = X.

Definition 1.1.4 (Limit of a sequence). Given a topological space (X, τ), we say that a sequence
(xn)n∈N ⊂ X converges to x in X if for any open set U ∈ τ with x ∈ U , there exists n0 ∈ N such that
xn ∈ U for all n > n0.

Definition 1.1.5 (Continuity). Given two topological spaces (X1, τ1) and (X2, τ2), we say that a map
f : X1 → X2 is continuous at x1 ∈ X1 if for all open set U ∈ τ2 such that f(x1) ∈ U , then f−1(U) ∈ τ1.

For extended real-valued functions the following notion of lower semicontinuity is weaker than conti-
nuity.
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Definition 1.1.6 (Lower semicontinuity). Given a topological space (X, τ) and x0 in X, we say
that a function f : X → R ∪ {−∞,+∞} is lower semicontinuous at x0 if for any ε > 0, there exists a
neighborhood U ∈ τ of x0 such that f(x) 6 f(x0) + ε for all x in U .

It is not difficult to check that a function is lower semicontinuous if and only if {x ∈ X : f(x) > α}
is an open set for every α ∈ R.

1.1.2 Metric spaces

An important case of topological spaces is given by metric spaces that we now introduce.

Definition 1.1.7 (Distance). Given a set X, we say that a function d : X ×X → R+ is a distance on
X if

1. d(x, y) = 0 if and only if x = y;

2. d(x, y) = d(y, x);

3. For any x, y, z ∈ X, d(x, y) 6 d(x, z) + d(y, z).

Then we say that (X, d) is a metric space.

For any x in X and any r > 0, we denote

B(x, r) := {y ∈ X : d(x, y) < r} (resp. B(x, r) := {y ∈ X : d(x, y) 6 r})

the open (resp. closed) ball of center x and radius r. A subset is said to be bounded if it is contained in
a ball of finite radius.

Proposition 1.1.1. Given a metric space (X, d), the family τ of all subsets U ⊂ X such that for each
x ∈ U , there exists r > 0 satisfying B(x, r) ⊂ U defines a topology on X.

The following propositions, whose proofs are left to the reader, highlight the role of the sequences in
metric spaces.

Proposition 1.1.2. Given a metric space (X, d) and the topology τ given by Proposition 1.1.1. The
following statements hold:

1. A sequence (xn)n∈N ⊂ X converges to x in X if and only if for every ε > 0, there exists n0 ∈ N
such that for all n > n0, then d(x, xn) < ε;

2. A subset F of X is closed if and only if for every sequence (xn)n∈N ⊂ F converging to x in X,
then x ∈ F .

Proposition 1.1.3. Let (X1, d1) and (X2, d2) be two metric spaces, f : X1 → X2 and x1 ∈ X1. Then
the following statements are equivalent:

1. f is continuous at x1;

2. For any ε > 0, there exists δ > 0 such that if x ∈ X1 is such that d1(x1, x) < δ, then d2(f(x1), f(x)) <
ε;

3. For any sequence (xn)n∈N ⊂ X1 converging to x1, the sequence (f(xn))n∈N converges to f(x) in
X2.

Proposition 1.1.4. Given a metric space (X, d) and x0 in X. A function f : X → R ∪ {−∞,+∞} is
lower semicontinuous at x0 if and only if for any sequence (xn)n∈N ⊂ X converging to x in X, then

f(x) 6 lim inf
n→∞

f(xn).

Definition 1.1.8 (Uniform continuity). Let (X1, d1) and (X2, d2) be two metric spaces. We say that
an map f : X1 → X2 is uniformly continuous if for any ε > 0, there exists δ > 0 such that if x and
y ∈ X1 satisfy d1(x, y) < δ, then d2(f(x), f(y)) < ε.

It is clear from the definitions above that uniform continuity implies continuity. We will see in
Theorem 1.3.1 that the converse statement holds true when the space (X1, d1) is compact.
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1.2 Completeness

1.2.1 Definition

Completeness is an important notion in general topology and in functional analysis because it enables
one to characterize converging sequences without the knowledge of their limit. We first define the Cauchy
property.

Definition 1.2.1 (Cauchy sequence). Given a metric space (X, d), we say that a sequence (un)n∈N ⊂
X is a Cauchy sequence if for any ε > 0, there exists n0 ∈ N such that for all n, n′ > n0 then
d(un, un′) < ε.

Definition 1.2.2 (Completeness). A metric space (X, d) is complete if any Cauchy sequence converges
in X.

Let us give as a first example the set R endowed with the usual metric d(x, y) := |x − y|. It is also
useful to notice that a closed subset of a complete metric space is complete.

1.2.2 Banach fixed point theorem for contraction mapping

An important application of the notion of completeness is given by the following theorem.

Theorem 1.2.1 (Banach, Picard). Given a complete metric space (X, d) and f : X → X. Assume
that f is a contraction, i.e. that there exists a constant θ ∈ (0, 1) such that for all x and y ∈ X, then
d(f(x), f(y)) 6 θd(x, y). Then there exists a unique fixed point x∗ ∈ X such that f(x∗) = x∗.

Proof. Let x0 ∈ X and let (xn)n∈N the associated sequence defined by the relation

xn+1 = f(xn). (1.1)

By iteration we have
d(xn+1, xn) 6 θnd(x1, x0).

For any n′ > n,

d(xn′ , xn) 6
n′−n∑
k=1

d(xn+k, xn+k−1) 6 d(x1, x0)
n′−n∑
k=1

θn+k−1 6
θn

1− θ
d(x1, x0).

Therefore (xn)n∈N is a Cauchy sequence, and by completeness, it converges to an element x∗ ∈ X. Since
f is continuous, we have f(x∗) = x∗ by passing to the limit in (1.1). The uniqueness follows from the
contraction assumption.

The previous theorem is useful in the proof of the Cauchy-Lipschitz theorem in the theory of ordinary
differential equations, and also in proof the local inversion theorem.

1.2.3 Baire’s theorem

The following theorem was proved by Baire in his 1899 doctoral thesis.

Theorem 1.2.2 (Baire). In a complete metric space, every intersection of countable collection of dense
open sets is dense.

Proof. Let (X, d) be a complete metric space and {Un}n∈N be a sequence of dense open sets with the
property that Un = X for each n ∈ N. To prove the result it suffices to show that for any open ball
B in X, then B ∩ (∩n∈NUn) 6= ∅. Since U0 is dense in X, there exists x0 in X and r0 > 0 such that
B(x0, r0) ⊂ B ∩U0. By iteration, using the fact that every sets Un are dense in X, we obtain that there
exists a sequence (xn)n∈N ⊂ X a sequence (rn)n∈N of positive real numbers with rn < rn−1/2 such that
B(xn, rn) ⊂ B(xn−1, rn−1)∩Un. Since for k > n, xk ∈ B(xn, rn) with rn < r0/2n, the sequence (xn)n∈N
has the Cauchy property. By completeness, there exists x ∈ X such that (xn)n∈N converges to x. We
conclude by observing that x ∈ B ∩ (∩n∈NUn) since x ∈ B(xn, rn) ⊂ Un ∩B for any n ∈ N.
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1.2.4 Extension of uniformly continuous functions

Theorem 1.2.3 (Extension of uniformly continuous functions). Given two metric spaces (X1, d1)
and (X2, d2), the latter being complete, a dense subset Y of X1, and a map f : Y → X2 which is uniformly
continuous. Then there exists a unique uniformly continuous extension g : X1 → X2 of f .

Proof. The uniqueness is straightforward: indeed for any x ∈ X1, since Y is dense in X1, there exists a
sequence (xn)n∈N ⊂ Y which converges to x. If g : X1 → X2 is a uniformly continuous extension of f ,
then g(x) must be the limit of the sequence (f(xn))n∈N.

Now to prove the existence of such an extension, observe that the sequence (f(xn))n∈N has the Cauchy
property, since (xn)n∈N has the Cauchy property (because it converges) and f is uniformly continuous.
Since (X2, d2) is complete, it yields that the sequence (f(xn))n∈N converges to an element z in X2.
This z does not depend on the choice of the sequence (xn)n∈N in X1. Indeed, if (x′n)n∈N is another
sequence converging to x, then d1(xn, x′n)→ 0 when n→ +∞, so that, since f is uniformly continuous,
d2(f(xn), f(x′n))→ 0 when n→ +∞. Hence the sequence (f(x′n))n∈N converges to z as well. Therefore,
it makes sense to define g(x) := z.

Let us now prove that g is uniformly continuous. Let ε > 0. Since f is uniformly continuous there
exists δ > 0 such that for any x, x′ ∈ Y with d1(x, x′) < δ, there holds d2(f(x), f(x′)) < ε/3. Let
y and y′ ∈ X1 with d1(y, y′) < δ/3. There exists x, x′ ∈ Y such that d1(x, y) < δ/3, d1(x′, y′) <
δ/3, d2(f(x), g(y)) < ε/3 and d2(f(x′), g(y′)) < ε/3. Therefore, thanks to the triangle inequality, we
have d1(x, x′) < δ and therefore d2(f(x), f(x′)) < ε/3. Using again the triangle inequality, we get
d2(g(y), g(y′)) < ε. Hence g is uniformly continuous.

Some typical applications of the extension of a uniformly continuous function can be found in the study
of the convolution product (see Corollary 4.4.1), and in the proof of the inverse Fourier transformation
formula (section 9).

1.2.5 Banach spaces and algebra

Let us recall a few definitions:

Definition 1.2.3 (Normed vector space). A normed vector space over R is a pair (V, ‖ · ‖) where V is
a real vector space and ‖ · ‖ is a norm on X that is a function from X to R+ satisfying

1. ‖u‖ = 0 if and only u = 0 (positive definiteness),

2. for any u in V , for any λ ∈ R, ‖λu‖ = |λ|‖u‖ (positive homogeneity),

3. for any u, v in V , ‖u+ v‖ 6 ‖u‖+ ‖v‖ (triangle inequality or subadditivity).

If the first item above is not satisfied then ‖ · ‖ is called a seminorm.

Remark 1.2.1. We define in a similar way a normed vector space over C by considering a complex
vector space and by extending the second property above to any λ ∈ C.

Remark 1.2.2. We can easily associate a distance to the norm of a normed vector space, through the
formula d(u, v) := ‖u− v‖.

Definition 1.2.4 (Banach space/algebra). If the topology defined by this distance is complete then we
say that (V, ‖ · ‖) is a Banach space. If in addition V is an associative algebra whose multiplication law
is compatible with the norm in the sense that ‖u · v‖ 6 ‖u‖ · ‖v‖ for any u, v in V , then we say that
(V, ‖ · ‖) is a Banach algebra.

Next proposition shows that in a normed vector space, completeness can be characterized thanks to
the series.

Proposition 1.2.1. Let (V, ‖ · ‖) be a normed vector space. Then (V, ‖ · ‖) is a Banach space if and only
if the series normally converging actually converge in (V, ‖ · ‖).

Let us recall that a for sequence (un)n in V , we say that the series
∑
n un is normally converging in

V if
∑
n ‖un‖ converges in R.
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Proof. Suppose that V is complete, and let (un)n be a sequence in V such that
∑
n ‖un‖ converges in

R. Let ε > 0 be given and put vn :=
∑n
k=0 uk. Then for n > m,

‖vn − vm‖ = ‖
n∑

k=m+1

uk‖ 6
n∑

k=m+1

‖uk‖ < ε

for all sufficiently large m and n, since
∑n
k=0 ‖uk‖ < ∞. Hence (vn)n is a Cauchy sequence and so

converges since V is complete, by hypothesis.
Conversely, assume that

∑
n un converges in V whenever

∑
n ‖un‖ < ∞. Let (vn)n be a Cauchy

sequence in V . We will show that (vn)n converges in V . By iteration there exists a subsequence (vnk)k
of (vn)n such that for any k, ‖vnk+1 − vnk‖ 6 2−k. Therefore, setting uk := vnk+1 − vnk , we have:

N∑
k=0

‖uk‖ 6
N∑
k=0

‖vnk+1 − vnk‖ 6
N∑
k=0

2−k <∞.

We therefore get that
∑N
k=0 uk converges to some u in V when N → +∞. But

N∑
k=0

uk =
N∑
k=0

vnk+1 − vnk = vnN+1 − vn0 ,

so that vnN → u+ vn0 when N → +∞. Thus the Cauchy sequence (vn)n has a convergent subsequence
and so must itself converge.

Let us now give a result to quotient spaces defined as follows.

Definition 1.2.5. Let X be a vector space, and let M be a vector subspace of X. We define an equivalence
relation ∼ on X by setting x ∼ y if and only if x− y ∈M . It is straightforward to check that this really
is an equivalence relation on X. For x in X we denote [x] the equivalence class containing the element
x and we denote the set of equivalence classes by X/M , that we call the quotient space of X by M .

We define on X/M a sum law by [x+ y] := [x] + [y] and a scalar multiplication law by [αx] := α[x].
Let us stress that these definitions are meaningful since M is a linear subspace of X. For example, if

x ∼ x′ and y ∼ y′ then x+y ∼ x′+y′, so that the definition is independent of the particular representatives
taken from the various equivalence classes. It is then straightforward to get the following.

Proposition 1.2.2. The quotient space X/M is a linear space.

Let us now define

‖[x]‖ := inf{‖y‖/ y ∈ [x]}. (1.2)

Proposition 1.2.3. The equality 1.2 defines a seminorm on X/M .

Proof. Let α ∈ R∗ and [x] be in X/M . Then

‖α[x]‖ := ‖[αx]‖
= inf{‖y‖/ y ∈ [αx]}
= inf{‖αx+m‖/m ∈M}
= inf{‖αx+ αm‖/m ∈M},

since the mapping m 7→ αm is a bijection. Thus

‖α[x]‖ = |α| inf{‖x+m‖/m ∈M} = |α|‖[x]‖.

On the other hand, since [0] = M we have that ‖[0]‖ = 0. Next, we consider the triangle inequality:

‖[x] + [y]‖ := ‖[x+ y]‖
= inf{‖x+ y +m‖/m ∈M}
= inf{‖x+ y +m′ +m′′‖/m′,m′′ ∈M}
6 inf{‖x+m‖+ ‖y +m′′‖/m′,m′′ ∈M}
6 ‖[x]‖+ ‖[y]‖.
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To see whether or not it is a norm, all that remains is to see if ‖[x]‖ = 0 implies [x] = 0. This may
be wrong in general but next proposition shows that it is true if M is closed.

Proposition 1.2.4. Assume that M is a closed linear subspace of the normed space X. Then 1.2 defines
a norm on X/M , called the quotient norm.

Proof. Assume that ‖[x]‖ = 0. Then for any n ∈ N∗ there exists mn ∈ M such that ‖x + mn‖ 6 1/n.
Thus the sequence (mn)n is converging to −x. Since M is closed this yields that −x is in M , which is a
linear space, so x is in M too.

In the case where M is closed we also have the two following properties.

Proposition 1.2.5. Let M is a closed linear subspace of a normed space X. Then the canonical pro-
jection π : x ∈ X 7→ [x] ∈ X/M is continuous.

Proof. Assume that (xn)n is a sequence in X converging to x in X. Then

‖π(xn)− π(x)‖ = inf{‖xn − x+m‖/m ∈M} 6 ‖xn − x‖,

since 0 ∈M . Therefore the sequence (π(xn))n is converging to π(x) in X/M .

Proposition 1.2.6. Let M is a closed linear subspace of a Banach space X. Then X/M is a Banach
space.

In order to prove Proposition 1.2.6 it only remains to show that X/M is complete. We are going to
use the criterion of Proposition 1.2.1. Actually the method we will use is quite general and we therefore
give first a general statement. Then we will go back to the proof of Proposition 1.2.6.

Proposition 1.2.7. Let X be a Banach space and Y be a normed vector space. Let T be a linear
continuous surjective mapping from X to Y . Assume there exists some constant C > 0 such that for any
y in Y there exists x in X such that

T (x) = y and ‖x‖ 6 C‖y‖. (1.3)

Then Y is a Banach space.

Proof. Assume that (yn)n is a sequence in Y such that
∑
k>0 ‖yk‖ <∞. Define the sequence (wn)n by

setting wn :=
∑n
k=0 yk. We want to prove that the sequence (wn)n is converging in Y so that thanks

to Proposition 1.2.1 we will get that Y is complete. Thanks to the assumption there exists a sequence
(xn)n in X such that T (xn) = yn and ‖xn‖ 6 C‖yn‖. As a consequence we get∑

k>0

‖xk‖ 6 C
∑
k>0

‖yk‖ <∞.

Using Proposition 1.2.1 for X which is assumed to be a Banach space we get that the sequence (zn)n
defined by zn :=

∑n
k=0 xk is convergent to some x in X. Since T is linear we have T (zn) = wn, and T is

also continuous so that T (zn) is converging to T (z). This proves that the sequence (wn)n is converging
in Y and therefore the proof of the proposition is done.

Let us now go back to the proof of Proposition 1.2.6.

Proof. We are going to apply Proposition 1.2.7 with Y = X/M and T = π. We know that π is linear,
continuous, and surjective. Let us show that the last assumption of Proposition 1.2.7 is satisfied with
C = 2. Let y = [x] be in X/M . If y = [x] = 0 then (1.3) holds true with x = 0. If y 6= 0 then ‖y‖ > 0 and
since by definition, ‖y‖ = inf{‖x‖/ x ∈ y} we have that there exists x ∈ X such that ‖x‖ 6 2‖y‖.
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1.3 Compactness

Several notions of compactness are available. The following one can be formulated in a general setting.

Definition 1.3.1 (Compactness). We say that a topological space (X, τ) is compact if any open cover
has a finite subcover, i.e. for every arbitrary collection {Ui}i∈I of open subsets of X such that X ⊂
∪i∈IUi, there is a finite subset J ⊂ I such that X ⊂ ∪i∈JUi.

It is a good exercise to prove the following theorem in order to understand the power of the previous
definition.

Theorem 1.3.1 (Heine). Every continuous image of a compact set is compact. Moreover a continuous
function on a compact set is uniformly compact.

In a metric space, compactness can be formulated in terms of sequences. Let us first recall a few
facts about the notion of limit points. Let S be a subset of a topological space X. We say that a point
x ∈ X is a limit point of S if every open set containing x also contains a point of S other than x itself.
In a metric space, it is equivalent to requiring that every neighbourhood of x contains infinitely many
points of S.

Let us also define what we mean by a totally bounded space.

Definition 1.3.2 (Totally boundedness). We say that a metric space (X, d) is totally bounded if for
every ε > 0, there exists a finite cover of X by open balls of radius less than ε.

Since for every ε > 0, ∪x∈XB(x, ε) is an open cover of X, it follows from Definitions 1.3.1 and 1.3.2
that a compact metric space is totally bounded.

Proposition 1.3.1. A metric space is compact if and only if every sequence has a limit point.

Proof. We start by proving the necessary condition. Let us assume by contradiction that (xn)n∈N is
a sequence in a compact metric space X without any limit point. Then for every y in X, there exists
r(y) > 0 such that the ball B(y, r(y)) contains only finitely many elements of the sequence. The collection
of these balls is a open cover of X, from which we extract a finite subcover. This would yield that the
sequence is in the union of a finite number of balls each of them containing only finitely many elements
of the sequence which is absurd.

Let us now prove the sufficient condition. We therefore consider a metric space X such that every
sequence has a limit point. We first prove that X is totally bounded. Proceeding by contradiction, it
would yield the existence of some ε > 0 and some sequence (xn)n∈N such that for any m, n ∈ N with
m 6= n, d(xm, xn) > ε. Such a sequence cannot have a limit point, which is a contradiction. Hence X is
totally bounded.

Let us now prove that X is compact. We consider an open cover {Ui}i∈I of X. We define the mapping

R : x ∈ X 7→ R(x) := sup{r > 0 : ∃ i ∈ I with B(x, r) ⊂ Ui} > 0,

which is lower semicontinuous. Indeed, if not, there would exist a sequence (xn)n∈N ⊂ X converging to
x in X such that

R(x) > lim inf
n→∞

R(xn),

and we could choose ρ and ρ′ such that R(x) > ρ′ > ρ > lim infnR(xn). Let i ∈ I be such that
B(x, ρ′) ⊂ Ui. Since the sequence (xn)n∈N converges to x, for n large enough B(xn, ρ) ⊂ B(x, ρ′) ⊂ Ui,
which is against the fact that ρ > lim infnR(xn).

Let us now consider ε := infx∈X R(x) and (xn)n∈N a minimizing sequence for R, that is such that

lim
n→∞

R(xn) = ε.

Then by assumption, the sequence (xn)n∈N has a limit point that we call x. Since R is lower semi-
continuous, we have

0 < R(x) 6 lim inf
n→∞

R(xn) = ε.

11



We already know that X is totally bounded. Thus for that ε there exist x1, . . . , xn such that

X ⊂
n⋃
i=1

B(xi, ε).

By definition of ε, for any i = 1, . . . , n one has ε 6 R(xi), and thus there exists ji ∈ I such that
B(xi, ε) ⊂ Uji and finally

X ⊂
n⋃
i=1

Uji

which gives a finite subcover of X.

Next proposition gives another criterion of compactness for metric spaces.

Proposition 1.3.2. A metric space is compact if and only if it is complete and totally bounded.

Proof. According to Proposition 1.3.1, in a compact space every sequence has a limit point. Since a
Cauchy sequence with a limit point must converge to this limit point, we deduce that a compact metric
space is complete. Moreover, we have already seen that a compact metric space is totally bounded.
Therefore, it only remains to prove the converse statement.

Let (xn)n∈N be a sequence in a complete and totally bounded metric space X. We are going to prove
that (xn)n∈N has a limit point by Cantor’s diagonal argument. Since X is totally bounded there exists
a ball that we call B1 of radius 1 which contains a subsequence (x1

n)n of (xn)n. By iteration we obtain
that for any k > 2, there exists a ball Bk of radius 1/k which contains a subsequence (xkn)n of (xk−1

n )n.
Then the sequence (xnn)n has the Cauchy property, since for any k > 1, for any n > k, xnn is in Bk. Since
X is complete, the sequence (xnn)n has a limit, which is a limit point of the sequence (xn)n.

1.4 Separability

Definition 1.4.1 (Separability). We say that a topological space (X, τ) is separable if it contains a
countable dense subset, i.e., there exists a sequence (xn)n∈N of elements of X such that every nonempty
open subset of the space contains at least one element of the sequence.

Any topological space which is itself finite or countable is separable. An important example of
uncountable separable space is the real line (with its usual topology), in which the rational numbers
form a countable dense subset.

Proposition 1.4.1. Every compact metric space is separable.

Proof. Let (X, d) be a compact metric space. For any k ∈ N∗, ∪x∈XB(x, 1/k) is a open cover of X. By
compactness, there exists xk1 , . . . , x

k
nk
∈ X such that X = ∪nkj=1B(xknj , 1/k). Then the collection

⋃
k∈N∗

nk⋃
j=1

{xknj}

is a countable dense subset of X.

Let us finish with the following useful criterion for a metric space to be not separable.

Proposition 1.4.2. If a metric space (X, d) contains a uncountable subset Y such that

δ := inf{d(y, y′) : y, y′ ∈ Y, y 6= y′} > 0,

then X is not separable.

Proof. We argue by contradiction. Let us assume that (X, d) is separable and therefore contains a
countable dense subset (xn)n∈N. We can then define a map by associating to any y ∈ Y the smallest
n ∈ N such that d(y, xn) < δ/3. This map turns out to be injective because if d(y, xn) < δ/3 and
d(y′, xn) < δ/3, then d(y, y′) < 2δ/3 which is possible (when y and y′ ∈ Y ) only if y = y′. We deduce
that Y is countable which is the absurd.
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Chapter 2

Spaces of continuous functions

2.1 Basic definitions

Definition 2.1.1. Let be given two metric spaces (X1, d1) and (X2, d2). We denote by

B(X1;X2) := {f : X1 → X2 : f(X1) is a bounded subset of X2}, (2.1)
Cb(X1;X2) := {f ∈ B(X1;X2) which are continuous}. (2.2)

For any f1 and f2 ∈ B(X1;X2), we denote the uniform distance by

du(f1, f2) := sup
x∈X1

d2(f1(x), f2(x)). (2.3)

Endowed with the distance du, B(X1;X2) is a metric space. When (X1, d1) is compact, a continuous
mapping f : X1 → X2 is bounded thanks to Heine’s theorem (Theorem 1.3.1). In this case we simply
denote C(X1;X2) instead of Cb(X1;X2).

Proposition 2.1.1. The space Cb(X1;X2) is closed in B(X1;X2).

Proof. Let (fn)n∈N be a sequence in Cb(X1;X2) converging to f in B(X1;X2). Let us prove that f is
continuous at x in X1. By Proposition 1.1.3, it suffices to consider a sequence (xn)n∈N in X1 converging
to x and to prove that f(xn) converges to f(x). Let ε > 0. There exists n0 such that for any n > n0,
du(f, fn) < ε/3. Since fn is continuous there exists δ > 0 such that for any y in X1 with d(x, y) < δ,
then d(fn(x), fn(y)) < ε/3. For n large enough, d(xn, x) < δ, so that by the triangle inequality we get
d(f(x), f(xn)) < ε. Hence f is continuous at x.

2.2 Completeness

Theorem 2.2.1. Let (X1, d1) and (X2, d2) be two metric spaces, the latter being complete. Then
B(X1;X2) and Cb(X1;X2) are complete.

Proof. Since by Proposition 2.1.1 Cb(X1;X2) is closed in B(X1;X2) it suffices to prove that the latter
is complete to prove the result. Let (fn)n∈N be a Cauchy sequence in B(X1;X2). It follows from the
definition of du that for any x in X1, the sequence (fn(x))n∈N is a Cauchy sequence in X2. Since X2 is
complete the sequence (fn(x))n∈N has a limit that we call f(x). It then remains to verify that it defines
a function f in B(X1;X2) and that (fn)n∈N actually converges to f in B(X1;X2). Since (fn)n∈N is a
Cauchy sequence in B(X1;X2), there exists n0 such that for any n, n′ > n0, du(fn, fn′) < 1. Passing
to the limit n → +∞ yields du(f, fn′) < 1. Since fn′ is in B(X1;X2) there exists x2 ∈ X2 and r > 0
such that fn′(X1) ⊂ B(x2, r). Therefore f(X1) ⊂ B(x2, r + 1) and thus f ∈ B(X1;X2). To prove that
(fn)n∈N converges to f in B(X1;X2) it is sufficient to pass to the limit in the Cauchy property.

Uniform convergence trivially implies pointwise convergence. The following result gives a partial
converse statement.
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Theorem 2.2.2 (Dini). Let (X, d) be a compact metric space and (fn)n∈N be a sequence in Cb(X; R)
such that for every x ∈ X the sequence (fn(x))n∈N is decreasing and bounded from below. If the function
defined for every x ∈ X by

f(x) := lim
n→+∞

fn(x) = inf
n∈N

fn(x)

is continuous, then (fn)n∈N converges to f in Cb(X; R).

Proof. We can assume without loss of generality that f = 0 otherwise it suffices to consider fn − f
instead of fn. For every n ∈ N, the function fn has a maximum, say in xn. There exists a subsequence
(xnk)k∈N of (xn)n∈N such that (xnk)k∈N converges to x. Then for any m ∈ N, we have

lim
k→+∞

max
x∈X

fnk(x) = lim
k→+∞

fnk(xnk) 6 lim
k→+∞

fm(xnk),

since the sequence (fn)n∈N is decreasing. Now since fm is continuous, limk→+∞ fm(xnk) = fm(x). We
now let m tends to +∞ to get

lim
k→+∞

max
x∈X

fnk(x) = 0.

Since the sequence (fn)n∈N is decreasing, we infer that

lim
n→+∞

max
x∈X

fn(x) = 0,

and thus (fn)n∈N converges to f in Cb(X; R).

2.3 Compactness

The following result gives some sufficient conditions for a collection of continuous functions on a compact
metric space to be relatively compact (i.e. whose closure is compact). In particular this could allow
to extract an uniformly convergent subsequence from a sequence of continuous functions. The main
condition is the equicontinuity which was introduced at around the same time by Ascoli (1883 − 1884)
and Arzelà (1882− 1883).

Theorem 2.3.1 (Ascoli). Let (X1, d1) be a compact metric space and (X2, d2) be a complete metric
space. Let A be a subset of C(X1;X2) such that

1. A is uniformly equicontinuous, i.e., for any ε > 0, there exists δ > 0 such that if d1(x, y) < δ, then

sup
f∈A

d2(f(x), f(y)) < ε;

2. A is pointwise relatively compact, i.e., for all x ∈ X1, the set

{f(x) : f ∈ A}

is compact in X2.

Then A is a compact subset of C(X1;X2).

Proof. Since (X2, d2) a complete metric space, then C(X1;X2) is complete as well. Then A as a closed
subset of C(X1;X2) is also complete. Therefore, thanks to Proposition 1.3.2, it is sufficient to prove that
A is totally bounded, or even that A is totally bounded.

Let ε > 0 and δ > 0 be as in the uniform equi-continuity property. Since X1 is compact, there exists
x1, . . . , xn ∈ X1 such that

X1 =
n⋃
i=1

B(xi, δ).

Moreover for any i = 1, . . . , n, the sets {f(xi) : f ∈ A} are compact in X2 which leads to the existence
of yi,1, . . . , yi,li ∈ X2 such that

{f(xi) : f ∈ A} ⊂
li⋃
j=1

B(yi,lj , ε).
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Let E1 := {1, . . . , n}, E2 := {(i, j) : 1 6 i 6 n, 1 6 j 6 li} and Γ the set of all maps from E1 in E2.
Note that the set Γ is finite. For each γ ∈ Γ, we define

Aγ := {f ∈ A : d2(f(xi), yγ(i)) < ε for all 1 6 i 6 n}.

By construction A = ∪γ∈ΓAγ . Let γ ∈ Γ be fixed and f , g ∈ Aγ . Let x ∈ X1 and i ∈ E1 such that
x ∈ B(xi, δ). We have

d2(f(x), g(x)) 6 d2(f(x), f(xi)) + d2(f(xi), yγ(i))
+d2(yγ(i), g(xi)) + d2(g(xi), g(x))

< 4ε.

Since x is arbitrary, we deduce that Aγ ⊂ B(fγ , 4ε) for some fγ ∈ Aγ , and thus

A ⊂
⋃
γ∈Γ

B(fγ , 4ε),

and the proof is complete.

2.4 Separability

Let us recall that the Weierstrass approximation theorem states that every continuous function defined
on a closed interval can be uniformly approximated by polynomial functions. The original version of this
result dates back to 1885. Stone considerably generalized the theorem in 1937 and simplified the proof
in 1948. Before to state the so-called Stone-Weierstrass theorem, let us observe that when (X, d) is a
compact metric space, then C(X; R), endowed with the uniform norm and the pointwise multiplication,
is a Banach algebra. The Stone-Weierstrass theorem provides a characterization of the subalgebras A
of C(X; R) which are dense in C(X; R). It turns out that the crucial property for such a subalgebra A
is to separate points, i.e., for any x, y ∈ X with x 6= y, there exists f ∈ A such that f(x) 6= f(y). We
will focus here our attention on the sufficiency of this condition for subalgebras of C(X; R) which contain
constant functions.

Theorem 2.4.1 (Stone-Weierstrass). Let (X, d) be a compact metric space, A a subalgebra of C(X; R)
which contains constant functions and separates points. Then A is dense in C(X; R).

Theorem 2.4.1 implies Weierstrass’ original statement since the space of all polynomial functions on
a closed interval is a subalgebra of all continuous real-valued functions on this interval which contains
the constants and separates points.

To prove Theorem 2.4.1, we first start with the following lemma.

Lemma 2.4.1. There exists a sequence (Pn)n∈N of polynomial functions with real coefficients which
converge uniformly to the square root function on [0, 1].

Proof. We define a sequence (Pn)n∈N setting P0(x) = 0 and

Pn+1(x) = Pn(x) +
1
2

(x− Pn(x)2).

We first show by iteration that 0 6 Pn(x) 6
√
x for any x ∈ [0, 1]. Indeed, the result is obvious when

n = 0, Assume that that 0 6 Pn(x) 6
√
x for all x ∈ [0, 1] and some n ∈ N. Then clearly Pn+1(x) > 0,

while

Pn+1(x) = Pn(x) +
1
2

(
√
x− Pn(x))(

√
x+ Pn(x))

6 Pn(x) + (
√
x− Pn(x))

6
√
x,

since
√
x+ Pn(x) 6 2

√
x 6 2 for all x ∈ [0, 1].

Then we infer that the sequence (Pn)n∈N is increasing and it converges pointwise to
√
x. Using the

Dini Theorem (Theorem 2.2.2) we get the desired uniform convergence.
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Corollary 2.4.1. Under the same hypotheses than in Theorem 2.4.1 we have the following: if f and
g ∈ A then so are max(f, g) and min(f, g).

Proof. By continuity of the sum and of the product, we remark that if A is an algebra, then so is A. On
the other hand,

max(f, g) :=
1
2

(f + g + |f − g|) and min(f, g) :=
1
2

(f + g − |f − g|).

Finally, if du(f, g) > 0, since

Pn

(
(f − g)2

du(f, g)2

)
du(f, g)→ |f − g|

uniformly on X, we deduce that |f −g| ∈ A. If rather du(f, g) = 0, then |f −g| = 0 and since A contains
constants, the conclusion follows also in that case.

Proof of Theorem 2.4.1. The proof will be divided in four main steps:
Step 1: For any x, y ∈ X, and any α, β ∈ R, there exists f ∈ A such that f(x) = α and

f(y) = β.
Indeed, if α = β it suffices to consider the function constant equal to α = β. On the other hand, if

α 6= β, then by hypothesis there exists g ∈ A such that g(x) 6= g(y). Then the function

f := α+
β − α

g(y)− g(x)
(g − g(x)),

belongs to A and satisfies f(x) = α and f(y) = β.

Step 2: Let h ∈ C(X; R), x ∈ X and ε > 0. Then there exists fx in A such that fx(x) = h(x)
and fx(y) < h(y) + ε for any y ∈ X.

Indeed, for any y ∈ X, there exists fy in A such that fy(x) = h(x) and fy(y) = h(y). Since h and fy
are continuous, there exists ry > 0 such that for any z ∈ B(y, ry),

|fy(z)− fy(y)| < ε

2
and |h(y)− h(z)| < ε

2
.

Hence since fy(y) = h(y), we deduce that fy(z) < h(z) + ε for any z ∈ B(y, ry). Now using that X is
compact, we extract from the cover {B(y, ry)}y∈X a finite subcover {B(yi, ryi)}16i6l. The function

fx := min
16i6l

fyi

belongs to A thanks to Corollary 2.4.1, and satisfies fx(x) = h(x) and fx(y) < h(y) + ε for any y ∈ X.

Step 3: Let h ∈ C(X; R) and ε > 0. Then there exists f ∈ A such that h(y)−ε < f(y) < h(y)+ε
for any y ∈ X.

Indeed, let x ∈ X. Since the functions fx (constructed in step 2) and h are continuous, there exists
r′x > 0 such that for any y ∈ B(x, r′x),

|fx(y)− fx(x)| < ε

2
and |h(y)− h(x)| < ε

2
.

Hence since fx(x) = h(x), we infer that fx(y) > h(y) − ε for all y ∈ B(x, r′x). From the open cover
{B(x, r′x)}x∈X of X we extract a finite subcover {B(xj , rxj )}16j6m and we introduce the function

f := max
16j6m

fxj

which belongs to A from Corollary 2.4.1, and satisfies h(y)− ε < f(y) < h(y) + ε for any y ∈ X.

Step 4: It follows from step 3 that A = C(X; R).

We now give a several consequences of the Stone-Weierstrass Theorem.

Corollary 2.4.2. Let F be a bounded and closed subset of RN and f ∈ C(F ; R). Then there exists a
sequence (Pn)n∈N of polynomial functions of N variables with real coefficients which converges uniformly
to f on F .
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Proof. The algebra of all polynomial functions with real coefficients clearly separates points and contains
all constants.

Corollary 2.4.3. Let F be a bounded and closed subset of RN , then C(F ; R) is separable.

Proof. The space of all polynomial functions of N variables with rational coefficients is countable. The
conclusion follows from Corollary 2.4.2 and of the density of Q in R.

Corollary 2.4.4. Let (X, d) be a compact metric space then, C(X; R) is separable.

Proof. Since X is compact, it is separable according to Proposition 1.4.1. Let us denote by (xn)n∈N a
(countable) sequence dense in X. Let us introduce R[(yn)n∈N] the set of all polynomials with countably
many variables. Then we denote by

A := {f ∈ C(X; R) : there exists P ∈ R[(yn)n∈N] such that f(x) = P (d(x0, x), d(x1, x), . . .)}.

Then A is clearly a subalgebra of C(X; R) which separates points and contains the constants. As a
consequence of the Stone-Weierstrass Theorem we get that A = C(X; R). Then we check that the set

B := {f ∈ C(X; R) : there exists P ∈ Q[(yn)n∈N] such that f(x) = P (d(x0, x), d(x1, x), . . .)}

is countable and dense in A.

Let us conclude this chapter with a few comments about Theorem 2.4.1.
The interested reader could observe that Theorem 2.4.1 also holds true when we weaken the assump-

tion that A contains constant functions into the assumption that A vanishes at no point: for any x in
X, there exists f ∈ A such that f(x) 6= 0. The separation and nonvanishing conditions are necessary as
well as sufficient for the uniform closure to contain all the continuous functions. For instance, if there
exists x in X such that for any f ∈ A, f(x) = 0 then any f ∈ A will also satisfy f(x) = 0 because
the limit (even a pointwise limit, let alone a uniform limit) of a sequence of functions which are equal
to zero at a point will also be equal to zero at that point. A similar comment holds for separation of points.

Although it is not true that an arbitrary continuous function on an arbitrary compact set in C can
be approximated uniformly by holomorphic polynomials, the obstructions to approximability are known.
One obstruction is analytic in nature: if f is the uniform limit of holomorphic polynomials on a compact
set X, then f must be holomorphic in the interior of X ; while the other obstruction is topological: if
a compact set X has holes, then a function f cannot be approximated by holomorphic polynomials if f
has singularities hiding in the holes.

The simplest version of Mergelyan’s theorem says that if X is a compact subset of C having no
holes (that is, the complement C \ K is connected), and if f is continuous on X and holomorphic in
the interior of X, then f can indeed be approximated uniformly on X by holomorphic polynomials. An
older and weaker theorem of Runge has the same conclusion, but makes the stronger hypothesis that f
is holomorphic in an open neighborhood of X (not just in the interior of X).

On the other hand there is a counterpart of Theorem 2.4.1 for complex-valued functions, for which the
assumptions are strengthened to require that A is closed under taking complex conjugates of functions.
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Chapter 3

Measure theory and Lebesgue
integration

3.1 Measurable spaces and measurable functions

Definition 3.1.1. A collection M of subsets of a set X is said to be a σ-algebra in X if it satisfies the
following properties:

1. X ∈M;

2. If A ∈M, then Ac ∈M, where Ac := X \A is the complement of A in X;

3. if A =
⋃∞
n=1An, with An ∈M for each n ∈ N, then A ∈M.

Then we say that (X,M) is a measurable space, and the elements of M are called measurable sets.

If (X, τ) is a topological space, we can consider the smallest σ-algebra, denoted by B(X), containing
all open sets. It is called the Borel σ-algebra and its elements are the Borel sets. Note that such a
σ-algebra exists. Indeed, the collection of all σ-algebras containing the open sets is not empty since it
contains P(X), and the intersection of a family of σ-algebras remains a σ-algebra. In particular open
sets and closed sets are Borel measurable.

Definition 3.1.2. Let (X,M) be a measurable space and (Y, τ) be a topological space. A function
f : X → Y is said to be measurable if f−1(V ) ∈M for every V ∈ τ .

Note the analogy, on the one hand, between measurable and topological spaces (see Definition 1.1.1),
and on the other hand between measurable and continuous functions (see Definition 1.1.5). If M = B(X),
then f is called a Borel measurable function. In particular, continuous functions are Borel measurable.
An obvious consequence of these definitions is the following proposition:

Proposition 3.1.1. Let (X,M) be measurable space and (Y, τ), (Z, τ ′) be two topological spaces. Con-
sider a measurable function f : X → Y and a continuous function g : Y → Z. Then the function
g ◦ f : X → Z is measurable.

When the target space is R, every open subset of R can be written as the countable union of open
intervals. Hence since σ-algebras are stable under countable union, we infer that a function f : X → R
is measurable if and only if the sets {f < a} ∈M for every a ∈ R. Moreover, since {f 6 a} =

⋂
n{f <

a+ 1/n} and {f < a} =
⋃
n{f 6 a− 1/n}, and since σ-algebras are stable under countable intersection,

then f is measurable if and only if the sets {f 6 a} ∈M for every a ∈ R.

In practice, it is not always easy to check that a function is measurable. However, we have the
following properties of measurable functions:

Proposition 3.1.2. (i) Let f and g : X → R be two measurable functions. Then so are f + g, fg,
|f |, min(f, g) and max(f, g).
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(ii) Let fn : X → R be measurable functions, then infn fn, supn fn, lim infn fn, lim supn fn are mea-
surable as well.

Proof. To show that fg and f + g are measurable, from Proposition 3.1.1, it is enough to check that the
map φ : x 7→ (f(x), g(x)) is measurable from X to R2. Indeed, consider an open set V ⊂ R2. Then there
exist open intervals In and Jn of R such that

V =
∞⋃
n=1

(In × Jn).

Hence,

φ−1(V ) =
∞⋃
n=1

φ−1(In × Jn) =
∞⋃
n=1

f−1(In) ∩ g−1(Jn) ∈M,

since f−1(In) and g−1(Jn) ∈ M by the measurability of f and g, and since M is stable by countable
union.

Since {min(f, g) < a} = {f < a} ∪ {g < a} ∈ M, and {max(f, g) < a} = {f < a} ∩ {g <
a} ∈ M, we deduce that the functions min(f, g) and max(f, g) are also measurable. Moreover, as
|f | = max(f, 0)−min(f, 0), then |f | is measurable as well.

Similarly, since {infn fn < a} =
⋃∞
n=1{fn < a} ∈M and {supn fn 6 a} =

⋂∞
n=1{fn 6 a} ∈M, then

infn fn and supn fn are measurable. Finally by definitions of lower and upper limits

lim inf
n

fn := sup
k∈N

inf
n>k

fk, lim sup
n

fn := inf
k∈N

sup
n>k

fk

so that lim infn fn are lim supn fn are measurable.

Examples of measurable functions are characteristic functions of a measurable set A ∈ M, defined
by χA(x) = 1 if x ∈ A, and χA(x) = 0 if x 6∈ A. Another example are simple functions which are linear
combination of characteristic functions:

s(x) :=
n∑
i=1

ciχAi(x),

where ci ∈ R and Ai ∈ M for i = 1, . . . , n. The following result states that it is always possible to
approximate measurable functions by a sequence of simple functions. It will be instrumental in the
definition of the Lebesgue integral.

Theorem 3.1.1. Let f : X → [0,+∞] be a measurable function. There exists a nondeacreasing sequence
(sn) of simple measurable functions such that sn(x)↗ f(x) for each x ∈ X, as n→∞.

Proof. For each n ∈ N and k ∈ {0, . . . , n2n − 1}, define the measurable sets

En,k :=
{
x ∈ X :

k

2n
6 f(x) <

k + 1
2n

}
, Fn := {f > n}.

Now define for each x ∈ X,

sn(x) :=
n2n−1∑
k=0

k

2n
χEn,k(x) + nχFn(x).

The sequence (sn) clearly fulfills the conclusion of the Theorem.

3.2 Positive measures

Definition 3.2.1. Let (X,M) be a measurable space. A set function µ : M→[0,+∞] is called a positive
measure (or simply a measure) if µ(∅) = 0 and if it is countably additive, i.e.,

µ

( ∞⋃
n=1

An

)
=
∞∑
n=1

µ(An),

for every An ∈M such that An ∩Am = ∅ if n 6= m.
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If (X, τ) is a topological space, and µ is a measure over B(X), then it is called a Borel measure. If
further µ(K) <∞ for every compact set K ⊂ X, then µ is a positive Radon measure.

The following result states the main general properties of positive measures:

Proposition 3.2.1. Let µ be a positive measure over a measurable space (X,M). Then

(i) If A, B ∈M and A ⊂ B, then µ(A) 6 µ(B);

(ii) If, for each n ∈ N∗, An ∈M and An ⊂ An+1, then

µ

( ∞⋃
n=1

An

)
= lim
n→∞

µ(An);

(iii) If, for each n ∈ N∗, An ∈M and An+1 ⊂ An, and µ(A1) <∞, then

µ

( ∞⋂
n=1

An

)
= lim
n→∞

µ(An).

Proof. If A, B ∈M and A ⊂ B, then B = A∪ (B \A). Hence by additivity, µ(B) = µ(A) + µ(B \A) >
µ(A).

Let An ∈M such that An ⊂ An+1 for all n ∈ N∗. If there exists n ∈ N∗ such that µ(An) = +∞ then
the result follows. Therefore we assume from now on that µ(An) < +∞ for each n ∈ N∗. Then define
B1 = A1, and for all n > 2, Bn := An \ An−1. By construction Bn ∈ M and Bn ∩ Bm = ∅ if n 6= m.
Moreover

∞⋃
n=1

An =
∞⋃
n=1

Bn.

Hence by countable additivity,

µ

( ∞⋃
n=1

An

)
= µ

( ∞⋃
n=1

Bn

)
=
∞∑
n=1

µ(Bn) = lim
n→∞

n∑
k=2

(µ(Ak \Ak−1) + µ(A1)

= lim
n→∞

n∑
k=2

(µ(Ak)− µ(Ak−1)) + µ(A1) = lim
n→∞

µ(An),

which completes the proof of (ii).
Assertion (iii) follows from (ii) since

µ(A1)− lim
n→∞

µ(An) = lim
n→∞

µ(A1 \An) = µ

( ∞⋃
n=1

(A1 \An)

)
= µ(A1)− µ

( ∞⋂
n=1

An

)
.

3.3 Definition and properties of the Lebesgue integral

3.3.1 Lebesgue integral of non negative measurable functions

Definition 3.3.1. If s : X → [0,+∞) is a simple measurable function of the form

s =
n∑
i=1

ciχAi ,

where ci > 0 and Ai ∈M for i = 1, . . . , n are pairwise disjoint, and if E ∈M, we define∫
E

s dµ :=
n∑
i=1

ciµ(Ai ∩ E),
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with the convention that 0 · ∞ = 0.
If f : X → [0,+∞] is a measurable function, and E ∈M, we define∫

E

f dµ := sup
∫
E

s dµ,

where the supremum is taken over all simple measurable functions s : X → [0,+∞) such that s 6 f .

Note that if f is a non negative simple measurable function, both definition coincide. Moreover by
Theorem 3.1.1 the family of all non negative measurable simple functions less than f is not empty.

The following properties are immediate consequences of the definitions, and the proof is left to the
reader. The functions and sets occuring are assumed to be measurable.

Proposition 3.3.1. 1. If 0 6 f 6 g, then
∫
E
f dµ 6

∫
E
g dµ;

2. If A ⊂ B and f > 0, then
∫
A
f dµ 6

∫
B
f dµ;

3. If f > 0 and c is a constant, 0 6 c <∞, then
∫
E
cf dµ = c

∫
E
f dµ;

4. If f(x) = 0 for all x ∈ E, then
∫
E
f dµ = 0, even if µ(E) =∞;

5. If µ(E) = 0, then
∫
E
f dµ = 0 even if f ≡ ∞;

Before extending the definition of the Lebesgue integral to real valued functions, we establish two
very important convergence results which are typical of non negative valued functions.

Theorem 3.3.1 (Monotone convergence). Let (fn) be a sequence of measurable functions on X, and
suppose that

1. 0 6 fn(x) 6 fn+1(x) for every x ∈ X and every n ∈ N∗;

2. fn(x)→ f(x) for each x ∈ X.

Then f is measurable and ∫
X

fn dµ→
∫
X

f dµ.

Proof. By Proposition 3.1.2 the function f is measurable. Moreover since
∫
X
fn dµ 6

∫
X
fn+1 dµ, then

there exists the limit
` := lim

n→∞

∫
X

fn dµ,

and by monotonicity, ` 6
∫
X
f dµ.

To prove the converse inequality, consider a simple measurable function 0 6 s 6 f , and a constant
c ∈ (0, 1). Let us define the measurable sets En := {fn > cs} for n ∈ N∗. Then∫

X

fn dµ >
∫
En

fn dµ > c

∫
En

s dµ. (3.1)

Writting s :=
∑p
i=1 ciχAi for some ci > 0 and Ai ∈ M, we have by definition of the Lebesgue integral

that ∫
En

s dµ =
p∑
i=1

ciµ(Ai ∩ En).

We have En ⊂ En+1 and since fn → f pointwise and c < 1,
⋃∞
n=1En = X. Hence, for fixed i, the

sequence (Ai ∩En)n is increasing and its union is Ai; we therefore deduce from Proposition 3.2.1-2 that∫
En

s dµ→
p∑
i=1

ciµ(Ai) =
∫
X

s dµ.

Consequently, passing to the limit in (3.1) as n→∞, we get that for any c < 1,

` > c

∫
X

s dµ,

and the conclusion follows sending first c → 1−, and then by taking the supremum over all simple
functions s with 0 6 s 6 f .
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Applying the monotone convergence Theorem to the partial sums of a series of non negative measur-
able functions, we get the following result.

Corollary 3.3.1. If fn : X → [0,+∞] are measurable functions for all n ∈ N∗, and

f(x) =
∞∑
n=1

fn(x),

then ∫
X

f dµ =
∞∑
n=1

∫
X

fn dµ.

Remark 3.3.1. As a consequence of Proposition 3.3.1-3 and the previous corollary, we infer that∫
X

(αf + βg) dµ = α

∫
X

f dµ+ β

∫
X

g dµ,

for every non negative measurable functions f and g, and every α, β > 0.

Remark 3.3.2. Taking X = N∗ and µ the counting measure (µ(A) = Card(A) if Card(A) <∞, and ∞
otherwise), we deduce that

∞∑
n=1

∞∑
k=1

ank =
∞∑
k=1

∞∑
n=1

ank,

for any doubly indexed sequence (ank) with ank > 0 for every n, k ∈ N∗.

If the sequence miss to converge we get the following lower semicontinuity result.

Lemma 3.3.1 (Fatou). If fn : X → [0,∞] is are measurable functions for each n ∈ N∗, then∫
X

lim inf
n→∞

fn dµ 6 lim inf
n→∞

∫
X

fn dµ.

Proof. It suffices to apply the monotone convergence Theorem to the sequence gn := infk>n fk by
observing that gn 6 fn for each n ∈ N∗, that the sequence (gn)n is increasing and that limn gn =
lim infn fn.

3.3.2 Lebesgue integral of real valued measurable functions

In the sequel, and unless otherwise mentioned, µ is a measure over a measurable space (X,M).

Definition 3.3.2. We define L1(X,µ) as the space of all measurable functions f : X → R such that∫
X

|f | dµ <∞.

Note that the measurability of f implies that of |f | by Proposition 3.1.2 so that the previous integral
is well defined according to Definition 3.3.1. The elements of L1(X,µ) are called Lebesgue integrable
functions (with respect to µ).

Definition 3.3.3. If f ∈ L1(X,µ) and E ∈M, we define∫
E

f dµ :=
∫
E

f+ dµ−
∫
E

f− dµ,

where f+ := max(f, 0) and f− := max(−f, 0) are (non negative) measurable functions thanks to Propo-
sition 3.1.2.

Note that the Lebesgue integral of a measurable function f is not affected if we modify the values of
f on a set of µ-measure zero. More precisely, let f and g are two measurable functions and Z ∈ M is
such that µ(Z) = 0. If f(x) = g(x) for all x ∈ X \ Z, then

∫
X
f dµ =

∫
X
g dµ.
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Definition 3.3.4. If a property P holds outside a set of µ-measure zero, we say that P holds µ almost
everywhere (a.e.) in X.

In particular we have that if f = g µ-a.e. in X, then
∫
X
f dµ =

∫
X
g dµ. Another application of this

terminology is the following result.

Proposition 3.3.2. Let f ∈ L1(X,µ), then |f | <∞ µ-a.e. in X.

Proof. Define An := {|f | > n} for n ∈ N∗. Since f is measurable, then An ∈M for each n ∈ N∗ and by
Proposition 3.3.1, then

µ(An) 6
1
n

∫
X

|f | dµ.

In particular µ(A1) < ∞ and (An) is a sequence of decreasing measurable sets whose intersection is
{|f | =∞}. Applying Proposition 3.2.1-3, we deduce that

µ({|f | =∞}) = µ

( ∞⋂
n=1

An

)
= lim
n→∞

µ(An) = 0.

The space L1(X,µ) turns out to be a linear space. Indeed,

Theorem 3.3.2. Suppose that f , g ∈ L1(X,µ), and α, β ∈ R. Then∫
X

(αf + βg) dµ = α

∫
X

f dµ+ β

∫
X

g dµ.

Proof. We first observe that αf+βg is measurable (by Proposition 3.1.2) and that it belongs to L1(X,µ).
Indeed, since |αf + βg| 6 |α||f |+ |β||g|, then by Proposition 3.3.1-1, we get that∫

X

|αf + βg| dµ 6
∫
X

(|α||f |+ |β||g|) dµ = |α|
∫
X

|f | dµ+ |β|
∫
X

|g| dµ <∞.

Clearly, it suffices to show that ∫
X

(f + g) dµ =
∫
X

f dµ+
∫
X

g dµ, (3.2)

and ∫
X

αf dµ = α

∫
X

f dµ. (3.3)

To prove (3.2), we have (f + g)+ − (f + g)− = f+ − f− + g+ − g−, or still (f + g)+ + f− + g− =
(f + g)− + f+ + g+. Integrating over X and using Remark 3.3.1 leads to∫

X

(f + g)+ dµ+
∫
X

f− dµ+
∫
X

g− dµ =
∫
X

(f + g)− dµ+
∫
X

f+ dµ+
∫
X

g+ dµ.

Changing back the order of the terms yields (3.2).
The proof of (3.3) follows from Proposition 3.3.1-3 if α > 0. If α 6 0, then −α > 0, −u = u− − u+

and the result follows again from Proposition 3.3.1-3.

We next prove several convergence results.

Theorem 3.3.3 (Dominated convergence). Let fn and f be measurable functions such that fn(x)→
f(x) for µ-a.e. x ∈ X. Assume that there exists g ∈ L1(X,µ) such that |fn(x)| 6 g(x) for µ-a.e. x ∈ X
and every n ∈ N∗. Then f ∈ L1(X,µ) and∫

X

|fn − f | dµ→ 0.

24



Proof. By Fatou’s Lemma and Theorem 3.3.2,∫
X

2g dµ =
∫
X

lim inf
n→∞

(2g − |f − fn|) dµ 6 lim inf
n→∞

∫
X

(2g − |f − fn|) dµ,

whence
lim sup
n→∞

∫
X

|f − fn| dµ 6 0.

The following result is a kind of converse of the dominated convergence Theorem.

Theorem 3.3.4. Let fn and f be functions in L1(X,µ) and∫
X

|fn − f | dµ→ 0.

Then there exists a subsequence (fnk) and g ∈ L1(X,µ) such that |fnk | 6 g and fnk → f µ-a.e. in X.

Proof. For each k ∈ N∗, there exists nk ∈ N∗ such that nk →∞ as k →∞ and∫
X

|fnk − f | dµ 6
1
2k
.

Define g := |f |+
∑∞
k=1 |fnk − f |. By Corollary 3.3.1,∫

X

g dµ =
∫
X

|f | dµ+
∞∑
k=1

∫
X

|fnk − f | dµ 6
∫
X

|f | dµ+ 1

so that g ∈ L1(X,µ). Thus by construction |fnk | 6 g µ-a.e. in X, and since∫
X

∞∑
k=1

|fnk − f | dµ =
∞∑
k=1

∫
X

|fnk − f | dµ 6 1,

we deduce from Proposition 3.3.2 that
∑∞
k=1 |fnk − f | < ∞ µ-a.e. in X and thus fnk → f µ-a.e. in

X.

3.4 Modes of convergence

3.4.1 Definitions and relationships

Definition 3.4.1. Let fn and f be measurable functions. We say that

1. (fn) converges to f almost everywhere if there exists a measurable set Z ⊂ X with µ(Z) = 0 such
that fn(x)→ f(x) for each x ∈ X \ Z;

2. (fn) converges to f in L1(X,µ) if
∫
X
|fn − f | dµ→ 0;

3. (fn) converges to f in measure if for any ε > 0, µ({|fn − f | > ε})→ 0;

4. (fn) converges to f almost uniformly if for any ε > 0, there exists a measurable set Eε ⊂ X such
that µ(X \ Eε) < ε and

sup
x∈Eε

|fn(x)− f(x)| → 0.

Remark 3.4.1. We can easily see that convergence in L1(X,µ) also implies convergence in measure as
a consequence of the following inequality

εµ({|fn − f | > ε}) 6
∫
X

|fn − f | dµ.
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Another link easy to obtain is that convergence almost uniformly implies convergence almost every-
where.

Proposition 3.4.1. Let fn and f be measurable functions. If (fn) converges to f almost uniformly,
then it converges to f almost everywhere.

Proof. If (fn) converges to f almost uniformly, then for any ε > 0, there exists a measurable set Eε ⊂ X
such that µ(X \ Eε) < ε and supEε |fn − f | → 0. Take ε = 1/k with k ∈ N∗, and define Z :=⋂∞
k=1(X \ E1/k). Then for any k ∈ N∗, one has µ(Z) 6 µ(X \ E1/k) < 1/k → 0 so that µ(Z) = 0.

Moreover for each x ∈ X \Z, there exists k ∈ N∗ such that x ∈ E1/k, and in particular, fn(x)→ f(x)

The converse statement is true in the case of finite measures.

Theorem 3.4.1 (Egoroff). Assume that µ is a finite measure, i.e., µ(X) < ∞, and consider some
measurable functions fn and f . If (fn) converges almost everywhere to f , then f converges almost
uniformly to f .

Proof. For every i, j ∈ N∗, define the measurable sets Ei,j :=
⋃∞
n=j{|fn−f | > 2−i}. Then Ei,j+1 ⊂ Ei,j ,

and since µ(X) <∞, by Proposition 3.2.1-3, we have

lim
j→∞

µ(Ei,j) = µ

 ∞⋂
j=1

Ei,j

 = 0,

since (fn) converges almost everywhere to f . Hence there exists an integer N(i) such that µ(Ei,N(i)) <
ε/2i. Define Eε := X \

⋃∞
i=1Ei,N(i), then µ(X \ Eε) < ε. Moreover, if x ∈ Eε, then for each i ∈ N∗,

x ∈ X \ Ei,N(i) and thus for any n > N(i), |fn(x) − f(x)| 6 2−i. Consequently, fn → f uniformly in
Eε.

Let us now compare convergence almost uniformly and convergence in measure.

Theorem 3.4.2. Let fn and f be some measurable functions. Then

1. If (fn) converges to f almost uniformly, then it converges to f in measure;

2. If (fn) converges to f in measure, then there exists a subsequence (fnk) which converges to f almost
uniformly and almost everywhere.

Proof. 1- If (fn) converges to f almost uniformly, then for any ε > 0, there exists a measurable set
Eε ⊂ X such that µ(X \ Eε) < ε and supEε |fn − f | → 0. Let δ > 0, then

µ({|fn − f | > δ}) = µ({|fn − f | > δ} ∩ Eε) + µ({|fn − f | > δ} \ Eε) 6 µ({|fn − f | > δ} ∩ Eε) + ε.

But since fn → f uniformly in Eε, there exists n(δ, ε) ∈ N∗ such that for every n > n(δ, ε), supEε |fn−f | <
δ so that {|fn − f | > δ} ∩ Eε = ∅. Hence for n > n(δ, ε), one has µ({|fn − f | > δ}) < ε. Consequently,

lim sup
n→∞

µ({|fn − f | > δ}) 6 ε,

and letting finally ε tend to zero, we complete the proof of the first statement.

2- Let ε > 0. If (fn)n converges in measure to f , then for each k ∈ N∗, there exists a sequence
nk ↗∞ such that

µ

({
|fnk − f | >

1
k

})
<

ε

2k
.

Define the measurable sets Ek := {|fnk − f | 6 1/k} and Eε :=
⋂∞
k=1Ek. Then

µ(X \ Eε) 6
∞∑
k=1

µ(X \ Ek) 6 ε,

and for every x ∈ Eε, for each k ∈ N∗, we have |fnk(x) − f(x)| 6 1
k . Thus fnk → f almost uniformly

and also almost everywhere.
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3.4.2 Equi-integrability

Definition 3.4.2. A sequence of measurable functions (fn)n∈N∗ is said to be equi-integrable if for any
ε > 0, there exists δ > 0 such that

sup
n∈N∗

∫
E

|fn| dµ 6 ε,

for every measurable set E ⊂ X satisfying µ(E) 6 δ.

The equi-integrability condition expresses the fact that the sequence (fn) does not concentrate on
sets of arbitrarily small measure. We now give two necessary and sufficient conditions which ensure the
equi-integrability of a sequence.

Theorem 3.4.3. Let (fn)n∈N∗ be a bounded sequence in L1(X,µ), i.e.,

sup
n∈N∗

∫
X

|fn| dµ <∞.

Then the following conditions are equivalent:

(i) The sequence (fn) is equi-integrable;

(ii)

lim
t→∞

sup
n∈N∗

∫
{|fn|>t}

|fn| dµ = 0;

(iii) (De la Vallée Poussin criterion) There exists an increasing function θ : [0,∞) → [0,∞] with
θ(t)/t→∞ as t→∞ and such that

sup
n∈N∗

∫
X

θ(|fn|) dµ <∞.

Proof. Let us define

M := sup
n∈N∗

∫
X

|fn| dµ <∞.

Step 1. Assume that (fn) is equi-integrable and, given ε > 0 let δ > 0 be such that

sup
n∈N∗

∫
E

|fn| dµ 6 ε,

for every measurable set E ⊂ X with µ(E) 6 δ. Choose tε > 0 such that M
tε

6 δ. Then by definition of
M , for every n ∈ N∗ and for all t > tε we have

µ({|fn| > t}) 6
1
t

∫
X

|fn| dµ 6
M

t
6 δ,

and so
sup
n∈N∗

∫
{|fn|>t}

|fn| dµ 6 ε,

and this validates (ii).
Conversely, suppose that (ii) holds, fix ε > 0, and choose tε > 0 such that

sup
n∈N∗

∫
{|fn|>tε}

|fn| dµ 6
ε

2
.

Then for every measurable set E ⊂ X with µ(E) 6 ε
2tε

=: δ and for all n ∈ N∗ we have∫
E

|fn| dµ =
∫
E∩{|fn|>tε}

|fn| dµ+
∫
E∩{|fn|6tε}

|fn| dµ 6
ε

2
+ tεµ(E) 6 ε.
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Step 2. Assume that (ii) holds and construct an increasing sequence of positive integers (ki) such
that

sup
n∈N∗

∫
{|fn|>ki}

|fn| dµ 6
1
2i
.

Define b0 = 0 and for each l ∈ N∗ let bl be the number of non negative integers i such that ki < l. Note
that bl ↗∞ as l→∞. Define

θ(t) = tbl if t ∈ [l, l + 1).

Then
θ(t)
t

> b[t] →∞

as t→∞, were [t] denotes the integer part of t. Moreover, for all n ∈ N∗, By Remark 3.3.2,∫
X

θ(|fn|) dµ =
∞∑
l=1

∫
{l6|fn|<l+1}

θ(|fn|) dµ

=
∞∑
l=1

bl

∫
{l6|fn|<l+1}

|fn| dµ =
∞∑
l=1

∑
{i∈N∗:ki<l}

∫
{l6|fn|<l+1}

|fn| dµ

=
∞∑
i=1

∑
{l∈N∗:l>ki}

∫
{l6|fn|<l+1}

|fn| dµ 6
∞∑
i=1

∫
{|fn|>ki}

|fn| dµ 6
∞∑
i=1

1
2i

6 1.

Conversely, assume that (iii) holds and let

C := sup
n∈N∗

∫
X

θ(|fn|) dµ <∞.

Since θ(t)/t→∞ as t→∞, for every ε > 0, there exists tε > 0 such that

θ(t) >
(C + 1)t

ε
for all t > tε.

Then for all t > tε,

sup
n∈N∗

∫
{|fn|>t}

|fn| dµ 6
ε

C + 1
sup
n∈N∗

∫
{|fn|>t}

θ(|fn|) dµ 6 ε.

Hence (ii) holds.

We conclude this chapter by a first application of equi-integrability (see also Chapter 6).

Theorem 3.4.4 (Vitali). Let µ be a finite measure. Let fn and f be measurable functions such that
the sequence (fn) if equi-integrable and fn → f almost everywhere. Then∫

X

|fn − f | dµ→ 0.

Proof. Let ε and δ be such that

sup
n∈N∗

∫
E

(|fn|+ |f |) dµ 6 ε

for every measurable set E ⊂ X with µ(E) 6 δ. By Egoroff’s Theorem, in correspondence with δ, there
exists a measurable set Eδ ⊂ X such that µ(X \ Eδ) < δ and fn → f uniformly in Eδ. Hence∫

X

|fn − f | dµ =
∫
Eδ

|fn − f | dµ+
∫
X\Eδ

|fn − f | dµ 6 µ(X) sup
Eδ

|fn − f |+
∫
X\Eδ

(|fn|+ |f |) dµ.

Hence letting n→∞, we get that

lim sup
n→∞

∫
X

|fn − f | dµ 6 ε,

and since ε is arbitrary we deduce that fn → f in L1(X,µ) as claimed.
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3.5 Positive Radon measures

In this section Ω stands for an open subset of RN (N > 1). We recall that a positive Radon measure
is a Borel measure (i.e. a measure on the Borel σ-algebra B(Ω) of Ω) which is finite on compact sets.
Radon measures give a close relationship between integration and linear functional on the space Cc(Ω)
of continuous functions with compact support (the closure of the set of points where the function is not
zero) in Ω. Indeed if µ is a Radon measure over Ω, then the mapping

f 7→
∫

Ω

f dµ

defines a positive linear functional on Cc(Ω), i.e.,

L(αf + βg) = αL(f) + βL(g) for all f, g ∈ Cc(Ω) and all α, β ∈ R,
L(f) > 0 for all f ∈ Cc(Ω) with f > 0.

We will actually see in the Riesz representation Theorem that every positive linear functional on Cc(Ω)
can be uniquely represented by a positive Radon measure.

Before, we need to introduce several technical results.

Lemma 3.5.1 (Urysohn). Let K be a compact set and V be a bounded open set such that K ⊂ V ⊂
V ⊂ Ω. Then there exists a function f ∈ Cc(Ω; [0, 1]) such that f = 1 on K and f = 0 on Ω \ V .

Proof. It suffices to take

f(x) :=
dist(x,Ω \ V )

dist(x,Ω \ V ) + dist(x,K)
.

Lemma 3.5.2. Let V1, . . . , Vn be open sets satisfying Vi ⊂ Ω for all i = 1, . . . , n and K be a compact set
such that K ⊂

⋃n
i=1 Vi. Then, for each i = 1, . . . , n, there exists some functions fi ∈ Cc(Vi; [0, 1]) such

that
∑n
i=1 fi = 1 on K.

Proof. For each x ∈ K, there exists an open ball Bx centered at x and such that Bx ⊂ Vi for some
i (depending on x). Hence K ⊂

⋃
x∈K Bx, and since K is compact one can extract a finite covering

K ⊂
⋃p
j=1Bxj . Define Ki as the union of those closed balls Bxj which are contained in Vi. Then Ki

is a compact subset of Vi and by Urysohn’s Lemma, there exists a function gi ∈ Cc(Vi; [0, 1]) such that
gi = 1 on Ki. Then the functions

fi(x) :=


gi(x)∑n
j=1 gj(x)

if x ∈ Vi,

0 if x ∈ Ω \ Vi

fulfill the conclusion of the lemma.

We now state the main result of this section.

Theorem 3.5.1 (Riesz representation Theorem). Let L : Cc(Ω)→ R be a positive linear functional.
Then there exist a σ-algebra M containing the Borel σ-algebra B(Ω) and a measure µ on M such that

1. L(f) =
∫

Ω

f dµ, for every f ∈ Cc(Ω),

2. µ(K) <∞ for every compact set K ⊂ Ω,

3. for every E ∈M,
µ(E) = inf{µ(V ) : E ⊂ V, V open}, (3.4)

4. for every open set E, and every E ∈M with µ(E) <∞,

µ(E) = sup{µ(K) : K ⊂ E, K compact}. (3.5)
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Moreover this measure is unique in the sense that if (M1, µ1) and (M2, µ2) satisfy the previous properties
then the restrictions of µ1 and µ2 to B(Ω) are equal.

Proof. Let us start by proving uniqueness. Assume that µ1 and µ2 are two Radon measures satisfying
the conclusion of the Riesz representation Theorem. By the regularity property (3.5), it suffices to show
that µ1(K) = µ2(K) for every compact set K. Let ε > 0 and K a compact set. By (3.4), there exists an
open set V containing K such that µ2(V ) < µ2(K) + ε. By Urysohn’s Lemma one can find a function
f ∈ Cc(V ; [0, 1]) such that f = 1 on K. In particular, χK 6 f 6 χV , hence

µ1(K) =
∫

Ω

χK dµ1 6
∫

Ω

f dµ1 = L(f) =
∫

Ω

f dµ2 6
∫

Ω

χV dµ2 = µ2(V ) < µ2(K) + ε.

Thus µ1(K) 6 µ2(K) and exchanging the roles of µ1 and µ2 we deduce that this inequality is actually
an equality.

We now turn our attention to the existence. For every open set V ⊂ Ω, we define

µ(V ) := sup{L(f) : f ∈ Cc(Ω; [0, 1]), supp(f) ⊂ V }. (3.6)

Clearly, if V1 ⊂ V2, then µ(V1) 6 µ(V2) so that we can extend µ to any arbitrary E ⊂ Ω by setting

µ(E) := inf{µ(V ) : E ⊂ V, V open}.

Note that both definitions are consistent for open sets, and that property (3.4) will be automatically
satisfied. Moreover, µ is an increasing set function, i.e. if E1 ⊂ E2, then µ(E1) 6 µ(E2).

Let MF be the family of all sets E ⊂ Ω such that µ(E) <∞ and

µ(E) = sup{µ(K) : K ⊂ E, K compact}.

Finally, let M be the class of all E ⊂ Ω such that E ∩K ∈MF for any compact K.

Step 1. If K is compact, then K ∈MF , and

µ(K) = inf{L(f) : f ∈ Cc(Ω; [0, 1]), f = 1 on K}. (3.7)

Moreover, if V is open, then V satisfies (3.5). In particular if µ(V ) <∞, then V ∈MF .
Let f ∈ Cc(Ω; [0, 1]) such that f = 1 on K, α ∈ (0, 1), and Vα := {f > α}. Then K ⊂ Vα and αg 6 f

for every g ∈ Cc(Vα; [0, 1]). Hence µ(K) 6 µ(Vα) = sup{L(g) : g ∈ Cc(Vα; [0, 1])} 6 α−1L(f). Letting
α → 1 leads to µ(K) 6 L(f) < ∞. Therefore K ∈ MF since (3.5) is immediate. Next if ε > 0, there
exists an open set V containing K with µ(V ) < µ(K) + ε. By Urysohn’s Lemma, there exists a function
f ∈ Cc(V ; [0, 1]) satisfiying f = 1 on K, and thus

µ(K) 6 L(f) 6 µ(V ) < µ(K) + ε

which gives (3.7).
Consider now an open set V . Then for any α < µ(V ), there exists f ∈ Cc(V ; [0, 1]) such that

α < L(f). Hence for every open set W containing K := supp(f), then f ∈ Cc(W ) and by definition of µ
we have that L(f) 6 µ(W ). Taking the infimum over all such W ’s leads to L(f) 6 µ(K). This shows
the existence of a compact set K ⊂ V with α < µ(K) which ensures that V satisfies (3.5), and that
V ∈MF if futher µ(V ) <∞.

Step 2. For every sets En ⊂ Ω for n ∈ N∗, then

µ

( ∞⋃
n=1

En

)
6
∞∑
n=1

µ(En).

We first show that µ is finitely subadditive on open sets, i.e.,

µ(V1 ∪ V2) 6 µ(V1) + µ(V2) (3.8)
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when V1 and V2 are open sets. Let g ∈ Cc(V1∪V2; [0, 1]). By Lemma 3.5.2, there exists some functions f1

and f2 such that fi ∈ Cc(Vi; [0, 1]) and f1 + f2 = 1 on supp(g). Hence fig ∈ Cc(Vi; [0, 1]), g = f1g + f2g
so that by linearity of L and by definition of µ,

L(g) = L(f1g) + L(f2g) 6 µ(V1) + µ(V2).

Taking the supremum with respect to all g as above gives µ(V1 ∪ V2) 6 µ(V1) + µ(V2).
Now if µ(En) =∞ for some n then the result is obvious. Otherwise, if µ(En) <∞ for all n, then for

any ε > 0 there exists open sets Vn such that En ⊂ Vn and µ(Vn) < µ(En)+2−nε. Define V :=
⋃∞
n=1 Vn,

and take f ∈ Cc(V ; [0, 1]). In particular, since supp(f) is compact, one can find finitely many V1, . . . , Vp
such that supp(f) ⊂

⋃p
n=1 Vn. Hence iterating (3.8),

L(f) 6 µ

(
p⋃

n=1

Vn

)
6

p∑
n=1

µ(Vn) 6
∞∑
n=1

µ(En) + ε.

Since this holds for every f ∈ Cc(V ; [0, 1]), and since
⋃∞
n=1En ⊂ V , it follows that

µ

( ∞⋃
n=1

En

)
6 µ(V ) 6

∞∑
n=1

µ(En) + ε,

which completes the proof of step 2 since ε is arbitrary.

Step 3. Suppose that E =
⋃∞
n=1En, where En are pairwise disjoint elements of MF for all n ∈ N∗.

Then,

µ(E) =
∞∑
n=1

µ(En). (3.9)

If in addition, µ(E) <∞, then E ∈MF .
We first show that µ is finitely additive on compact sets, i.e.,

µ(K1 ∪K2) = µ(K1) + µ(K2) (3.10)

if K1 and K2 are disjoint compact sets. Let ε > 0, by Urysohn’s Lemma, there exists f ∈ Cc(Ω; [0, 1])
such that f = 1 on K1 and f = 0 on K2. Then by step 1, there exists a function g ∈ Cc(Ω) such that
g = 1 on K1 ∪K2 and L(g) 6 µ(K1 ∪K2) + ε. Note that fg = 1 in K1 and (1− f)g = 1 on K2. Hence
by linearity of L, it follows that

µ(K1) + µ(K2) 6 L(fg) + L((1− f)g) = L(g) 6 µ(K1 ∪K2) + ε.

Since ε is arbitrary, (3.10) follows from step 2.
If µ(E) = ∞, then (3.9) is an immediate consequence of step 2. Therefore, we can assume that

µ(E) < ∞. Let ε > 0, since En ∈MF , there exist compact sets Hn ⊂ En with µ(Hn) > µ(En)− 2−nε
for each n ∈ N∗. Define Kn :=

⋃n
k=1Hk ⊂ E which is compact. Thus using an induction on (3.10), we

deduce that

µ(E) > µ(Kn) =
n∑
k=1

µ(Hk) >
n∑
k=1

µ(Ek)− ε.

Since the previous relation holds for every n ∈ N∗ and every ε > 0, using again step 2, we deduce (3.9).
Moreover for n large enough (depending on ε) we have µ(E) 6

∑n
k=1 µ(Ek) + ε 6 µ(Kn) + 2ε which

shows that E ∈MF .

Step 4. If E ∈MF and ε > 0, there is a compact set K and an open set V such that K ⊂ E ⊂ V
and µ(V \K) < ε. Moreover, if A and B ∈MF , then A \B, A ∪B and A ∩B ∈MF .

Our definitions show that there exist a compact set K and an open set V with K ⊂ E ⊂ V to that

µ(V )− ε

2
< µ(E) < µ(K) +

ε

2
<∞,

where we used the fact that, from step 1, µ is finite on compact sets. Using again step 1, since V \K is
open and µ(V \K) < ∞, it therefore belongs to MF . We apply step 3 to get that µ(K) + µ(V \K) =
µ(V ) < µ(K) + ε <∞.
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Now if A and B ∈ MF and ε > 0, one can find compact sets K1 and K2, and open sets V1 and V2

such that K1 ⊂ A ⊂ V1 and K2 ⊂ B ⊂ V2, and µ(Vi \Ki) < ε (for i = 1, 2). Since

A \B ⊂ V1 \K2 ⊂ (V1 \K1) ∪ (K1 \ V2) ∪ (V2 \K2),

from the subadditivity proved in step 2, we infer that µ(A \B) 6 2ε+ µ(K1 \ V2). But since K1 \ V2 is
a compact subset of A \B, it shows that A \B ∈MF . Then since A ∪B = (A \B) ∪B, an application
of step 3 shows that A ∪B ∈MF . Finally, since A ∩B = A \ (A \B), we also have A ∩B ∈MF .

Step 5. M is a σ-algebra which contains all Borel sets, and all sets E ⊂ Ω such that µ(E) = 0.
Morever MF = {E ⊂M : µ(E) <∞}. Finally, µ is a measure on M satisfying (3.4) and (3.5).

First step 1 gives that Ω is in M.
Now let K be an arbitrary compact set in X. If A ∈ M, then A ∩ K ∈ MF and thus by step

4, Ac ∩ K = K \ (A ∩ K) ∈ MF . Consequently, Ac ∈ M. Now if An ∈ M for each n ∈ N∗, define
B1 = A1∩K and for n > 2, Bn = (An∩K)\

⋃n−1
k=1 Bk. Then by step 4, (Bn) is made of pairwise disjoint

elements of MF . Thus by step 3, we have

K ∩
∞⋃
n=1

An =
∞⋃
n=1

Bn ∈MF

and thus
⋃∞
n=1An ∈M. This shows that M is a σ-algebra. If C is closed, then K ∩C is compact and by

step 1, it belongs to MF . Hence C ∈M. This shows that M is a σ-algebra containing all closed sets and
consequently all Borel sets. If E ⊂ Ω is such that µ(E) = 0, then clearly E ∈M since µ is an increasing
set function.

By steps 1 and 4, we clearly have that MF ⊂ {E ⊂ M : µ(E) < ∞}. Conversely, let E ∈ M such
that µ(E) < ∞ and let ε > 0. There exists an open set V containing E such that µ(V ) < ∞. Using
again steps 1 and 4, one can find a compact set K ⊂ V such that µ(V \K) < ε. Since E ∩K ∈ MF ,
there exists a compact set H ⊂ E ∩K with µ(E ∩K) < µ(H) + ε. Since E ⊂ (E ∩K) ∪ (V \K), it
follows that

µ(E) 6 µ(E ∩K) + µ(V \K) < µ(H) + 2ε,

which implies that E ∈MF . Hence properties (3.4) and (3.5) follow.
We next prove that µ is a measure on (Ω,M). If (En) is a sequence of pairwise disjoint elements of

M, then E :=
⋃∞
n=1En ∈M. If µ(E) =∞, then by Step 2, we have

µ (E) =
∞∑
n=1

µ(En),

while if µ(E) <∞ then µ(En) <∞ for each n ∈ N∗ and thus E, En ∈MF for all n ∈ N∗. Consequently,
by step 3, we have the same result which proves that µ is a measure on M.

Step 6. Proof of the representation property. Let f ∈ Cc(Ω). Clearly it is enough to check the
inequality L(f) 6

∫
Ω
f dµ because by linearity of L,

−L(f) = L(−f) 6
∫

Ω

(−f) dµ = −
∫

Ω

f dµ.

Let K := suppf and [a, b] be an interval which contains the range of f . For ε > 0, let y0, . . . , yn ∈ R be
such that y0 < a < y1 < . . . < yn = b, and max16i6n(yi − yi−1) < ε. Define

Ei := {yi−1 < f 6 yi} ∩K.

Since f is continuous, f is Borel measurable and the sets Ei are therefore disjoint Borel sets whose union
is K. There are open sets Vi containing Ei and such that µ(Vi) < µ(Ei) + ε/n and f(x) < yi + ε for
all x ∈ Vi and all i = 1, . . . , n. By Theorem 3.5.2, one can find functions hi ∈ Cc(Vi; [0, 1]) such that∑n
i=1 hi = 1 on K. Hence, f =

∑n
i=1 hif in Ω and by step 1, we infer that

µ(K) 6 L

(
n∑
i=1

hi

)
=

n∑
i=1

L(hi).
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Note that L(hi) 6 µ(Vi) < µ(Ei) + ε/n, hif 6 (yi + ε)hi and yi − ε < f(x) for x ∈ Ei. Denoting by
M := maxK |f | < +∞ we have

L(f) =
n∑
i=1

L(hif) 6
n∑
i=1

(yi + ε)L(hi) =
n∑
i=1

(M + yi + ε)L(hi)−M
n∑
i=1

L(hi)

6
n∑
i=1

(M + yi + ε)
(
µ(Ei) +

ε

n

)
−Mµ(K)

6
n∑
i=1

(yi − ε)µ(Ei) + 2εµ(K) +
ε

n

n∑
i=1

(M + yi + ε)

6
∫

Ω

f dµ+ ε(2µ(K) + 2M + ε).

Since ε is arbitrary, we proof of the theorem is complete.

Remark 3.5.1. If we consider the restriction of µ to the Borel σ-algebra B(Ω), then µ defines a Radon
measure (a Borel measure which is finite on compact sets).

Remark 3.5.2. Step 5 of the proof of Theorem 3.5.1 shows that M contains sets E such that µ(E) = 0.
We say that the measure space (Ω,M, µ) is a complete measure space.

Remark 3.5.3. It can be proved that for any E ∈ B(Ω) and any ε > 0, there exist a closed set C and
an open set V such that C ⊂ E ⊂ V , and

µ(V \ C) < ε. (3.11)

Indeed, let E ∈ B(Ω) and let (Kn) be an increasing sequence of compact sets whose union is Ω (take e.g.
Kn := {x ∈ Ω : |x| 6 n and dist(x,RN \ Ω) > 1/n}). Since µ is a Radon measure, then µ(E ∩Kn) <∞
for all n > 1, and there exists an open set Vn such that E ∩Kn ⊂ Vn and µ(Vn) < λ(E ∩Kn) + 2−n−1ε.
In particular, since µ(E ∩Kn) <∞, then µ(Vn \ (E ∩Kn) < 2−n−1ε. Define the open set V :=

⋃
n>1 Vn

which satisfies E ⊂ V , and V \ E ⊂
⋃
n>1 Vn \ (E ∩ Kn). Then we have µ(V \ E) < ε/2. Applying

this property to F := Ec, there exists an open set W containing F and such that µ(W \ F ) + ε/2. Let
C := W c be closed, then C ⊂ E and µ(E \ C) = µ(E ∩W ) = µ(W \ (Ec)) = µ(W \ F ) < ε/2.

The Riesz representation Theorem has many consequences. For instance it enables to prove the
existence of the Lebesgue measure and that the Lebesgue integral is a generalization of the Riemann
integral. Another application will be given in chapter 6 about the characterization of the dual space
of continuous functions vanishing on the boundary. We now give a direct application concerning the
regularity of Radon measures which will be useful to prove the density of continuous functions and the
separability of Lebesgue spaces in chapter 4.

Theorem 3.5.2. Any positive Radon measure λ on Ω satisfies

λ(E) = inf{λ(V ) : E ⊂ V, V open} for every Borel set E ⊂ Ω,

and
λ(E) = sup{λ(K) : K ⊂ E, K compact} for every Borel set E ⊂ Ω with λ(E) <∞.

Moreover, for any E ∈ B(Ω) and any ε > 0, there exist a closed set C and an open set V such that
C ⊂ E ⊂ V , and

λ(V \ C) < ε. (3.12)

Proof. Define L(f) :=
∫

Ω
f dλ for any f ∈ Cc(Ω). Since λ(K) < ∞ for any compact set K ⊂ Ω, L is a

positive linear form on Cc(Ω), and from the Riesz representation Theorem, there exists a unique Radon
measure such that ∫

Ω

f dλ =
∫

Ω

f dµ.

Since µ satisfies (3.4), (3.5) and (3.11) so that it suffices to prove that λ = µ.
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Let V be an open subset of Ω. Then V =
⋃∞
n=1Kn for some compact sets Kn with n ∈ N∗. By

Urysohn’s Lemma, we can choose fn ∈ Cc(V ; [0, 1]) such that fn = 1 on Kn. Define gn := max16i6n fi,
then gn ∈ Cc(V ; [0, 1]) an it increases to χV pointwise in Ω. Hence by the monotone convergence Theorem,

λ(V ) = lim
n→∞

∫
Ω

gn dλ = lim
n→∞

∫
Ω

gn dµ = µ(V ).

Now let E be a Borel subset of Ω and let ε > 0. By (3.11), there exist an open set V and a closed
set C such that C ⊂ E ⊂ V and µ(V \ C) < ε. But since V \ C in open we infer that λ(V \ C) < ε.
Consequently,

λ(E) 6 λ(V ) = µ(V ) 6 µ(E) + ε 6 µ(V ) + ε = λ(V ) + ε 6 λ(E) + 2ε,

so that µ(E) = λ(E) by the arbitrariness of ε, and the proof of (3.12) is complete.

3.6 Construction of the Lebesgue measure

The Riesz representation Theorem enables one to prove the existence of the Lebesgue measure (the usual
volume measure in RN ), and to show that the Lebesgue integral with respect to the Lebesgue measure
is a natural extension of the Riemann integral.

Theorem 3.6.1. There exist a σ-algebra L(RN ) (containing the Borel σ-algebra B(RN )) and a unique
measure LN on L(RN ) such that

1. LN ([0, 1]N ) = 1;

2. For every E ∈ L(RN ) and every x ∈ RN , LN (x+ E) = LN (E);

3. E ∈ L(RN ) if and only if there exist a Fσ set A (a countable union of closed sets) and a Gδ set B
(a countable intersection of open sets) such that A ⊂ E ⊂ B and LN (B \A) = 0;

4. For every f ∈ Cc(RN ), ∫
RN

f dLN =
∫

RN
f(x) dx,

where the integral in left hand side is the Lebesgue integral of f with respect to the measure LN ,
and the integral in the right hand side is the Riemann integral of f .

The measure LN is called the Lebesgue measure, and L(RN ) is the σ-algebra of all Lebesgue measurable
sets.

Proof. Step 1. Define L : Cc(RN )→ R by

L(f) =
∫

RN
f(x) dx,

where the integral is the Riemann integral of f . Note that since f has compact support, then the previous
integral is not improper since ∫

RN
f(x) dx =

∫
Supp(f)

f(x) dx.

Clearly L is a positive linear functional on Cc(RN ), and according to the Riesz representation Theorem,
there exist a σ-algebra L(RN ) (containing the Borel σ-algebra B(RN )) and a measure LN on L(RN )
such that LN (K) <∞ for every compact set K ⊂ RN and

L(f) =
∫

RN
f(x) dx =

∫
RN

f dLN

for every f ∈ Cc(RN ).
Step 2. The conclusion of Theorem 3.5.1 also shows that for any E ∈ L(RN )

LN (E) = inf{LN (V ) : E ⊂ V, V open} (3.13)
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and any E ∈ L(RN ) with LN (E) <∞

LN (E) = sup{LN (K) : K ⊂ E, K compact}.

Moreover, from (3.11), for every E ∈ L(RN ) and any ε > 0, there exist a closed set C and an open set
V such that C ⊂ E ⊂ V and LN (V \C) < ε. Hence, for each n > 1, one can find a closed set Cn and an
open set Vn such that Cn ⊂ E ⊂ Vn and LN (Vn \ Cn) < 1/n. Define A :=

⋃
n>1 Cn and B :=

⋂
n>1 Vn.

Then A is a Fσ set, B is a Gδ set, A ⊂ E ⊂ B and LN (B \ A) 6 LN (Vn \ Cn) < 1/n → 0. Conversely,
assume that E ⊂ RN is such that A ⊂ E ⊂ B and LN (B \A) = 0 for some Fσ set A and some Gδ set B.
Then E = A ∪ (E \ A) where A ∈ B(RN ) and E \ A ⊂ B \ A with B \ A ∈ B(RN ) and LN (B \ A) = 0.
Since the measure LN is complete (see Remark 3.5.2) we deduce that E \ A ∈ L(RN ) and finally that
E ∈ L(RN ).

Step 3. Let us show that for every open cube Q :=
∏N
i=1(ai, bi) (for ai < bi and i ∈ {1, . . . , N}),

then

LN (Q) =
N∏
i=1

(bi − ai). (3.14)

Define for each n > 1 and each x ∈ RN , fn(x) :=
∏N
i=1 ϕ

ai,bi
n (xi), where

ϕai,bin (xi) :=


0 if xi 6∈ [ai, bi],
1 if xi ∈

[
ai + 1

n , bi −
1
n

]
,

n(xi − ai) if xi ∈
[
ai, ai + 1

n

]
,

−n(xi − bi) if xi ∈
[
bi − 1

n , bi
]
.

Then fn ∈ Cc(RN ) for all n > 1 and χQn 6 fn 6 χQ where Qn :=
∏N
i=1[ai + 1/n, bi − 1/n] is a closed

cube. Hence integrating the previous chain of inequalities with respect to the Lebesgue measure LN
leads to

LN (Qn) 6
∫

RN
fn dLN =

∫
RN

fn(x) dx 6 LN (Q). (3.15)

Since Qn is an increasing sequence of (Lebesgue) measurable sets whose union is Q =
∏N
i=1(ai, bi), we

deduce from Proposition 3.2.1 (ii) that LN (Qn) → LN (Q) as n → ∞. Next by construction of fn, its
Riemann integral can be exactly computed as∫

RN
fn(x) dx =

∫
Q

fn(x) dx =
N∏
i=1

∫ bi

ai

ϕai,bin (xi) dxi =
N∏
i=1

(
bi − ai −

1
n

)
.

Taking the limit in 3.15 as n→∞ yields formula 3.14.
Step 4. Let us show that for any i ∈ {1, . . . , N} and any a ∈ R,

LN ({xi = a}) = 0. (3.16)

Let us assume without loss of generality that i = 1 and a = 0. Then for each k > 1, we have {x1 =
0}∩Q(0, n) ⊂ (−1/k, 1/k)×

∏N
i=2(−n, n) where Q(0, n) =

∏N
i=1(−n, n) is the open cube of center 0 and

side length 2n. Using (3.14), we infer that

LN ({x1 = 0} ∩Q(0, n)) 6
(2n)N−1

2k
.

For fixed n > 1, letting k → ∞ implies that LN ({x1 = 0} ∩ Q(0, n)) = 0. Then taking the limit as
n→∞ and using Proposition 3.2.1 (ii) yields LN ({x1 = 0}) = 0.

Step 5. Since
N∏
i=1

[ai, bi] \
N∏
i=1

(ai, bi)

is made of finitely many subsets of hyperplane of the form {xi = a}, we deduce from Step 4 that

LN
(

N∏
i=1

[ai, bi] \
N∏
i=1

(ai, bi)

)
= 0
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so that

LN
(

N∏
i=1

[ai, bi]

)
= LN

(
N∏
i=1

(ai, bi)

)
=

N∏
i=1

(bi − ai).

In particular, taking ai = 0 and bi = 1 for all i ∈ {1, . . . , N} leads to LN ([0, 1]N ) = 1.
Step 6. Let us show that LN is translation invariant. Let x ∈ RN and V ⊂ RN an open set. Since

the translation τx : y ∈ RN 7→ x + y is a homeomorphism (with inverse (τx)−1 = τ−x), then x + V is
open, and by definition of LN on open sets (see (3.6)) we have

LN (x+ V ) = sup
{∫

RN
f(y) dy : f ∈ Cc(RN ; [0, 1]), Supp(f) ⊂ x+ V

}
.

By changing variables in the Riemann integral we obtain that

LN (x+ V ) = sup
{∫

RN
g(x+ y) dy : g ∈ Cc(RN ; [0, 1]), Supp(g) ⊂ V

}
= sup

{∫
RN

g(z) dz : g ∈ Cc(RN ; [0, 1]), Supp(g) ⊂ V
}

= LN (V ).

Next from the above mentioned properties of the translation, if E ∈ B(RN ), then x + E ∈ B(RN ).
Applying the outer regularity (3.13) of the Lebesgue measure, we get that

LN (x+ E) = inf{LN (V ) : x+ E ⊂ V, V open}
= inf{LN (−x+ V ) : E ⊂ −x+ V, V open}
= inf{LN (U) : E ⊂ U, U open}
= LN (E).

Finally, from step 2, we know that if E ∈ L(RN ) then there exist a Fσ set A, and a Gδ set B
such that A ⊂ E ⊂ B and LN (B \ A) = 0. Then x + A ⊂ x + E ⊂ x + B, where x + A is a
Fσ and x + B is a Gδ. Moreover, since x + B \ A = (x + B) \ (x + A) and B \ A ∈ B(RN ), then
LN ((x+B) \ (x+A)) = LN (x+ (B \A)) = LN (B \A) = 0. Consequently, x+ E ∈ L(RN ) and

LN (x+ E) = LN (x+A) = LN (A) = LN (E).

Step 7. It remains to show the uniqueness of the Lebesgue measure. Let λ be a translation invariant
Radon measure such that λ([0, 1]) = 1. We claim that λ = LN .

Let us first show that for each a ∈ R and i ∈ {1, . . . , N}, then λ({xi = a}) = 0. Without loss of
generality, assume that i = 1 and a = 0. Then

λ({x1 = 0}) = λ

{x1 = 0} ∩
⋃
n>1

[0, n]N

 = lim
n→∞

λ
(
{x1 = 0} ∩ [0, n]N

)
. (3.17)

Define En := {x1 = 0} ∩ [0, n]N and note that

[0, n]N =
⋃

y1∈[−n,n]

(y1 + En) ⊃
⋃

y1∈[−n,n]∩Q

(y1 + En),

where the (Lebesgue measurable) sets {y1 + En}y1∈[−n,n]∩Q are pairwise disjoint. Hence since λ is a
Radon measure, it is finite on compact sets, and the translation invariance yields

∑
y1∈[−n,n]∩Q

λ(En) =
∑

y1∈[−n,n]∩Q

λ(y1 + En) = λ

 ⋃
y1∈[−n,n]∩Q

(y1 + En)

 6 λ([0, n]N ) <∞

which is possible only if λ(En) = 0. Consequently, from (3.17), we obtain that λ({x1 = 0}) = 0.
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As a consequence, if n ∈ N∗, since

[0, 1)N =
⋃

k∈{0,...,n−1}N

(
k

n
+
[
0,

1
n

)N)
,

where the (Lebesgue measurable) sets in the previous union are pairwise disjoint, we deduce that

1 = λ([0, 1]N ) = λ([0, 1)N ) = λ

 ⋃
k∈{0,...,n−1}N

(
k

n
+
[
0,

1
n

)N)
=

∑
k∈{0,...,n−1}N

λ

(
k

n
+
[
0,

1
n

)N)
=

∑
k∈{0,...,n−1}N

λ

([
0,

1
n

)N)
= nNLN

([
0,

1
n

)N)
.

Hence λ([0, 1/n)N ) = n−N = LN ([0, 1/n)N ).
Next we show that λ coincides with LN on cubes. Let Q :=

∏N
i=1[ai, bi], and assume first that ai

and bi ∈ Q with ai < bi for i ∈ {1, . . . , N}. Then there exist integers n ∈ N, αi and βi ∈ Z such that
ai = αi/n and bi = βi/n. Hence

Q =
(αi
n
, . . . ,

αN
n

)
+

N∏
i=1

[
0,
qi
n

]
,

where qi = βi − αi ∈ N. Thanks to the translation invariance of λ, we deduce that

λ(Q) = λ

(
N∏
i=1

[
0,
qi
n

))
.

On the other hand,

λ

(
N∏
i=1

[
0,
qi
n

))
= λ

 N∏
i=1

⋃
ki∈N,|ki|6qi−1

[
ki
n
,
ki + 1
n

) = λ

(⋃
k∈K

(
k

n
+
[
0,

1
n

)))
,

where K := {k ∈ NN : 0 6 ki 6 qi−1 for all i ∈ {1, . . . , N}}. Thus using again the translation invariance
of λ yields

λ

(
N∏
i=1

[
0,
qi
n

))
=
∑
k∈K

λ

((
k

n
+
[
0,

1
n

)))
=
∑
k∈K

λ

([
0,

1
n

))

=
1
nN

Card(K) =
1
nN

N∏
i=1

qi =
N∏
i=1

(bi − ai).

Finally, we obtain that λ(Q) = LN (Q).
If now ai and bi ∈ R, then there exist sequences (ani )n>1 and (bni )n>1 ⊂ Q such that ani ↘ ai and

bni ↗ bi as n→∞, for each i ∈ {1, . . . , N}. Since
∏N
i=1[ani , b

n
i ] is an increasing sequence of closed cubes

whose union is the open cube
∏N
i=1(ai, bi), we deduce that

λ

(
N∏
i=1

[ai, bi]

)
= λ

(
N∏
i=1

(ai, bi)

)
= lim
n→∞

λ

(
N∏
i=1

[ani , b
n
i ]

)

= lim
n→∞

N∏
i=1

(bni − ani ) =
N∏
i=1

(bi − ai) = LN
(

N∏
i=1

[ai, bi]

)
.

To show that λ(V ) = LN (V ) for every open set, we use the fact that any open set in RN can be written
as the countable union of disjoint cubes of the form

∏N
i=1[bi−ai) where ai and bi ∈ R for i ∈ {1, . . . , N}.

Finally since λ is a Radon measure, we use the outer regularity of both λ and LN (see Theorem 3.5.2)
to show that λ(E) = LN (E) for every Borel set E.
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Chapter 4

Lebesgue spaces

An important class of examples of Banach spaces is given by the Lebesgue spaces Lp of all measurable
functions whose absolute value raised to the p-th power has finite integral. In this chapter, and unless
otherwise mentioned, µ is a measure over a measurable space (Ω,M).

4.1 First definitions and properties

Definition 4.1.1. Let 1 6 p <∞. We define

Lp(Ω, µ) :=

{
u : Ω→ R measurable : ‖u‖Lp(Ω,µ) :=

(∫
Ω

|u|pdµ
)1/p

< +∞

}
,

and

L∞(Ω, µ) :=
{
u : Ω→ R measurable : ‖u‖L∞(Ω,µ) := ess sup

x∈Ω
|u(x)| < +∞

}
,

where
ess sup
x∈Ω

|u(x)| := inf{C ∈ R : |u(x)| 6 C µ-a.e. in Ω}.

The `p spaces ( 1 6 p < ∞) are a special case of Lp spaces, when Ω is the set N of nonnegative
integers, and the measure µ is the counting measure on N.

In general the map Lp(Ω, µ) 3 u 7→ ‖u‖Lp(Ω,µ) does not define a norm over Lp(Ω, µ) (it is actually a
semi norm). However we have the following result.

Proposition 4.1.1. Let f : Ω→ [0,∞] be a measurable function such that∫
Ω

f dµ = 0.

Then f(x) = 0 for µ-a.e. x ∈ Ω.

Proof. Define the measurable sets En := {f > 1/n}. Note that (En) is an increasing sequence of
measurable sets, and {f > 0} =

⋃∞
n=1En. Hence by Proposition 3.3.1,

1
n
µ(En) 6

∫
En

f dµ 6
∫

Ω

f dµ = 0,

and thus µ(En) = 0 for every n ∈ N. Then by Proposition 3.2.1

µ({f > 0}) = µ

( ∞⋃
n=1

En

)
= lim
n→∞

µ(En) = 0,

which proves that f = 0 µ-a.e. in Ω.
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Indeed from the previous proposition, if u ∈ Lp(Ω, µ) is such that ‖u‖Lp(Ω,µ) = 0 then u(x) = 0 for
µ-a.e. x ∈ Ω.

Given two measurable functions u, v : Ω → [−∞,+∞], we say that u is equivalent to v, and we
write u ∼ v, if u(x) = v(x) for µ-a.e. x ∈ Ω. Note that ∼ is an equivalence relation in the class of
measurable functions. The spaces Lp(Ω, µ) can be made into a normed vector space, denoted Lp(Ω, µ),
by taking their quotient space with respect to this equivalence relation. If u ∈ Lp(Ω;µ), we denote by
[u] its equivalence class. With an abuse of notations, from now on we identify a measurable function u
to its equivalence class [u].

Definition 4.1.2. Let u ∈ Lp(Ω, µ), we denote

‖u‖p :=
(∫

Ω

|u|pdµ
)1/p

if 1 6 p <∞,

‖u‖∞ := ess sup
x∈Ω

|u(x)| if p =∞.

Thanks to this identification, the Lebesgue spaces Lp(Ω, µ) are normed spaces. Before proving this
property we state two important inequalities which will be instrumental in the sequel.

Proposition 4.1.2 (Hölder’s inequality). Let 1 6 p 6∞ and p′ > 1 its conjugate exponent defined by
1/p+ 1/p′ = 1 (by convention p′ = 1 if p =∞, and p′ =∞ if p = 1). If u ∈ Lp(Ω, µ) and v ∈ Lp′(Ω, µ)
then uv ∈ L1(Ω, µ) and

‖uv‖1 6 ‖u‖p‖v‖p′ .

Proof. Since the logarithm is concave on R∗+, for a, b > 0 and 1 6 p, p′ <∞ with 1/p+1/p′ = 1, we have

log(ab) = log(a) + log(b) =
1
p

log(ap) +
1
p′

log(ap
′
) 6 log

(
1
p
ap +

1
p′
bp
′
)
.

Taking the exponential we obtain Young’s inequality:

ab 6
1
p
ap +

1
p′
bp
′
.

Using this with a = λu and b = λ−1v and integrating over Ω yields∫
Ω

|uv| dµ 6
1
p
λp‖u‖pp +

1
p′
λ−p

′
‖v‖p

′

p′ .

The last term is minimized by choosing λ = ‖v‖1/pp′ ‖u‖
(1−p)/p
p .

If either p =∞ or p′ =∞, the inequality is immediate.

Remark 4.1.1. From Hölder’s inequality, it follows that if µ(Ω) < ∞ and 1 6 q 6 p 6 ∞ then
L∞(Ω, µ) ⊂ Lq(Ω, µ) ⊂ Lp(Ω, µ) ⊂ L1(Ω, µ). However, if µ(Ω) =∞, nothing can be said in general.

Proposition 4.1.3 (Minkowski inequality). For 1 6 p 6∞, and for any u, v ∈ Lp(Ω, µ), we have

‖u+ v‖p 6 ‖u‖p + ‖v‖p.

Proof. We start with p =∞. By definition of the essential supremum, |u(x)| 6 ‖u‖∞ and |v(x)| 6 ‖v‖∞
for µ-a.e. x ∈ Ω, hence

|u(x) + v(x)| 6 |u(x)|+ |v(x)| 6 ‖u‖∞ + ‖v‖∞,

for µ-a.e. in Ω. Using again the definition of the essential supremum of u + v, we get ‖u + v‖∞ 6
‖u‖∞ + ‖v‖∞.

Similarly, for p = 1, we have

‖u+ v‖1 =
∫

Ω

|u+ v| dµ 6
∫

Ω

(|u|+ |v|) dµ 6 ‖u‖1 + ‖v‖1.
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For 1 < p <∞, by Hölder’s inequality, we infer that

‖u+ v‖pp =
∫

Ω

|u+ v|p dµ =
∫

Ω

|u+ v||u+ v|p−1 dµ

6
∫

Ω

|u||u+ v|p−1 dµ+
∫

Ω

|v||u+ v|p−1 dµ

6 (‖u‖p + ‖v‖p)
(∫

Ω

(|u+ v|p−1)p/(p−1)

)(p−1)/p

= (‖u‖p + ‖v‖p)‖u+ v‖p−1
p .

We are now in position to state that the Lebesgue spaces are normed spaces:

Proposition 4.1.4. For 1 6 p 6∞, the map Lp(Ω, µ) 3 u 7→ ‖u‖p defines a norm over Lp(Ω, µ).

Proof. From Proposition 4.1.1, if ‖u‖p = 0, then u = 0 µ-a.e. in Ω, and thus u = 0 in Lp(Ω, µ). Clearly,
‖λu‖p = |λ|‖u‖p for every λ ∈ R and u ∈ Lp(Ω, µ). Finally the triangle inequality is a consequence of
the Minkowski inequality.

4.2 Completeness

We saw in Proposition 4.1.4 that the Lebesgue spaces Lp(Ω, µ) are normed spaces. We will prove now
that they are actually Banach spaces as a consequence of the following completeness result.

Theorem 4.2.1 (Fréchet – Riesz). For 1 6 p 6∞, the space Lp(Ω, µ) is complete.

Proof. It is enough to prove that any normally converging series in Lp(Ω, µ) is converging in Lp(Ω, µ)
(see Proposition 1.2.1). Let (un)n ⊂ Lp(Ω;µ) be such that

∑∞
n=1 ‖un‖p < ∞. Then the sequence of

partial sums

vn :=
n∑
k=1

|uk|

is increasing, and from the Minkowski inequality,∫
Ω

vpn dµ = ‖vn‖pp 6

( ∞∑
k=1

‖uk‖p

)p
<∞

if p <∞, while

vn(x) 6
∞∑
k=1

‖uk‖∞

for µ-a.e. x ∈ Ω if p = ∞. We deduce from the monotone convergence Theorem that (vn) converges
µ-a.e. in Ω to the function

∑∞
k=1 |uk| which belongs to Lp(Ω, µ). In particular, by Proposition 3.3.2, we

deduce that the series
∑∞
k=1 |uk(x)| converges for µ-a.e. x ∈ Ω, and from the completeness of R that the

series
∑∞
k=1 uk(x) converges as well. Therefore

∑∞
k=1 uk ∈ Lp(Ω, µ) and for n > m, we have∥∥∥∥∥

n∑
k=1

uk −
m∑
k=1

uk

∥∥∥∥∥
p

=

∥∥∥∥∥
n∑

k=m+1

uk

∥∥∥∥∥
p

6
n∑

k=m+1

‖uk‖p ,

where we used again the Minkowski inequality. Letting n→∞, we infer that∥∥∥∥∥
∞∑
k=1

uk −
m∑
k=1

uk

∥∥∥∥∥
p

6
∞∑

k=m+1

‖uk‖p ,

and since
∑∞
n=1 ‖un‖p <∞, then

∑∞
k=m+1 ‖uk‖p → 0 as m→∞, and the conclusion follows.

It follows from Theorem 3.4.3 that if (fn) is a sequence bounded both in L1(X,µ) and in Lp(Ω, µ)
for some 1 < p <∞ then the sequence (fn) is equi-integrable.
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4.3 Density and separability

Theorem 4.3.1. For any 1 6 p 6∞ the space of all measurable simple functions are dense in Lp(Ω, µ).

Proof. Let u ∈ Lp(Ω, µ). decomposing u = u+−u−, we can assume without loss of generality that u > 0.
Let (sn) be the sequence of simple functions constructed in Theorem 3.1.1.

If p = ∞, then for any n > ‖u‖∞, we have |sn(x) − u(x)| 6 2−n for µ-a.e. x ∈ Ω, and thus
‖sn − u‖∞ 6 2−n → 0.

If 1 6 p < ∞, since sn(x) ↗ u(x) for µ-a.e. x ∈ Ω, we get that |u(x) − sn(x)|p → 0 for µ-a.e.
x ∈ Ω and |u(x) − sn(x)|p 6 2pu(x)p for µ-a.e. x ∈ Ω. Hence by the dominated convergence Theorem
‖u− sn‖p → 0.

From now on, we assume that Ω is an open subset of RN , with N > 1, and that µ is a positive Radon
measure.

Theorem 4.3.2. For any 1 6 p <∞ the space Cc(Ω) is dense in Lp(Ω, µ).

Proof. Let Kn := {x ∈ Ω : dist(x,Ωc) > 1/n and ‖x‖Rn 6 n}. Then (Kn) is an increasing sequence of
compact sets such that ∪nKn = Ω. Let ε > 0. By the dominated convergence Theorem, for n large
enough we have that ‖u − χKnu‖Lp(Ω,µ) 6 ε. Since µ is a positive Radon measure it is sufficient to
consider the case where µ(Ω) is finite. By Theorem 4.3.1 if is enough to show that any simple function
can be approximated in Lp(Ω, µ) by a continuous function with compact support in Ω. Then by linearity
it suffices to consider characteristic functions. Let E ⊂ Ω be a Borel set, by Theorem 3.5.2, there exist
a compact set K and an open set V such that K ⊂ E ⊂ V and µ(V \K) < ε. Then from Urysohn’s
Lemma there exists a function v ∈ Cc(V ; [0, 1]) such that v = 1 on K. Hence∫

Ω

|v − χE |p dµ 6 µ(V \K) < ε,

which completes the proof of the Theorem.

Corollary 4.3.1. For any 1 6 p <∞ the space Lp(Ω, µ) is separable.

Proof. With the notations of the previous proof, we have that Cc(Ω) ⊂
⋃∞
n=1 C(Kn). We already proved

in Corollary 2.4.4 that C(Kn) are separable with respect to the uniform convergence. But since µ is a
Radon measure, it is finite on compact sets and thus uniform convergence in Kn implies convergence in
Lp(Kn, µ) because ∫

Kn

|u− v|p dµ 6 µ(Kn) sup
x∈Ω
|u(x)− v(x)|p.

As a consequence, C(Kn) is separable in the topology of Lp(Ω, µ). Finally, since a countable union of
separable spaces is separable, we infer that Cc(Ω) is separable in the topology of Lp(Ω, µ). The conclusion
follows from Theorem 4.3.2

The space L∞(Ω, µ) is more specific to the Radon measure µ. Indeed, if µ is a Dirac mass, then
the space L∞(Ω, µ) can be identified to R which is therefore separable. However, this property fails in
general.

Theorem 4.3.3. If µ = LN is the Lebesgue measure, then L∞(Ω,LN ) is not separable.

Proof. If x ∈ Ω and R > 0 are such that B(x,R) ⊂ Ω, then the family {χB(x,r) : 0 < r < R} is
uncountable and if 0 < r 6= r′ < R, then ‖χB(x,r)−χB(x,r′)‖∞ = 1. The conclusion follows from the non
separability criterion (Proposition 1.4.2).

4.4 Convolution

From now on we will exclusively work with the Lebesgue measure µ = LN . The corresponding Lebesgue
spaces Lp(Ω,LN ) will be simply denoted by Lp(Ω).
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4.4.1 Definition and Young’s inequality

Definition 4.4.1. Let u and v ∈ Cc(RN ), the convolution product u ∗ v is defined by

(u ∗ v)(x) :=
∫

RN
u(x− y)v(y) dy

for all x ∈ RN .

Next Lemma asserts that u ∗ v is Cc(RN ). It In fact if either u or v is more regular, one can expect
more regularity on the convolution product. We recall that for any open set Ω ⊂ RN ,

D(Ω) := C∞c (Ω) := {u ∈ C∞(Ω) : supp(u) is a compact subset of Ω}.

Lemma 4.4.1. The following properties hold true.

1. If u, v ∈ Cc(Ω) then u ∗ v ∈ Cc(Ω) with supp(u ∗ v) ⊂ supp(u) + supp(v).

2. If u ∈ Cc(Ω) and v ∈ C∞c (Ω), then u ∗ v ∈ C∞c (Ω) and for any multi-index α ∈ NN , ∂α(u ∗ v) =
u ∗ (∂αv).

3. For every 1 6 p 6∞,
‖u ∗ v‖p 6 ‖u‖p‖v‖1. (4.1)

Proof. For the first part, it follows from the definition and the dominated convergence Theorem that the
function x 7→ (u∗ v)(x) is continuous. Moreover supp(u∗ v) ⊂ supp(u) + supp(v) so that u∗ v ∈ Cc(RN ).

For the second part it suffices to consider the case |α| = 1, the general case following by an induction
argument. By changing variables, we infer that

(u ∗ v)(x+ hα)− (u ∗ v)(x)
h

=
∫

RN
u(y)

v(x+ hα− y)− v(x− y)
h

dy

and the conclusion follows from the dominated convergence Theorem.
For the third part, we write thanks to Fubini’s Theorem∫

RN
|(u ∗ v)(x)| dx =

∫
RN

∣∣∣∣∫
RN

u(x− y)v(y) dy
∣∣∣∣ dx

6
∫

RN

∫
RN
|u(x− y)||v(y)| dy dx

=
∫

RN

(∫
RN
|u(x− y)| dx

)
|v(y)| dy

= ‖u‖1‖v‖1,

which complete the case p = 1. If now 1 < p <∞, thanks to Hölder’s inequality and Fubini’s Theorem,
we get ∫

RN
|(u ∗ v)(x)|p dx =

∫
RN

∣∣∣∣∫
RN

u(x− y)v(y) dy
∣∣∣∣p dx

6
∫

RN

∣∣∣∣∣
(∫

RN
|u(x− y)|p|v(y)| dy

)1/p(∫
RN
|v(y)| dy

)1−1/p
∣∣∣∣∣
p

dx

= ‖v‖p−1
1

∫
RN

∫
RN
|u(x− y)|p|v(y)| dy dx

= ‖u‖pp‖v‖
p
1.

Finally, if p =∞, we simply write

|(u ∗ v)(x)| 6
∫

RN
|u(x− y)||v(y)| dy 6 ‖u‖∞‖v‖1

for all x ∈ RN .

43



Corollary 4.4.1. The convolution product (u, v) 7→ u ∗ v from Cc(RN ) × Cc(RN ) to Cc(RN ) extends
uniquely into a continuous (multilinear) application from Lp(RN )×L1(RN ) to Lp(RN ) (for all 1 6 p 6
∞). Moreover, if u ∈ Lp(RN ) is such that u = 0 a.e. in RN \K, for some compact set K ⊂ RN , and if
v ∈ C∞c (RN ), then u ∗ v ∈ C∞c (RN ) and supp(u ∗ v) ⊂ K + supp(v).

Proof. For 1 6 p <∞, the existence and uniqueness of the continuous extension follows from the general
extension result proved in Theorem 1.2.3 and the density of Cc(RN ) into Lp(Rn) (see Theorem 4.3.2).
The uniform continuous character (on bounded sets of L1(RN ) × Lp(RN )) is ensured by the estimate
(4.1) proved in Lemma 4.4.1.

For p =∞, it suffices to observe that for u ∈ L∞(RN ) and v ∈ L1(RN ), for every x ∈ RN the function
y 7→ u(x − y)v(y) (defined for a.e. y ∈ RN ) belongs to L1(RN ) thanks to Hölder’s inequality, and that
|(u ∗ v)(x)| 6 ‖u‖∞‖v‖1.

The second part follows easily from Lemma 4.4.1.

4.4.2 Mollifier

Definition 4.4.2. Let ρ ∈ C∞c (RN ; [0,+∞)) be such that supp(ρ) ⊂ B(0, 1) and
∫

RN ρ(x) dx = 1. For
all n ∈ N, we set ρn(x) := nNρ(nx) so that

∫
RN ρn(x) dx = 1 and supp(ρn) ⊂ B(0, 1

n ). We say that the
sequence (ρn)n∈N is a mollifier.

Lemma 4.4.2. The following properties hold true.

1. If u ∈ Cc(RN ), then u ∗ ρn converges uniformly to u as n→∞.

2. If u ∈ Lp(RN ) for 1 6 p <∞, then u ∗ ρn → u in Lp(RN ) as n→ 0.

Proof. Assume that u ∈ Cc(RN ). Since
∫

RN ρn(x) dx = 1 and supp(ρn) ⊂ B(0, 1
n ), then

|(u ∗ ρn)(x)− u(x)| =
∣∣∣∣∫

RN
(u(x− y)− u(x))ρn(y) dy

∣∣∣∣
6

∫
B(0, 1n )

|u(x− y)− u(x)|ρn(y) dy

6 sup{|u(z1)− u(z2)| : z1, z1 ∈ RN , |z1 − z2| 6 1/n} → 0

as n→∞ since u is uniformly continuous. Hence u ∗ ρn converges uniformly to u.
For this same u, we use Hölder’s inequality with fx(y) := (u(x − y) − u(x))(ρn(y))

1
p and g(y) :=

(ρn(y))
1
p′ , we get

|(u ∗ ρn)(x)− u(x)| =
∣∣∣∣∫

RN
fx(y)g(y) dy

∣∣∣∣ 6 ‖fx‖p ‖g‖p′ .

But

‖fx‖p = (
∫

RN
|u(x− y)− u(x)|pρn(y) dy)

1
p and ‖g‖p′ = (

∫
RN

ρn(y) dy)
1
p′ = 1,

so that by Fubini’s Theorem, we get∫
RN
|(u ∗ ρn)(x)− u(x)|p dx 6

∫
RN

∫
RN
|u(x− y)− u(x)|pρn(y) dy dx

=
∫
B(0, 1n )

(∫
RN
|u(x− y)− u(x)|p dx

)
ρn(y) dy

6 sup
y∈B(0, 1n )

‖τyu− u‖pp,

where τyu(x) := u(x − y) is the translation of u by y. On B(0, 1) + supp(u) the uniform convergence
implies the convergence in Lp(RN ), hence supy∈B(0, 1n ) ‖τyu− u‖pp and thus ‖u ∗ ρn − u‖p converge to 0
as n→∞.
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The general case u ∈ Lp(RN ) follows from the density of Cc(RN ) in Lp(RN ) (Theorem 4.3.2). More
precisely, for any ε > 0, there exists ũ ∈ Cc(RN ) such that ‖ũ − u‖p 6 ε. Moreover, according to the
previous case, there exists n0 such that for n > n0, ‖u ∗ ρn − u‖p 6 ε. As a consequence, we have

‖ũ ∗ ρn − ũ‖p 6 ‖u ∗ ρn − u‖p + ‖u ∗ ρn − ũ ∗ ρn‖p + ‖u− ũ‖p 6 3ε.

For the second term of the right hand side we used (4.1).

Remark 4.4.1. Let us observe that proceeding as in the proof above we can show that for any 1 6 p <∞,
for any u ∈ Lp(RN ), supy∈B(0,δ) ‖τyu− u‖p goes to 0 when δ goes to 0.

Corollary 4.4.2. For every open set Ω ⊂ RN , the space C∞c (Ω) is dense in Lp(Ω).

Proof. From Theorem 4.3.2, for every u ∈ Lp(Ω) and every ε > 0, there exist v ∈ Cc(Ω) such that(∫
Ω

|u− v|p dx
)1/p

<
ε

2
.

Extend v by zero outside Ω and denote by ṽ this extension. Then ṽ ∈ Cc(RN ) and supp(ṽ) ⊂ Ω. By
Lemma 4.4.2, we can choose n0 ∈ N large enough so that for all n > n0,(∫

RN
|ṽ − (ṽ ∗ ρn)|p dx

)1/p

<
ε

2
.

By Corollary 4.4.1, we have

supp(v ∗ ρn) ⊂ supp(v) + supp(ρn) ⊂ supp(v) +B(0, 1/n).

Hence for n > max{n0, 1/dist(supp(v),RN \ Ω)) we have supp(v ∗ ρn) ⊂ Ω so that v ∗ ρn ∈ C∞c (Ω) and(∫
Ω

|u− (ṽ ∗ ρn)|p dx
)1/p

< ε.

4.5 A compactness result

This regularization procedure enables one to transpose to Lebesgue spaces the Ascoli criterion for con-
tinuous functions.

Theorem 4.5.1 (Riesz - Fréchet - Kolmogorov). Let Ω ⊂ RN be an open set and ω be a bounded
open subset of Ω such that ω ⊂ Ω. Let A ⊂ Lp(Ω) for 1 6 p <∞ such that

(i) sup
u∈A
‖u‖Lp(Ω) <∞;

(ii) sup
y∈B(0,δ), u∈A

‖τyu− u‖Lp(ω) → 0 as δ → 0.

Then A|ω (the restriction to ω of functions in A) has compact closure in Lp(ω).

Proof. We first observe that τyu is well defined on ω as long as δ < dist(ω,RN \ Ω) so that (ii) actually
makes sense. Upon extending the elements of A by 0 outside Ω, we can assume without loss of generality
that Ω = RN .

Since Lp(Ω) is complete, so is the closure of A|ω. According to Theorem 1.3.2, it is therefore enough
to prove that it is possible to cover A|ω by a finite number of open balls in Lp(ω) of radius at most ε,
for ε > 0. Let us start by selecting n ∈ N large enough so that

sup
y∈B(0, 1n ), u∈A

‖τyu− u‖Lp(ω) <
ε

3
.
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Let (ρn)n∈N be a sequence of mollifiers and let B := {(u ∗ ρn)|ω : u ∈ A}, we will prove that the set
B ⊂ C(ω) fulfills the assumptions of Ascoli’s Theorem. First of all, for any x ∈ ω, we have

sup
u∈A
|u ∗ ρn(x)| 6 sup

u∈A

∫
RN
|u(x− y)|ρn(y) dy 6 sup

u∈A
‖u‖Lp(RN )‖ρn‖Lp′ (RN ) <∞,

where we used Hölder’s inequality and 1/p+ 1/p′ = 1. On the other hand,

sup
u∈A, x1, x2∈ω

|u ∗ ρn(x1)− u ∗ ρn(x2)| = sup
u∈A, x1, x2∈ω

|u ∗ (ρn − τx1−x2ρn)(x1)|

6 sup
u∈A
‖u‖L1(ω+B(0, 1n )) sup

x1, x2∈ω
‖ρn − τx1−x2ρn‖L∞(ω+B(0, 1n ))

6 C sup
u∈A
‖u‖Lp(RN )‖ρn‖Lip|x1 − x2|.

It follows from Ascoli’s Theorem that B has compact closure in C(ω). Let σ > 0 to be fixed later. There
exist finitely many balls of radius σε whose union covers B in C(ω). But for u and v ∈ C(ω),

‖u− v‖Lp(ω) =
(∫

ω

|u− v|p dx
)1/p

6 LN (ω)1/pdu(u, v).

Let us choose σ := LN (ω)−1/p

3 and we deduce that B is contained in a finite union of ball in Lp(ω) whose
radius is at most ε/3. Finally, it follows from the proof of Lemma 4.4.2 that for u ∈ A,

‖u ∗ ρn − u‖Lp(ω) 6 sup
y∈B(0, 1n )

‖τyu− u‖Lp(ω) 6
ε

3
.

Finally Minkowski’s inequality yields that A|ω is contained in a finite union of balls of radius at most ε,
and the proof is complete.
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Chapter 5

Continuous linear maps

5.1 Space of continuous linear maps

This section is devoted to Lc(X,Y ) the space of the bounded linear operators between normed linear
spaces X and Y . Let us recall that a linear operator T is bounded if one of the following assertion is
satisfied:

1. T is bounded on every ball,

2. T is bounded on some ball,

3. T is continuous at every point,

4. T is continuous at some point.

5. T is uniformly continuous.

6. T is Lipschitz.

Theorem 5.1.1. If X and Y are some normed linear spaces, then Lc(X,Y ) is a normed linear space
with the norm

‖T‖Lc(X,Y ) := sup
x 6=x′∈X

‖Tx− Tx′‖Y
‖x− x′‖X

= sup
x∈X\0

‖Tx‖Y
‖x‖X

,

= sup
‖x‖X61

‖Tx‖Y ,

= sup
‖x‖X=1

‖Tx‖Y .

If moreover Y is a Banach space then Lc(X,Y ) is a Banach space.

Proof. It is easy to check that Lc(X,Y ) is a normed linear space, and the only issue is to show that it
is complete. When no confusion is possible we will simply denote ‖ · ‖ instead of ‖ · ‖Lc(X,Y ). Suppose
that (Tn) is a Cauchy sequence in Lc(X,Y ). Then for each x ∈ X, the sequence (Tnx) is Cauchy in the
complete space Y , so there exists Tx ∈ Y with Tnx→ Tx. Clearly T : X → Y is linear. Is it bounded?
The real sequence ‖Tn‖ is Cauchy, hence bounded, say ‖Tn‖ ≤ K. It follows that ‖T‖ ≤ K, and so
T ∈ Lc(X,Y ). To conclude the proof, we need to show that ‖Tn − T‖ → 0. We have

‖Tn − T‖ = sup
‖x‖≤1

‖Tnx− Tx‖Y = sup
‖x‖≤1

lim
m→∞

‖Tnx− Tmx‖Y

= lim sup
m→∞

sup
‖x‖≤1

‖Tnx− Tmx‖Y ≤ lim sup
m→∞

‖Tn − Tm‖Y .

Thus lim supn→∞ ‖Tn − T‖ = 0.
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If T ∈ Lc(X,Y ) and U ∈ Lc(Y,Z), then UT = U ◦ T ∈ Lc(X,Z) and

‖UT‖Lc(X,Z) ≤ ‖U‖Lc(Y,Z)‖T‖Lc(X,Y ).

In particular, Lc(X) := Lc(X,X) is a algebra, i.e., it has an additional “multiplication” operation which
makes it a non-commutative algebra, and this operation is continuous.

The dual space of X is X ′ := Lc(X,R) (or Lc(X,C) for complex vector spaces). According to the
previous proposition it is a Banach space (whether X is or not).

Definition 5.1.1. Given some normed linear spaces X and Y , and a sequence (un)n a sequence in
Lc(X,Y ), we say that

1. (un)n converges strongly to u in Lc(X,Y ) if ‖un − u‖Lc(X,Y ) → 0 when n→∞,

2. (un)n converges weakly* to u in Lc(X,Y ) if for any x ∈ X, (un(x))n converges to u(x) in Y .

5.2 Uniform boundedness principle–Banach-Steinhaus theorem

We start this section with the following result.

Proposition 5.2.1. Let X be a normed vector space and Y be a Banach space. Consider a dense subset
A of X and (un)n a sequence in Lc(X,Y ) such that

1. supn ‖un‖Lc(X,Y ) <∞,

2. for any x in A, (un(x))n converges.

Then there exists a unique u in Lc(X,Y ) such that (un)n converges weakly* to u in Lc(X,Y ). Moreover

‖u‖Lc(X,Y ) 6 lim inf
n→∞

‖un‖Lc(X,Y ). (5.1)

Proof. We can assume without loss of generality that supn ‖un‖ > 0, otherwise the proof is straight-
forward. Let x in X and ε > 0. Since A is a dense subset of X, there exists x′ ∈ A such that
‖x − x′‖X 6 δ := ε

3 supn ‖un‖Lc(X,Y )
. Since (un(x′))n converges, it has the Cauchy property and there

exists nε ∈ N such that ‖un(x′)− um(x′)‖Y 6 ε
3 for any n,m > nε. For any n,m > nε, we have

‖un(x)− um(x)‖Y 6 ‖un(x)− un(x′)‖Y + ‖un(x′)− um(x′)‖Y + ‖um(x′)− um(x)‖Y ,

6 (‖un‖Lc(X,Y ) + ‖um‖Lc(X,Y ))‖x− x′‖X +
ε

3
,

6 2δ sup
n
‖un‖Lc(X,Y ) +

ε

3
6 ε.

Therefore the sequence (un(x))n has the Cauchy property. Since Y is a Banach space, it converges. Let
us denote by u the (weak) limit of (un)n thus obtained. It is straighforward that u is linear. Moreover
for any x ∈ X,

‖u(x)‖Y = lim
n→∞

‖un(x)‖Y 6 lim inf
n→∞

‖un‖Lc(X,Y )‖x‖X ,

which yields (5.1).

The two following results are some consequences of the Baire theorem 1.2.2.

Theorem 5.2.1 (Uniform boundedness principle). Let X be a Banach space and Y be a normed
vector space. Suppose that B is a collection of continuous linear operators from X to Y . The uniform
boundedness principle states that if for all x in X we have

sup
u∈B
‖u(x)‖Y <∞. (5.2)

Then
sup
u∈B
‖u‖Lc(X,Y ) <∞. (5.3)
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Proof. We assume that supu∈B ‖u‖Lc(X,Y ) = +∞ and we are going to prove that there exists x in X
such that

sup
u∈B
‖u(x)‖Y = +∞. (5.4)

For u ∈ B and n ∈ N∗, we set Θu,n := {x ∈ X : ‖u(x)‖Y > n} and Θn :=
⋃
u∈B Θu,n, which are all open.

We are going to prove that Θn is dense in X for all n ∈ N∗. Let x in X \Θn, i.e., supu∈B ‖u(x)‖Y 6 n.
Since we assume that supu∈B ‖u‖Lc(X,Y ) = ∞, then for each ε > 0, there exists v in B such that
‖v‖Lc(X,Y ) > 2n/ε. Hence there must exist x′ ∈ X such that ‖x′‖X = 1 and ‖v(x′)‖X > 2n/ε.
Therefore

‖v(x+ εx′)‖Y > −‖v(x)‖Y + ε‖v(x′)‖Y > n,

so that x+ εx′ ∈ Θn. Hence Θn is dense. Now using the Baire theorem 1.2.2 we get that
⋂
n∈N∗ Θn is

dense in X. In particular
⋂
n∈N∗ Θn is not empty, and thus there exists x ∈

⋂
n∈N∗ Θn which implies

5.4.

We infer from Theorem 5.2.1 the following corollary.

Corollary 5.2.1 (Banach-Steinhaus). Let X be a Banach space and Y be a normed vector space. If
(un)n is a sequence of Lc(X,Y ) which converges weakly* to u, then u is in Lc(X,Y ) and

‖u‖Lc(X,Y ) 6 lim inf
n→∞

‖un‖Lc(X,Y ).

In the particular case where Y is R or C, we denote by X ′ := Lc(X,Y ), and we call X ′ the topological
dual space of X. Applying the uniform boundedness principle yields the following result:

Corollary 5.2.2. Let X be a Banach space. Then any weakly* converging sequence in X ′ is bounded.

One advantage of the weak* convergence is that the following partial converse is available:

Theorem 5.2.2. Let X be a separable Banach space. Then any bounded sequence in X ′ admits a weakly*
converging subsequence.

Proof. Let (un)n be a bounded sequence of X ′. Let (xk)k∈N a dense sequence in X. Using Cantor’s
diagonal argument there exists a subsequence (unj )j of (un)n such that (unj (xk))j converges for any
k ∈ N. We then apply Proposition 5.2.1.

5.3 Geometry of Banach spaces and identification of their dual

We will slightly restrict our attention to spaces which enjoy two properties described in the definitions
below.

Definition 5.3.1 (Uniformly convex normed vector space). We say that a normed vector space
X is uniformly convex if for every ε > 0 there exists δ > 0 such that for any x, y ∈ X with ‖x‖X 6 1,
‖y‖X 6 1 and

∥∥x+y
2

∥∥
X
> 1− δ, then

∥∥x−y
2

∥∥
X
< ε.

In particular the unit sphere of a uniformly convex normed vector space contains no segments. As a
first application, let us give the following proposition.

Proposition 5.3.1. Let X be a uniformly convex Banach space, and let f in X ′ \{0}. Then there exists
a unique u ∈ X such that ‖u‖X = 1 and f(u) = ‖f‖X′(:= max ‖v‖X=1 ‖f(v)‖).

Proof. Let (un)n be a maximizing sequence. We assume without loss of generality that f(un) > 0. Let
ε > 0 and δ be given as in Definition 5.3.1. Since the sequence (un)n maximizes |f(v)| over {v ∈ X :
‖v‖X = 1}, there exists N ∈ N such that for any n > N , f(un) > (1 − δ)‖f‖X′ . Therefore for any
n,m > N , we have

1
2

(f(un) + f(um)) > (1− δ)‖f‖X′ .

But since
1
2

(f(un) + f(um)) = f

(
1
2

(un + um)
)

6 ‖f‖X′
∥∥∥∥1

2
(un + um)

∥∥∥∥ ,
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it follows, by combining both previous inequalities and dividing by ‖f‖X′ , that∥∥∥∥1
2

(un + um)
∥∥∥∥ > 1− δ. (5.5)

Moreover, since ‖un‖X = 1, then f(un)
‖f‖X′

6 1, and using the uniform convexity of X, we can infer from
(5.5) that ‖un − um‖X < 2ε, that is the sequence (un)n satisfies the Cauchy property. Since X is
complete, there exists u ∈ X such that un → u. Using the continuity of the norm and of the function f
we get that f(u) = ‖f‖X′ .

Uniqueness is proved by proceeding in the same way.

Definition 5.3.2 (Smooth normed vector space). We say that a normed vector space X is smooth
if for any linearly independent elements x and y, the function t ∈ R 7→ ‖x+ ty‖X is differentiable for all
t ∈ R.

Let us stress that this is equivalent to the fact that for any u ∈ X \ {0}, then the limit

lim
ε→0

‖u+ εv‖X − ‖u‖X
ε

exists for any v ∈ X.

Proposition 5.3.2. Let X be a smooth normed vector space over R. Then the norm is Fréchet-
differentiable outside 0, i.e., for any u ∈ X \ {0}, there exists L ∈ X ′, that we denote D‖ · ‖X(u),
such that for any v ∈ X,

lim
ε→0

‖u+ εv‖X − ‖u‖X
ε

= L(v).

Moreover
‖D‖ · ‖X(u)‖X′‖u‖X = D‖ · ‖X(u)(u) = ‖u‖X . (5.6)

Proof. Since X is a smooth normed vector space, for any u ∈ X \ {0}, for any v ∈ X,

D‖ · ‖X(u)(v) := lim
ε→0

‖u+ εv‖X − ‖u‖X
ε

exists. We first prove that D‖ · ‖X(u) is linear. For any λ ∈ R \ {0} and any u, v ∈ X,

‖u+ ελv‖X − ‖u‖X
ε

= λ
‖u+ ελv‖X − ‖u‖X

λε

so that
D‖ · ‖X(u)(λv) = λD‖ · ‖X(u)(v).

Now, using the triangle inequality, we have for any v1, v2 in X, that

‖u+ ε(v1 + v2)‖X − ‖u‖X
ε

6
‖u+ 2εv1‖X − ‖u‖X

2ε
+
‖u+ 2εv2‖X − ‖u‖X

2ε

so that, passing to the limit ε→ 0,

D‖ · ‖X(u)(v1 + v2) 6 D‖ · ‖X(u)(v1) +D‖ · ‖X(u)(v2). (5.7)

Applying now (5.7) to −v1 and −v2 implies that the previous inequality is actually an equality. Hence
the map D‖ · ‖X(u) is linear from X to R.

We next show that it is continuous. Indeed using the triangle inequality we have that for any v ∈ X,∣∣∣∣‖u+ εv‖X − ‖u‖X
ε

∣∣∣∣ 6 ‖v‖X ,
so that

|D‖ · ‖X(u)(v)| 6 ‖v‖X .
Therefore D‖ · ‖X(u) is a continuous linear map from X to R with norm ‖D‖ · ‖X(u)‖X′ 6 1. Moreover
since D‖ · ‖X(u)(u) = ‖u‖, then ‖D‖ · ‖X(u)‖X′ = 1 which yields (5.6).
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Theorem 5.3.1 (Identification of the dual of a smooth and uniformly convex Banach space).
Let X be a smooth and uniformly convex Banach space, and let f in X ′ \{0}. Then there exists a unique
u ∈ X such that ‖u‖X = 1 and f = ‖f‖X′D‖ · ‖X(u).

Proof. Let u be given by Proposition 5.3.1, and let v ∈ X. The function

g : ε 7→ f(u+ εv)− ‖f‖X′‖u+ εv‖X

is nonpositive, vanishes for ε = 0, and is derivable at ε = 0, since f is linear continuous and X is smooth.
Therefore g′(0) = 0, i.e.

f(v)− ‖f‖X′D‖ · ‖X(u)(v) = 0.

Let us now prove the uniqueness part of Theorem 5.3.1. If u ∈ X is such that ‖u‖X = 1 and f =
‖f‖X′D‖ · ‖X(u), then in particular f(u) = ‖f‖X′D‖ · ‖X(u)(u) = ‖f‖X′ , according to (5.6). It then
suffices to recall the uniqueness part of Proposition 5.3.1.

An important corollary is the following constructive version of Hahn-Banach theorem which allows
the extension of continuous linear forms defined on a subspace of a smooth uniformly convex Banach
space to the whole space without increasing the norm.

Corollary 5.3.1 (Hahn-Banach). Let X be a smooth uniformly convex Banach space, Y be a subspace
of X and f ∈ Y ′. There exists an unique extension f̃ of f to X such that ‖f̃‖X′ = ‖f‖Y ′ .

Proof. Let f in Y ′. Only the case f 6= 0 deserves a proof. According to the Theorem of extension of
uniformly continuous functions 1.2.3 there exists a unique extension f of f to the closure Y of Y in X
and ‖f‖Y ′ = ‖f‖Y ′ . Since Y is a closed subspace of the Banach space X, then Y is a smooth uniformly
convex Banach space. Thanks to Theorem 5.3.1 there exists a unique u ∈ Y such that ‖u‖Y = 1 and
f = ‖f‖Y ′D‖ · ‖Y (u). Let us now consider f̃ := ‖f‖Y ′D‖ · ‖X(u) in X ′. Then f̃ is an extension of f and
‖f̃‖X′ = ‖f‖Y ′ , according to (5.6).

It remains to prove the uniqueness part. Let f̌ an extension of f to X such that ‖f̌‖X′ = ‖f‖Y ′ .
Then evaluating f̌ for the value u above yields f̌(u) = f(u) = ‖f‖Y ′ = ‖f̌‖X′ . According to (the proof
of) Theorem 5.3.1, f̌ = ‖f̌‖X′D‖ · ‖X(u) = f̃ .

The previous result can actually be extended to a more general setting with a non-constructive proof
using Zorn’s lemma.

Theorem 5.3.2 ((General) Hahn-Banach). If f is a bounded linear functional on a subspace of a
normed linear space, then f extends to the whole space with preservation of norm.

Note that, unlike the previous result, Theorem 5.3.2 does not contain any uniqueness part. It is named
for Hans Hahn and Stefan Banach who proved this theorem independently in the late 1920s, though it
was proved earlier (in 1912) by Eduard Helly. A key consequence is that the dual space of a nontrivial
normed linear space is itself nontrivial. (Note: the norm is important for this. There exist topological
vector spaces, e.g., Lp for 0 < p < 1, with no non-zero continuous linear functionals.) Note that there
are virtually no hypotheses beyond linearity and existence of a norm. In fact for some purposes a weaker
version is useful. For X a vector space, we say that p : X → R is sublinear if p(x+ y) ≤ p(x) + p(y) and
p(αx) = αp(x) for x, y ∈ X, α ≥ 0.

Theorem 5.3.3. Let X be a vector space, p : X → R a sublinear functional, S a subspace of X, and
f : S → R a linear function satisfying f(x) ≤ p(x) for all x ∈ S, then f can be extended to X so that
the same inequality holds for all x ∈ X.

Proof. It suffices to extend f to the space spanned by S and one element x0 ∈ X \ S, preserving the
inequality, since if we can do that we can complete the proof with Zorn’s lemma.

We need to define f(x0) such that f(tx0 + s) ≤ p(tx0 + s) for all t ∈ R, s ∈ S. The case t = 0 is
known and it is easy to use homogeneity to restrict to t = ±1. Thus we need to find a value f(x0) ∈ R
such that

f(s)− p(−x0 + s) ≤ f(x0) ≤ p(x0 + s)− f(s) for all s ∈ S.
Now it is easy to check that for any s1, s2 ∈ S, f(s1) − p(−x0 + s1) ≤ p(x0 + s2) − f(s2), and so such
an x0 exists.
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Chapter 6

Duality in the Lebesgue spaces and
bounded measures

We now go back to the Lebesgue spaces studied in chapter 4 in light of the results obtained in chapter
5. In the present chapter, µ is a positive Radon measure on an open subset Ω of RN .

6.1 Uniform convexity and smoothness of the norm

Proposition 6.1.1. For every 1 < p <∞, the space Lp(Ω, µ) is uniformly convex.

The proof rests essentially on the strict convexity of the map s 7→ sp. More precisely we will rely on
the following lemma which is left to the reader.

Lemma 6.1.1. For any ε > 0, there exists δ > 0 such that for any and s, t in C with |s| 6 1, |t| 6 1
and |s− t| > 2ε, then

|s+ t

2
|p 6 (1− δ) |s|

p + |t|p

2
.

Nevertheless, one needs to pass from pointwise inequalities to uniform integral inequalities.

Proof. Let ε > 0. It suffices to prove that there exists δ > 0 such that for any and u, v in Lp(Ω, µ) with
‖u‖Lp(Ω,µ) 6 1, ‖v‖Lp(Ω,µ) 6 1 and ‖u− v‖Lp(Ω,µ) > 2ε, then∥∥∥∥u+ v

2

∥∥∥∥
Lp(Ω,µ)

6 1− δ.

Let us define

A :=
{
x ∈ Ω : |u(x)− v(x)|p > εp

2
(|u(x)|p + |v(x)|p)

}
.

Let us define r(x) := max(|u(x)|, |v(x)|). By definition of A, r(x) > 0 for any x ∈ A, and∣∣∣∣u(x)
r(x)

− v(x)
r(x)

∣∣∣∣ > ε

2
1
p

.

Thanks to Lemma 6.1.1 we deduce the existence of δ > 0 such that∣∣∣∣u(x) + v(x)
2

∣∣∣∣p 6 (1− δ)
(
|u(x)|p + |v(x)|p

2

)
for any x ∈ A. On the other hand, for any x ∈ Ω \A, by convexity of the map s 7→ |s|p,∣∣∣∣u(x) + v(x)

2

∣∣∣∣p 6
|u(x)|p + |v(x)|p

2
.
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Integrating over the corresponding domains yields∫
Ω

|u(x)|p + |v(x)|p

2
dµ−

∫
Ω

∣∣∣∣u(x) + v(x)
2

∣∣∣∣p dµ
>
∫
A

|u(x)|p + |v(x)|p

2
dµ−

∫
A

∣∣∣∣u(x) + v(x)
2

∣∣∣∣p dµ
>
∫
A

|u(x)|p + |v(x)|p

2
dµ− (1− δ)

∫
A

|u(x)|p + |v(x)|p

2
dµ

>
δ

2
max(‖u‖pLp(A,µ), ‖v‖

p
Lp(A,µ)).

Since ‖u‖Lp(Ω,µ) 6 1, ‖v‖Lp(Ω,µ) 6 1 the left hand side in the inequality above is less than 1 −∥∥u+v
2

∥∥p
Lp(Ω,µ)

. On the other hand, by definition of A,(∫
Ω\A
|u− v|pdµ

)1/p

6
ε

21/p

(∫
Ω\A
|u|pdµ+

∫
X\A
|v|pdµ

)1/p

6 ε.

As a consequence,
‖u− v‖Lp(A,µ) > ‖u− v‖Lp(Ω,µ) − ‖u− v‖Lp(Ω\A,µ) > ε,

so that, using the triangle inequality, we get

max(‖u‖Lp(A,µ), ‖v‖Lp(A,µ)) >
ε

2
.

As a consequence,

1−
∥∥∥∥u+ v

2

∥∥∥∥p
Lp(Ω,µ)

>
δ

2
(
ε

2
)p

so that ∥∥∥∥u+ v

2

∥∥∥∥
Lp(Ω,µ)

6

(
1− δ

2
(
ε

2
)p
)1/p

6 1− δ′,

for δ′ = δ
2p ( ε2 )p and the conclusion follows.

Proposition 6.1.2. For every 1 < p < ∞, the space Lp(Ω, µ) is smooth and for any u in Lp(Ω, µ) \ 0
and for any v in Lp(Ω, µ),

D‖ · ‖p(u)(v) = ‖u‖1−pp

∫
Ω

|u|p−2uv dµ.

Proof. Note that u 7→ ‖u‖Lp(Ω,µ) is the composition of u 7→ ‖u‖pLp(Ω,µ) and the map g : s 7→ s1/p. Hence
it is enough to prove that for any u in Lp(Ω, µ) \ 0 and for any v in Lp(Ω, µ), the function

ε 7→
∫

Ω

|u+ εv|pdµ

admits a derivative in 0. Note that for µ-a.e. x ∈ Ω,

lim
ε→0

|u(x) + εv(x)|p − |u(x)|p

ε
= p|u(x)|p−2u(x)v(x),

and by the mean value Theorem, for every ε ∈ (0, 1), there exists tε ∈ (0, ε) such that

|u(x) + εv(x)|p − |u(x)|p

ε
6 p|u(x) + tεv(x)|p−1|v(x)| 6 C(|v(x)|p + |u(x)|p−1|v(x)|) =: f(x),

for some constant C > 0 depending only on p. Since by Hölder’s inequality,∫
Ω

f dµ 6 C

(∫
Ω

|v|p dµ+
∫

Ω

|u|p−1|v| dµ
)

6 C
(
‖v‖pLp(Ω,µ) + ‖v‖Lp(Ω,µ)‖u‖p−1

Lp(Ω,µ)

)
<∞.
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Hence from the dominated convergence Theorem

lim
ε→0

‖u+ εv‖pLp(Ω,µ) − ‖u‖
p
Lp(Ω,µ)

ε
= p

∫
Ω

|u|p−2uv dµ.

By the chain rule formula, we obtain that

D(g ◦ ‖ · ‖pLp)(u).v = Dg(‖u‖pLp).
(
D‖ · ‖pLp)(u).v

)
= g′(‖u‖pLp)

(
D‖ · ‖pLp)(u).v

)
= ‖u‖1−pLp(Ω,µ)

∫
Ω

|u|p−2uv dµ.

Remark 6.1.1. For µ = LN , the previous results fail for p = 1 or ∞, i.e., neither L1(Ω,LN ) nor
L∞(Ω,LN ) are uniformly convex nor smooth.

6.2 Duality in the Lebesgue spaces

Theorem 6.2.1. For 1 < p <∞, the dual of the space Lp(Ω, µ) is isometrically isomorphic to Lp
′
(Ω, µ)

with p′ := p/(p − 1). More precisely, for any f ∈ (Lp(Ω, µ))′, there exists a unique v in Lp
′
(Ω, µ) such

that

f(u) =
∫

Ω

uv dµ,

for all u ∈ Lp(Ω, µ), and
‖f‖(Lp(Ω,µ))′ = ‖v‖Lp′ (Ω,µ).

Proof. Thanks to Theorem 5.3.1 for any f ∈ (Lp(Ω, µ))′ \ 0, there exists a unique w ∈ Lp(Ω, µ) with
‖w‖Lp(Ω,µ) = 1 such that for all u ∈ Lp(Ω, µ),

f(u) = ‖f‖(Lp(Ω,µ))′D‖ · ‖(w)(u),

that is, using now Proposition 6.1.2,

f(u) = ‖f‖(Lp(Ω,µ))′‖w‖1−pp

∫
Ω

u|w|p−2w dµ =
∫

Ω

uv dµ,

with v := ‖f‖(Lp(Ω,µ))′‖w‖1−pp |w|p−2w. Since w ∈ Lp(Ω, µ) with ‖w‖Lp(Ω,µ) = 1, we have that v ∈
Lp
′
(Ω, µ) with ‖v‖Lp′ (Ω,µ) = ‖f‖(Lp(Ω,µ))′ .

It remains now to prove that if v in Lp
′
(Ω, µ) is such that

∫
Ω
uv dµ = 0, for all u ∈ Lp(Ω, µ), then

v = 0. To this purpose it suffices to take u = |v|
2−p
p−1 v.

Taking Theorem 6.2.1 into account the notion of weak convergence in Lp(Ω, µ), seen as the dual of
Lp
′
(Ω, µ) (since (p′)′ = p), reads as follows.

Definition 6.2.1 (Weak convergence in Lp(Ω, µ)). Let 1 < p < ∞, we say that a sequence (un) ⊂
Lp(Ω, µ) converges weakly to u in Lp(Ω, µ) if for any v in Lp

′
(Ω, µ),∫

Ω

unv dµ→
∫

Ω

uv dµ

as n→∞.

Since for 1 < p < ∞, Lp(Ω, µ) is a separable Banach space, it follows from Theorem 5.2.2 that any
bounded sequence (un) in Lp(Ω, µ) has a subsequence which converges weakly.
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Theorem 6.2.2. The dual of the space L1(Ω, µ) is isometrically isomorphic to L∞(Ω, µ) . More pre-
cisely, for any f ∈ (L1(Ω, µ))′, there exists a unique v ∈ L∞(Ω, µ) such that

f(u) =
∫

Ω

uv dµ, (6.1)

for all u ∈ L1(Ω, µ)), and
‖f‖(L1(Ω,µ))′ = ‖v‖L∞(Ω,µ).

Proof. Let f ∈ (L1(Ω, µ))′. Let φ ∈ L2(Ω, µ) a strictly positive function such that for any K compact of
Ω, there holds

inf
x∈K

φ(x) > 0.

Then the application fφ : w ∈ L2(Ω, µ) 7→ f(φw) is well defined since

|f(φw)| 6 ‖f‖(L1(Ω,µ))′‖φw‖L1(Ω,µ),

6 ‖f‖(L1(Ω,µ))′‖φ‖L2(Ω,µ)‖w‖L2(Ω,µ).

Thus fφ is in (L2(Ω, µ))′ and using Theorem 6.2.1 there exists a unique vφ in L2(Ω, µ) such that

‖fφ‖(L2(Ω,µ))′ = ‖vφ‖L2(Ω,µ),

and for any w in L2(Ω, µ),

fφ(w) =
∫

Ω

vφw dµ,

i.e.
f(φw) =

∫
Ω

vφ
φ
φw dµ.

Let us denote v := vφ
φ . We are going to prove that v is in L∞(Ω, µ) with ‖v‖L∞(Ω,µ) 6 ‖f‖(L1(Ω,µ))′ .

Let us assume ab absurdo that there exists ε > 0 and A ⊂ Ω, measurable with µ(A) > 0 such that
|v(x)| > ‖f‖(L1(Ω,µ))′ + ε, for any x ∈ A. We then consider

w(x) = 1A(x)sgn(v(x)),

where sgn(u) = 1 if u > 0, sgn(u) = −1 if u < 0, and sgn(u) = 0 if u = 0. Then

f(φw) =
∫

Ω

vφ
φ
φw dµ =

∫
A

|v|φdµ > (‖f‖(L1(Ω,µ))′ + ε)
∫
A

φdµ,

and
f(φw) 6 ‖f‖(L1(Ω,µ))′‖φw‖L1(Ω,µ) = ‖f‖(L1(Ω,µ))′

∫
A

φdµ,

what is a contradiction, since
∫
A
φdµ > 0.

Finally, the fact that (6.1) holds for any u ∈ L1(Ω, µ) follows from the density of the smooth compactly
supported functions in L1(Ω, µ).

Definition 6.2.2 (Weak convergence in L1(Ω, µ)). We say that a sequence (un) ⊂ L1(Ω, µ) converges
weakly to u in L1(Ω, µ) if for any v ∈ L∞(Ω, µ),∫

Ω

unv dµ→
∫

Ω

uv dµ

as n→∞.

Let us stress that unlike in Lp(Ω, µ) (for 1 < p <∞), bounded sequence in L1(Ω, µ) are not necessarily
weakly relatively compact in that space. Indeed, if may happen that the accumulation points for the
weak topology of bounded sequences in L1(Ω, µ) are outside L1(Ω, µ). For instance the Dirac mass can be
obtained as a weak limit of sequences of L1(Ω, µ) functions, the so-called approximations to the identity.
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6.3 Bounded Radon measures

Let us consider Ω ⊂ RN and denote by C0(Ω) the closure of the space Cc(Ω) for the uniform topology.

Proposition 6.3.1. A function f ∈ C0(Ω) if and only if for any ε > 0, there exists a compact set Kε ⊂ Ω
such that |f | < ε on Ω \Kε.

Proof. Let ε > 0 and a compact set K ⊂ Ω such that |f | < ε on Ω \ K. By Urysohn’s Lemma one
can find g ∈ Cc(Ω; [0, 1]) such that g = 1 on K. Set h = fg, then h ∈ Cc(Ω) and ‖f − h‖∞ < ε. Thus
f ∈ C0(Ω).

Conversely, consider f ∈ C0(Ω), then there exists a sequence (fn) ⊂ Cc(Ω) such that fn → f uniformly
in Ω. Let ε > 0 and nε ∈ N such that ‖fnε − f‖∞ < ε/2, and define K := {x ∈ Ω/ |fnε | > ε/2}. Then
K is a compact subset of Ω and for all x ∈ Ω \K, |f | 6 |f − fnε |+ |fnε | < ε.

Definition 6.3.1. The space of all bounded Radon measures over Ω, denoted byM(Ω), is the dual space
of C0(Ω).

Thanks to the Riesz representation Theorem (Theorem 3.5.1) we can characterize the space of
bounded Radon.

Theorem 6.3.1. For every L ∈ M(Ω) there exist two positive Radon measures λ+ and λ− on Ω such
that

L(u) =
∫

Ω

u dλ+ −
∫

Ω

u dλ−.

Proof. We claim that for every L ∈ M(Ω), there exist some positive linear forms L+ and L− on C0(Ω)
such that L(u) = L+(u) − L−(u) for every u ∈ C0(Ω). With this result, the conclusion of the Theorem
follows as an immediate consequence of the Riesz representation Theorem (Theorem 3.5.1).

We now prove the claim. To this aim, let us define the cone C+ := {u ∈ C0(Ω) : u > 0}, and for
u ∈ C+,

L+(u) := sup{L(v) : v ∈ C+, v 6 u}.

Step 1: L+ is positive and finite on C+. Let u ∈ C+. As 0 ∈ C+, L+(u) > 0. Let now v ∈ C+ be
such that 0 6 v 6 u. By continuity of L, L(v) 6 ‖L‖‖v‖∞ 6 ‖L‖‖u‖∞, and then taking the sup with
respect to v yields 0 6 L+(u) 6 ‖L‖‖u‖∞ <∞.

Step 2: L+ is additive on C+. Let u1 and u2 ∈ C+ and v ∈ C+ be such that 0 6 v 6 u1 + u2. We
decompose v as v = min(u1, v) + max(v − u1, 0), where min(u1, v) 6 u1 and max(v − u1, 0) 6 u2. Since
min(u1, v) and max(v − u1, 0) ∈ C+, then

L(v) = L(min(u1, v)) + L(max(v − u1, 0)) 6 L+(u1) + L+(u2),

hence taking the sup over all v leads to

L+(u1 + u2) 6 L+(u1) + L+(u2).

To prove the converse inequality, let ε > 0 . By definition of L+, there exists v1 and v2 ∈ C+ such that
0 6 vi 6 ui and L+(ui) 6 L(vi) + ε for i = 1, 2. As 0 6 v1 + v2 6 u1 + u2, it follows that

L+(u1 + u2) > L(v1 + v2) = L(v1) + L(v2) > L+(u1) + L+(u2)− 2ε,

and it suffices to let ε→ 0.

Step 3: Definition and additivity of L+ on C0(Ω). Let u ∈ C0(Ω). We decompose u as the difference
of it positive and negative parts u = u+−u− with u± ∈ C+. We set L+(u) = L+(u+)−L+(u−). Now if u
and v ∈ C0(Ω), then (u+v)+−(u+v)− = u+−u−+v+−v− so that (u+v)++u−+v− = (u+v)−+u++v+.
Hence by the additivity of L+ on C+,

L+((u+ v)+) + L+(u−) + L+(v−) = L+((u+ v)−) + L+(u+) + L+(v+),

and thus changing back the order of the terms yields L+(u+ v) = L+(u) + L+(v).
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Step 4: L+ is continuous on C0(Ω). Let u ∈ C0(Ω). Since L+ is positive, then L+(|u| ± u) > 0,
hence, by additivity of L+, L+(|u|) > ±L+(u), i.e., |L+(u)| 6 L+(|u|). Let now u1 and u2 ∈ C0(Ω), then
by steps 3 and 1,

|L+(u1)− L+(u2)| = |L+(u1 − u2)| 6 L+(|u1 − u2|) 6 ‖L‖‖u1 − u2‖∞.

Step 5: L+ is a linear form on C0(Ω). The additivity of L+ shows that for all n ∈ N, L+(nu) =
nL+(u). But since (−u)± = u∓, then L+(−u) = −L+(u) and the previous identity extends to any
n ∈ Z. Now if r = p/q ∈ Q with p, q ∈ Z and q 6= 0, then L+(qru) = qL+(ru) = L+(pu) = pL+(u),
hence L+(ru) = rL+(u). The continuity of L+ and the density of Q in R implies that L+(αu) = αL+(u)
for all α ∈ R.

Step 6: L− is a positive linear form on C0(Ω). Define L− := L+ − L. Then L− is clearly a linear
form. Moreover, since by definition of L+, L+(u) > L(u) for all u ∈ C+, then L− is positive.

Remark 6.3.1. We use the notation
L(u) =

∫
Ω

u dλ,

with the signed measure λ := λ+ − λ−.

Definition 6.3.2 (Weak* convergence in M(Ω)). We say that a sequence (λn) ⊂ M(Ω) converges
weakly* to λ in M(Ω) if for any v in C0(Ω),∫

Ω

v dλn →
∫

Ω

v dλ

as n→∞.

Since, by Corollary 2.4.4, the space Cc(Ω) is separable, it follows that C0(Ω) is separable as well.
Hence, from Theorem 5.2.2 that any bounded sequence of bounded Radon measures has a subsequence
which converges weakly* to a bounded Radon measure.

If µ is a positive Radon measure, we observe that the space L1(Ω, µ) can be injected into M(Ω)
through the map

u ∈ L1(Ω, µ) 7→ Tu ∈M(Ω),

with
Tu : v ∈ C0(Ω) 7→

∫
Ω

uv dµ.

As a consequence if (un) is a uniformly bounded sequence in L1(Ω, µ), then one can extract a subsequence
weakly* converges in M(Ω) to a bounded Radon measure, i.e., there exist (unk) ⊂ (un) and λ ∈ M(Ω)
such that for every v ∈ C0(Ω), ∫

Ω

unkv dµ→
∫

Ω

v dλ.

The following result gives a complete characterization of sequences which are weakly converging in
L1(Ω, µ).

Theorem 6.3.2 (Dunford-Pettis). Assume that Ω is an open subset of RN such that µ(Ω) <∞. Let
(un) be a bounded sequence in L1(Ω, µ).

(i) If un ⇀ f weakly in L1(Ω, µ) for some f ∈ L1(X,µ), then the sequence (fn) is equi-integrable.

(ii) If (fn) is equi-integrable, then there exist a subsequence (fnj ) ⊂ (fn) and f ∈ L1(Ω, µ) such that
fnj ⇀ f weakly in L1(Ω, µ).

Note that the equi-integrability property (see Definition 3.4.2) ensures that the sequence does con-
centrate on sets of arbitrarily small measure. If µ(Ω) =∞ one must further ensure that the mass of (un)
does not go to infinity. So in addition to (i), one must further require that for each ε > 0 there exists a
compact set Eε such that

sup
n∈N∗

∫
Ω\Eε

|un| dµ < ε.
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Chapter 7

Hilbert analysis

A Hilbert space, named after David Hilbert, is a vector space possessing the structure of an inner product
which is complete for the norm associated to its inner product. It generalizes the notion of Euclidean
space. In particular the Pythagorean theorem and parallelogram law hold true in a Hilbert space.

7.1 Inner product space

In the real case an inner product on a a vector space is a positive definite, symmetric bilinear form
on X × X → R. In the complex case it is positive definite, Hermitian symmetric, sesquilinear form
X ×X → C.

Definition 7.1.1 (Inner product). Let X be a vector space on K = R or C. We say that a map (·, ·)
from X ×X to K is a inner product if

1. ∀u, v, w ∈ X, ∀α, β in K,
(αu+ βv,w) = α(u,w) + β(v, w), (7.1)

2. ∀u, v ∈ X, (u, v) = (v, u),

3. ∀u ∈ X \ {0}, (u, u) > 0.

Endowed with (·, ·), X is a inner product space (or pre-Hilbert space).

Lemma 7.1.1 (Cauchy-Schwarz inequality). Let X be a pre-Hilbert space. Then

∀u, v ∈ X, |(u, v)| 6
√

(u, u)
√

(v, v). (7.2)

Proof. Let P (λ) := (u + λv, u + λv) for every λ ∈ R. Since P > 0, the discriminant of the quadratic
equation P (λ) = 0 is nonpositive. This yields the Cauchy-Schwarz inequality.

An inner product gives rise to a norm. An inner product space is thus a special case of a normed
linear space. A complete inner product space is a Hilbert space, a special case of a Banach space.

Lemma 7.1.2. Let X be a pre-Hilbert space. Then the map u ∈ X 7→
√

(u, u) defined a norm on X.

Proof. The main point is to prove the triangle inequality, what can be done thanks to the Cauchy-Schwarz
inequality.

The polarization identity expresses the norm of an inner product space in terms of the inner product.
For real inner product spaces it is

(u, v) =
1
4

(‖u+ v‖2 − ‖u− v‖2).

For complex spaces it is

(u, v) =
1
4

(‖u+ v‖2 + i‖u+ iv‖2 − ‖u− v‖2 − i‖u− iv‖2).
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In inner product spaces we also have the parallelogram law:

‖u+ v‖2 + ‖u− v‖2 = 2(‖u‖2 + ‖v‖2).

This gives a criterion for a normed space to be an inner product space. Any norm coming from an inner
product satisfies the parallelogram law and, conversely, if a norm satisfies the parallelogram law, we can
show (but not so easily) that the polarization identity defines an inner product, which gives rise to the
norm.

Lemma 7.1.3. Let X be a pre-Hilbert space. Then X is smooth and uniformly convex. In addition the
scalar product is a continuous bilinear mapping from X ×X to C.

Proof. We first observe that for any u ∈ X \ {0}, for any v ∈ X, we have

‖u+ εv‖2 = ‖u‖2 + 2ε<(u, v) + ε2‖v‖2,

so that the mapping ε 7→ ‖u+ εv‖2 is differentiable at 0 and thus

D‖ · ‖(u) · v = <(‖u‖−1u, v).

That X is uniformly convex follows from the parallelogram equality.
Finally, in order to prove that the scalar product is continuous from X × X to C, we first notice

that Minkowski’s inequality yields the continuity of the norm. Then the polarization identities allow to
conclude.

Definition 7.1.2 (Orthonormal sequence). A family (ei)i∈I in X is said an orthonormal sequence
if for any i, j ∈ I, (ei, ej) = δi,j .

Lemma 7.1.4. Let X be a inner product space and (en)n∈N be an orthonormal sequence in X. Then,
for any u ∈ X,

1. for any k ∈ N,

‖u‖2 =
k∑

n=0

|(u, en)|2 + ‖u−
k∑

n=0

(u, en)en‖2,

2. Bessel’s inequality:
∞∑
n=0

|(u, en)|2 6 ‖u‖2.

Proof. We have

‖u−
k∑

n=0

(u, en)en‖2 = (u−
k∑

n=0

(u, en)en, u−
k∑

n=0

(u, en)en)

= ‖u‖2 − 2<(u,
k∑

n=0

(u, en)en) +
∑

06n,m6k

(u, en)(u, em)(em, en)

= ‖u‖2 − 2
k∑

n=0

|(u, en)|2 +
∑

06n6k

|(u, en)|2

= ‖u‖2 −
k∑

n=0

|(u, en)|2,

what yields (1). To obtain (2) it suffices to pass to the limit in the inequality

k∑
n=0

|(u, en)|2 6 ‖u‖2.
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Remark 7.1.1. Note that in general the sequence u −
∑k
n=0(u, en)en does not converge to 0 when n

goes to infinity.

Remark 7.1.2. Let E be an orthonormal set of arbitrary cardinality. It follows from Bessel’s inequality
that for ε > 0 and u ∈ X, { e ∈ E : (u, e) ≥ ε } is finite, and hence that { e ∈ E : (u, e) > 0 } is countable.
We can thus extend Bessel’s inequality to an arbitrary orthonormal set:∑

e∈E
(u, e)2 6 ‖u‖2,

where the sum is just a countable sum of positive terms.

7.2 Hilbert spaces

Definition 7.2.1 (Hilbert space). A Hilbert space is an inner product space which is complete.

Theorem 7.2.1. Let X be a Hilbert space and (en)n∈N be an orthonormal sequence in X. The series∑
n∈N αnen converges in X if and only if the sequence (αn)n∈N belongs to `2(N). Moreover when the

series
∑
n∈N αnen converges in X, then∥∥∥∥∥∑

n∈N
αnen

∥∥∥∥∥
2

=
∑
∈N
|αn|2. (7.3)

Proof. Since the space X is complete, the series
∑
n∈N αnen converges in X if and only if it satisfies the

Cauchy property. But according to the Pythagore equality, there holds for any n,m ∈ N with n > m,∥∥∥∥∥
n∑

k=m

αkek

∥∥∥∥∥
2

=
n∑

k=m

|αk|2.

Therefore
∑
n∈N αnen satisfies the Cauchy property in X if and only if the series

∑n
k=0 |αk|2 satisfies the

Cauchy property in R. Since R is also complete, this yields the first part of the result. To prove (7.3) it
is sufficient to use the continuity of the norm and the Pythagore equality:∥∥∥∥∥∑

n∈N
αnen

∥∥∥∥∥
2

=

∥∥∥∥∥ lim
k→∞

k∑
n=0

αnen

∥∥∥∥∥
2

= lim
k→∞

∥∥∥∥∥
k∑

n=0

αnen

∥∥∥∥∥
2

= lim
k→∞

k∑
n=0

|αn|2 =
∑
n∈N
|αn|2.

Combining Lemma 7.1.4 (2) and Theorem 7.2.1 we obtain the following result.

Corollary 7.2.1. Let (en)n∈N be an orthonormal sequence in a Hilbert space X, and let u ∈ X. Then
the series ∑

n∈N
(u, en)en

converges in X.

Given an orthonormal sequence (en)n∈N in X, we define the linear mapping

Φ : u ∈ X 7→ ((u, en))n∈N ∈ `2(N).

Notice that the range of Φ is contained in `2(N) according to (1). Combining Lemma 7.1.3 and Corollary
7.2.1 we get that if u ∈ X satisfies u =

∑
n∈N αnen, then Φ(u) = (αn)n∈N.

Definition 7.2.2 (Hilbert basis). An orthonormal sequence (en)n∈N in X is said total or a Hilbert
basis if Φ is injective, i.e., if (u, en) = 0 for every n ∈ N implies that u = 0.

Let us observe that it follows from the continuity of the scalar product that for every u ∈ X,
Φ(u) = Φ(

∑
n∈N(u, en)en).
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Theorem 7.2.2. Let (en)n∈N be an orthonormal family in an Hilbert space X. Then the following
statements are equivalent:

(i) The family (en)n∈N is total;

(ii) For every u ∈ X, u =
∑
n∈N(u, en)en;

(iii) For every u ∈ X, ‖u‖2 =
∑
n∈N |(u, en)|2.

Proof. Let us first assume (i). Since Φ is injective by assumption, (ii) follows. Let us now assume that
(ii) holds. Then, using Pythagore’s equality, we obtain that for every u ∈ X,

‖u‖2 =

∥∥∥∥∥ lim
k→∞

k∑
n=0

(u, en)en

∥∥∥∥∥
2

= lim
k→∞

∥∥∥∥∥
k∑

n=0

(u, en)en

∥∥∥∥∥
2

= lim
k→∞

k∑
n=0

|(u, en)|2 =
∑
n∈N
|(u, en)|2.

Finally we assume that (iii) holds. Then, if u ∈ X is such that (u, en) = 0 for every n ∈ N then clearly
u = 0.

As a consequence of Zorn’s lemma, every Hilbert space admits an orthonormal basis; furthermore,
any two orthonormal bases of the same space have the same cardinality, called the Hilbert dimension of
the space.

7.3 Projection on a closed convex set

An essential property of Hilbert space is that the distance of a point to a closed convex set is alway
attained.

Theorem 7.3.1. Let X be a Hilbert space, K a closed convex subset, and u ∈ X. Then there exists a
unique ū ∈ K such that

‖u− ū‖ = inf
v∈K
‖u− v‖.

Moreover ū is the unique element of K which satisfies <(u− ū, v − ū) 6 0 for any v ∈ K.

Proof. Translating, we may assume that u = 0, and so we must show that there is a unique element of
K of minimal norm. Let d = infv∈K ‖v‖ and chose un ∈ K with ‖un‖ → d. Then the parallelogram law
gives ∥∥∥∥un − um2

∥∥∥∥2

=
1
2
‖un‖2 +

1
2
‖um‖2 −

∥∥∥∥un + um
2

∥∥∥∥2

6
1
2
‖un‖2 +

1
2
‖um‖2 − d2,

where we have used convexity to infer that (un+um)/2 ∈ K. Thus (un) is a Cauchy sequence and so has
a limit ū, which must belong to K, since K is closed. Since the norm is continuous, ‖ū‖ = limn ‖un‖ = d.

For uniqueness, note that if ‖ū‖ = ‖ũ‖ = d, then ‖(ū+ ũ)/2‖ = d and the parallelogram law gives

‖ū− ũ‖2 = 2‖ū‖2 + 2‖ũ‖2 − ‖ū+ ũ‖2 = 2d2 + 2d2 − 4d2 = 0.

Let now prove the characterization of ū through obtuse angles. Let v be in K, λ ∈ (0, 1) and let
z := (1− λ)ū+ λv which is in K by convexity. Therefore

‖u− ū‖2 6 ‖u− z‖2 = ‖(u− ū)− λ(v − ū)‖2 = ‖u− ū‖2 + 2λ<(u− ū, ū− v) + λ2‖v − ū‖2.

Thus,
2<(u− ū, v − ū)− λ‖v − ū‖2 6 0

and then, by letting λ tend to 0+, we obtain that <(u− ū, v − ū) 6 0 for any v ∈ K.
Conversely if ū is an element of K which satisfies <(u− ū, v − ū) > 0 for any v ∈ K, then we have

‖(1− λ)ū+ λv − u‖2 > ‖u− ū‖2 + λ2‖v − ū‖2.

Letting λ goes to 1 yields ‖v − u‖2 > ‖v − ū‖2 .
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The unique nearest element to u in K is often denoted PKu, and referred to as the projection of u
onto K. It satisfies PK ◦ PK = PK , the definition of a projection. This terminology is especially used
when K is a closed linear subspace of X, in which case PK is a linear projection operator.

Theorem 7.3.2. Let X be a Hilbert space, Y a closed subspace, and x ∈ X. Then there exists a
continuous linear mapping PY from X onto Y with ‖PY ‖ 6 1 such that for any v ∈ Y ,

‖u− PY u‖ = inf
v∈Y
‖u− v‖.

Moreover PY u is the unique element of Y which satisfies (u− PY u, v) = 0 for any v ∈ Y .

We say that PY is the orthogonal projection onto Y .

Proof. The existence of PY is given by the previous theorem. We now prove the characterization of PY u
as the unique element of Y which satisfies (u− ū, v) = 0 for any v ∈ Y . Using the characterization of the
previous theorem with v+PY u instead of v, we have that PY u satisfies <(u−PY u, v) 6 0 for any v ∈ Y .
Using this last inequality with −v, iv and −iv instead of v yields (u− PY u, v) = 0 for any v ∈ Y . The
converse is straightforward: if an element ū in Y satisfies (u − ū, v) = 0 for any v ∈ Y then it satisfies
the characterization of the previous theorem so it is the projection of u onto Y .

From this characterization we infer that PY is linear. Now to prove that PY is continuous with
‖PY ‖ 6 1 it suffices to apply the Cauchy-Schwarz inequality to the characterization.

If S is any subset of a inner product space X, let

S⊥ = {u ∈ X : (u, s) = 0 for all s ∈ S }.

Then S⊥ is a closed subspace of X. We obviously have S ∩ S⊥ = 0 and S ⊂ S⊥⊥. Furthermore if
S1 ⊂ S2 then S⊥2 ⊂ S⊥1 .

Lemma 7.3.1. If X is a Hilbert space and S is a closed subspace of X, then X = S
⊕
S⊥.

Proof. We have that S ∩ S⊥ = {0} since u ∈ S ∩ S⊥ implies ‖u‖2 = (u, u) = 0. In addition for any u in
X, u = PSu+ (u− PSu) provides a decomposition in S

⊕
S⊥, according to the previous theorem.

Corollary 7.3.1. If X is a Hilbert space and S is a subspace of X, then S = X if and only if S⊥ = {0}.

Proof. Suppose that S = X and let u be in S⊥. Then there exists (un)n in S converging to u. For
any n, we have (un, u) = 0, and since the scalar product is continuous, passing to the limit yields
‖u‖2 = (u, u) = 0.

Conversely if we assume now that S⊥ = {0} then from the previous lemma applied to S we infer that
X = S

⊕
S
⊥

. But S
⊥

= {0} so that S = X.

7.4 Duality and weak convergence

The identification of the dual space of Hilbert spaces is easy.

Theorem 7.4.1 (Riesz Representation Theorem). If X is a real Hilbert space, define j : X → X ′

by jy(x) = (x, y). This map is a linear isometry of X onto X ′. For a complex Hilbert space it is a
conjugate linear isometry (it satisfies jαy = ᾱjy).

Proof. It is easy to see that j is an isometry of X into X ′ and the main issue is to show that any f ∈ X ′
can be written as jy for some y. We may assume that f 6= 0, so ker(f) is a proper closed subspace
of X. Let y0 ∈ [ker(f)]⊥ be of norm 1 and set y = f(y0)y0. For all x ∈ X, we clearly have that
f(y0)x− f(x)y0 ∈ ker(f), so

jy(x) = (x, y) = (x, f(y0)y0) = (f(y0)x, y0) = (f(x)y0, y0) = f(x).
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Via the map j we can define an inner product on X ′, so it is again a Hilbert space. The Riesz map j
is used to identify X and X ′ so that a sequence (un)n in X weakly converges to u if and only for any v
in X, (un, v) → (u, v). Then as a consequence of Corollary 5.2.1 (respectively Theorem 5.2.2), we have
the following results:

Proposition 7.4.1. Let X be a Hilbert space and (un)n be a weakly converging sequence in X. Then
(un)n is bounded.

Theorem 7.4.2. Let X be a Hilbert space and (un)n be a bounded sequence in X. Then there exists a
subsequence (unk)k which weakly converges to some u in X.

Proof. Let us introduce Y := Vect (un)n∈N which is, for the topology induced by X, a separable Hilbert
space. Therefore since (un)n is a bounded sequence in Y , there exists a subsequence (unk)k which weakly
converges to u in Y . Let us now consider the orthogonal projection P on Y . We have, for any v in X,

(un, v) = (un, Pv) + (un, (Id− P )v)
= (un, Pv) since (Id− P )v ∈ Y ⊥

→ (u, Pv) when n→ +∞
= (u, v).

7.5 Convexity and optimization

Theorem 7.5.1 (Banach-Saks). Let X be a Hilbert space and (un)n be a sequence in X which weakly
converges to u. then there exists a subsequence (unk)k whose Cesaro means strongly converge to u, i.e.

un0 + · · ·+ unk
k + 1

→ u (7.4)

when k → +∞.

Proof. Without loss of generality we can assume that u = 0, otherwise we consider the sequence (un−u)n
instead of (un)n. We choose n0 = 0. Let k > 1 and assume that (nj)06j6k−1 have been determined.
Since (un)n weakly converges to 0, for any j such that 0 6 j 6 k − 1, there exists n′j ∈ N such that

|(unj , un)| 6 k−1 (7.5)

for any n > n′j . We set nk = max(n0, ..., nk−1, n
′
0, ..., n

′
k−1) + 1. Thus the sequence (nk)k is increasing

and for any k > 1, for any j ∈ N such that 0 6 j < k, |(unj , unk)| 6 k−1.
Let us now verify that the Cesaro means (vk :=

∑k
j=0

unj
k+1 )k strongly converge to 0. To this purpose it

is useful to note that, as a consequence of the Banach-Steinhaus theorem, we have that supn∈N ‖un‖ 6 K.
Then

‖vk‖2 = (
k∑
j=0

unj
k + 1

,

k∑
l=0

unl
k + 1

)

=
k∑
j=0

‖unj‖2

(k + 1)2
+ 2<(

k∑
j=1

j−1∑
l=0

(unj , unl)
(k + 1)2

),

6
K2

k + 1
+

2
(k + 1)2

k∑
j=1

j−1∑
l=0

1
j

6
K2

k + 1
+

2(k − 1)
(k + 1)2

which converges to 0 when k → +∞.
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Theorem 7.5.2. Let X be a Hilbert space, C be a convex closed subset of X. Then C is weakly closed
in X. Moreover, if f is a continuous and convex function from C to R then f is weakly lower semi-
continuous. As a consequence if C is bounded then f admits a minimun in C. If in addition f is strictly
convex then this minimun is unique.

Proof. We start by proving that C is weakly closed in X. Let us consider a sequence (un)n in C which
weakly converges to u in X. We are going to prove that u is actually in C. Thanks to the Banach-Saks
theorem, there exists a subsequence (unk)k whose Cesaro means (vk :=

∑k
j=0

unj
k+1 )k strongly converge

to u. Since C is convex, the vk are also in C, and since C is closed, their limit, u, is also in C.
Let us now consider a continuous and convex function f from C to R and a sequence (un)n be a

sequence in C which weakly converge to u. In order to prove that f is weakly lower semi-continuous, we
will prove that

f(u) 6 lim inf f(un). (7.6)

By definition of lim inf, there exists a subsequence (vn) of (un) such that lim f(vn) = lim inf f(un).
Of course the subsequence (vn) also weakly converges to u so that using the Banach-Saks theorem,

we obtain a subsequence (wn) of (vn) such that (
∑k
j=0

wj
k+1 )k strongly converge to u. Since f is strongly

continuous, the sequence (f(
∑k
j=0

wj
k+1 ))k strongly converges to f(u). Now f being convex, we have

f(
k∑
j=0

wj
k + 1

) 6
k∑
j=0

f(wj)
k + 1

. (7.7)

As a subsequence of (vn), the sequence (wn) satisfies lim f(wn) = lim inf f(un) so that by the Cesaro
theorem the right hand side of (7.7) converges to lim inf f(un) so that passing to the limit in (7.7) yields
the inequality (7.6).

Let us now assume that C is bounded so that if (un)n is a minimizing sequence of f in C then
(un)n is bounded and thus it admits a subsequence weakly converging to some u. Then the (weak) lower
semicontinuity of f implies that u is a minimizer of f over C.

7.6 Spectral decomposition of symmetric compact operators

This section is devoted to the spectral decomposition of symmetric compact operators. This can be
seen as an extension of the spectral decomposition of symmetric matrices to operators acting on infinite-
dimensional spaces. As for matrices the first step is to prove the existence of an eigenvalue. Yet the
classical argument which hinges on the D’Alembert-Gauss theorem, applied to the characteristic poly-
nomial, is not available anymore. In infinite dimensions. It will be replaced by a variational argument.
Actually we first give a minimization characterization of the operator norm.

The first step in this direction is the following general fact:

Proposition 7.6.1. Let A in Lc(X). Then

‖A‖ = sup
{u,v∈X: ‖u‖=‖v‖=1}

|(Au, v)|.

Proof. Thanks to the Cauchy-Schwarz inequality we have that for any u, v ∈ X,

|(Au, v)| 6 ‖Au‖‖v‖ 6 ‖A‖‖u‖‖v‖

so that
‖A‖ > sup

{u,v∈X: ‖u‖=‖v‖=1}
|(Au, v)|.

Moreover ‖Au‖ = |(Au, v)| with v = ‖Au‖−1Au if Au 6= 0 or any v with ‖v‖ = 1 otherwise. Then

‖A‖ := sup
{u∈X:‖u‖=1}

‖Au‖ 6 sup
{u,v∈X: ‖u‖=‖v‖=1}

|(Au, v)|.
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Let us introduce now the notion of symmetry to go farther.

Definition 7.6.1. Let X be an inner product space, and A in Lc(X). We say that A is symmetric if

∀u, v ∈ X, (Au, v) = (u,Av). (7.8)

Let us notice that for a symmetric operator A, (Au, u) is in R for any u ∈ X.

Lemma 7.6.1. Let X be a pre-Hilbert space, and A in Lc(X) symmetric. Then

‖A‖ = sup
{u∈X:‖u‖=1}

|(Au, u)|. (7.9)

Proof. Let us denote

α := sup
{u∈X: ‖u‖=1}

|(Au, u)| and β := sup
{u,v∈X: ‖u‖=‖v‖=1}

|(Au, v)|.

Taking into account Proposition 7.6.1 it is sufficient to prove that α > β. Let u, v in X with ‖u‖ =
‖v‖ = 1. We can assume without any loss of generality that (Au, v) > 0, since if this is not satisfied, we
can multiply v by a complex number of modulus one. We have

(Au, v) =
1
4

((A(u+ v), u+ v)− (A(u− v), u− v)),

6
1
4

(|(A(u+ v), u+ v)|+ |(A(u− v), u− v)|,

6
α

4
(‖u+ v‖2 + ‖u− v‖2),

6
α

2
(‖u‖2 + ‖v‖2) = α,

so that taking the sup over u, v in X with ‖u‖ = ‖v‖ = 1 completes the proof.

Let us now turn our attention to the eigenvalue, whose definition is given now.

Definition 7.6.2 (Eigenvalue). Let X be a normed vector space and A in Lc(X). We say that λ ∈ C
is an eigenvalue of A if there exists v ∈ X \ {0} such that Av = λv. The set of all the eigenvalues of A
is called the spectrum of A and is denoted sp(A).

Proposition 7.6.2. Let X be a normed vector space and A in Lc(X). Then

1. for any λ ∈ sp(A), then |λ| 6 ‖A‖.

2. if X is inner product space and if A in Lc(X) is symmetric, then sp(A) ⊂ R.

Proof. First if v ∈ X \ {0} is such that Av = λv. Then |λ|‖v‖ = ‖Av‖ 6 ‖A‖‖v‖, so that |λ| 6 ‖A‖.
Now if X is an inner product space and A in Lc(X) is symmetric, then

λ(v, v) = (λv, v) = (Av, v) = (v,Av) = (v, λv) = λ(v, v)

so that λ = λ, that is λ ∈ R.

The following result says that among the extremal values authorized by the previous analysis, one of
them is almost an eigenvalue.

Lemma 7.6.2. Let X be an inner product space and if A in Lc(X) is symmetric, then there exists
λ1 ∈ {−‖A‖, ‖A‖} and a sequence (un)n in X, with ‖un‖ = 1 for any n, such that ‖Aun − λ1un‖ → 0
when n→∞.

Proof. Since the case A = 0 is straightforward we assume that A 6= 0. Let (un)n be a maximizing
sequence of ‖A‖ = sup‖u‖=1 |(Au, u)|, that is a sequence (un)n in X, with ‖un‖ = 1 for any n, such
that |(Aun, un)| converges to ‖A‖. There exists a subsequence that we still denote (un)n such that
((Aun, un))n converges to λ1 ∈ {−‖A‖, ‖A‖}. Then

‖Aun − λ1un‖2 = (Aun − λ1un, Aun − λ1un) = ‖Aun‖2 − 2λ1(Aun, un) + λ2
1

6 ‖A‖2 − 2λ1(Aun, un) + λ2
1 → 0.
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To go farther we will require the following additional hypothesis:

Definition 7.6.3 (Compact operator). Let X be a normed vector space. We say that A in Lc(X) is
compact if the image of any bounded subset of X is a relatively compact subset of X.

Let us stress that this is equivalent to require that the image of the unit ball in X under A is
relatively compact in X or that for any bounded sequence in X the sequence of their image has a
convergent subsequence.

Proposition 7.6.3 (First eigenvalue of a compact operator). Let X be an inner product space
and let A in Lc(X) be symmetric compact. Then there exists λ1 ∈ {−‖A‖, ‖A‖} which is an eigenvalue
of A.

Proof. Thanks to Lemma 7.6.2 there exists λ1 ∈ {−‖A‖, ‖A‖} and a sequence (un)n in X, with ‖un‖ = 1
for any n, such that ‖Aun − λ1un‖ → 0 when n → ∞. Since A is compact, there exists a subsequence
(unk)k of (un)n such that (Aunk)k has a limit. These two last facts imply that (unk)k converges to some
u in X, which is an eigenvector for λ1.

Remark 7.6.1. In finite dimensions it is possible to give a simple variational proof of Proposition 7.6.3:
the closed unit ball of Rn is compact so that the continuous function u 7→ (Au, u) has a maximum,
say u∗. By Lagrange’s multiplier theorem (associated with the equality constraint ‖u‖2 = 1), it must
satisfies Au∗ = λu∗, for some λ in R.

Lemma 7.6.3. Let X be an inner product space and A in Lc(X) symmetric. Let e1, . . . , en be eigen-
vectors of A. Then (Vect (e1, . . . , en))⊥ is stable by A.

Proof. Let u in (Vect (e1, . . . , en))⊥ and i ∈ {1, . . . , n}. Then, using the fact that A is symmetric, we
get

(Au, ei) = (u,Aei) = (u, λei) = λ(u, ei) = 0,

where λ is the eigenvalue associated to ei. This proves that (Vect (e1, . . . , en))⊥ is stable by A.

Now we proceed by iteration, by restriction to the orthogonal of the eigenspaces already determined.

Theorem 7.6.1 (Poincaré principle). Let X be an inner product space, and A ∈ Lc(X) be a symmetric
and compact linear map with an infinite dimensional range. Then there exists a sequence of eigenvalues
(λn)n∈N∗ and a orthonormal family (en)n∈N∗ of eigenvectors of A such that

1. the sequence (|λn|)n∈N∗ is strictly positive and decreasing,

2. the sequence (λn)n∈N∗ tends to 0,

3. we have, for any n ∈ N∗, that

|λn| = sup
u∈Fn

|(Au, u)| where Fn := {u ∈ X : ‖u‖ = 1, (u, e1) = · · · = (u, en−1) = 0}.

Proof. We already have the existence of λ1 and e1 thanks to Proposition 7.6.3. Let us now assume that
n > 2 and that we have constructed λ1,. . . , λn−1 and e1, . . . , en−1. Let us denote

Yn−1 := (Vect (e1, . . . , en−1))⊥. (7.10)

According to Lemma 7.6.3 the subspace Yn−1 is stable by A. Thanks to Proposition 7.6.3 the restriction
of A to Yn−1 admits an eigenvalue λn such that

|λn| = ‖A|Yn−1‖ = sup
{u∈Yn−1: ‖u‖Yn−1=1}

|(A|Yn−1u, u)| = sup
u∈Fn−1

|(Au, u)|, (7.11)

and an associated eigenvector en of norm one. This eigenvalue λn does not vanish since A has an infinite
dimensional range. Since en is in Yn−1, we have (en, ei) = 0 for i = 1, . . . , n − 1. Since the sequence
of sets Yk decreases with k, we obtain that the sequence (|λk|)k is decreasing. It only remains to prove
that the sequence (λn)n∈N∗ tends to 0. Let us assume by contradiction that the sequence (|λ−1

n |)n∈N∗

is bounded. Then, since A is compact, the sequence (en = A(λ−1
n en))n∈N∗ should has a convergent

subsequence. But this is impossible since ‖en − em‖ =
√

2 for any n 6= m.

67



The spectral theorem also provides a decomposition, called the spectral decomposition, of the under-
lying vector space on which the operator acts.

Theorem 7.6.2 (Spectral decomposition). 1. Let X be an inner product space, and A ∈ Lc(X)
be a symmetric and compact linear map with an infinite dimensional range. Then for any u in X,

Au =
∑
n>1

λn(u, en)en.

2. If X is a Hilbert space, and A ∈ Lc(X) be a symmetric and compact linear map, then there exists
an orthonormal basis of X consisting of eigenvectors of A. More specifically, the orthogonal com-
plement of the kernel of A admits, either a finite orthonormal basis of eigenvectors of a countably
infinite orthonormal basis (en)n∈N∗ of eigenvectors of A with corresponding eigenvalues (|λn|)n∈N∗

strictly positive and decreasing to 0 when n goes to infinity.

3. If moreover X is separable, then there exists a countable orthonormal basis of X consisting of
eigenvectors of A.

Proof. Let u be in X. We have, for any k > 2, by definition of Yk, that u −
∑k−1
n=1(u, en)en is in Yk−1.

Therefore∥∥∥∥∥Au−
k−1∑
n=1

λn(u, en)en

∥∥∥∥∥ =

∥∥∥∥∥A(u−
k−1∑
n=1

(u, en)en)

∥∥∥∥∥ 6 ‖A|Yk−1‖

∥∥∥∥∥u−
k−1∑
n=1

(u, en)en)

∥∥∥∥∥ .
But using (7.11), we have ‖AYk−1‖ = |λk|, and on the other hand Pythagore’s theorem provides ‖u −∑k−1
n=1(u, en)en)‖ 6 ‖u‖, so that

‖Au−
k−1∑
n=1

λn(u, en)en‖ 6 |λk|‖u‖ → 0.

Hence for any u in X,

Au =
∑
n>1

λn(u, en)en.

Now if X is a Hilbert space we can use Corollary 7.2.1 to get that
∑
n>1(u, en)en converges in X.

Using that A is continuous, we obtain

A(
∑
n>1

(u, en)en) =
∑
n>1

(u, en)A(en) =
∑
n>1

λn(u, en)en = Au.

Therefore u −
∑
n>1(u, en)en is in the kernel of A. But the kernel of A is a closed subspace of X, it is

therefore a Hilbert space and admits (under Zorn’s lemma) a Hilbert basis. Putting together this basis
and the family (en)n∈N∗ yields a Hilbert basis consisting of eigenvectors of A. If moreover X is separable,
then this basis of X is countable. The case where the range of A has a finite dimension is even more
simple.

There are many extensions of Theorem 7.6.1 and 7.6.2: first one can drop the hypothesis that
the operator is compact, assuming only that the operator is continuous. Such operators may have
no eigenvalues, the way the operator can be diagonalized is therefore to be understood as a unitary
conjugation to a multiplication operator.

Let us first sketch this point of view on the previous case of compact operators. Suppose even,
for concreteness, that X is an infinite dimensional separable Hilbert space and that (en)n∈N∗ is an
orthonormal basis of X consisting of eigenvectors of a compact symmetric operator A. Then the map
U : X 7→ `2 given by

U

(∑
n∈N∗

cnen

)
= (cn)n∈N∗ ,
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is an isometric isomorphism. Moreover when we use this map to transfer the action of T to `2, i.e.,
when we consider the operator UTU−1 on `2, we see that this operator is simply multiplication by the
bounded sequence (λn)n∈N∗ .

The spectral theorem also holds for normal operators on a Hilbert space (let us recall that an operator
is said normal if it commutes with its hermitian adjoint).

The spectral theorem can even be extended for (self-adjoint or normal) unbounded operators, such
as differential operators. To give an example, any constant coefficient differential operator is unitarily
equivalent to a multiplication operator. Indeed the unitary operator that implements this equivalence is
the Fourier transform.

Finally let us mention that spectral theory also deals with operators acting on Banach spaces.
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Chapter 8

Fourier series

8.1 Functions on the torus

Let X be any space. A function u : R→ X is said to be T -periodic (T > 0) if

u(x+ T ) = u(x)

for all x ∈ R. If u is T -periodic, then it can be seen as a function defined on the torus T which is defined
as the quotient space R/(TZ), naturally endowed of group and complete metric space structures.

For matters connected to integration theory, it is convenient to identify T to the interval [−T/2, T/2)
(modulo the choice of a cut point), this bijection being bi-continuous. Then we have

Ck(T; C) ' {u ∈ Ck(R; C) : u is T -periodic},

for k ∈ N, and

Lp(T; C) ' {u ∈ Lp([−T/2, T/2); C) extended to R by T -periodicity},

for 1 6 p 6∞, where the symbol ' stands for canonical bijection.
In the sequel, we will only consider the case T = 1.

8.2 Fourier coefficients of L1(T; C)-functions

Definition 8.2.1. Let u ∈ L1(T; C) and k ∈ Z. We define the k-th Fourier coefficient of u as the
complex number

û(k) :=
∫ 1/2

−1/2

u(s)e−2iπksds.

The sequence (û(k))k∈Z is called the sequence of Fourier coefficients of u, and the series∑
k∈Z

û(k)e2iπkt

is the Fourier series of u.

The goal of this chapter is to establish a Fourier inversion formula, i.e.,

u(t) =
∑
k∈Z

û(k)e2iπkt.

To this aim, we need to answer to two questions: on the one hand, in what sense does the Fourier series
converge (pointwise, uniformly, integral, ...); and on the other hand, is the Fourier series equal (and in
what sense) to the initial function u?
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Let us start with the first question. We observe that the sequence (e2iπk·)k∈Z is orthonormal in
L2(T; C). Indeed, for every integers k 6= j,

(
e2iπk·, e2iπj·)

L2([−1/2,1/2))
=

∫ 1/2

−1/2

e2iπkte2iπjt dt

=
∫ 1/2

−1/2

e2iπ(k−j)t dt

=
1

2iπ(k − j)

[
e2iπ(k−j)t

]1/2
−1/2

= 0,

while if k ∈ Z, (
e2iπk·, e2iπk·)

L2([−1/2,1/2))
=
∫ 1/2

−1/2

e2iπ0t dt = 1.

Moreover, since for any t ∈ [−1/2, 1/2),
∣∣e2iπkt

∣∣ = 1, the norm of e2iπk· in C(T; C) is equal to 1. From
the results obtained in chapters 1 and 7, we deduce the following theorem.

Theorem 8.2.1. Let (αk)k∈Z be a sequence of complex numbers. Then

1. If
∑
k∈Z |αk| <∞, then the series

∑
k∈Z αke

2iπkt converges (uniformly) in C(T; C).

2. The series
∑
k∈Z αke

2iπkt converges in L2(T; C) if and only if (αk)k∈Z is in `2(Z; C).

Proof. The first item is a consequence of the fact that C(T; C) is a Banach space, while the second one is
an application of Theorem 7.2.1 in Chapter 7 together with the fact that L2(T; C) is a Hilbert space.

8.3 Fourier inversion formula

Let us come to the second problematic, namely the equality between the Fourier series of a function
(when it converges) and the function itself. The following result gives a criterion.

Theorem 8.3.1. If u ∈ C(T; C) is such that
∑
k∈Z |û(k)| <∞, then the Fourier series

∑
k∈Z û(k)e2iπkt

converges uniformly to u in C(T; C).

Proof. Fist of all, Theorem 8.2.1 ensures that the series
∑
k∈Z û(k)e2iπkt converges uniformly over T.

Thus, it remains to identify the limit with u. We observe that by definition of û(k),

∑
k∈Z

û(k)e2iπkt =
∑
k∈Z

∫ 1/2

−1/2

u(s)e2iπk(t−s) ds.

A priori, it is not possible to exchange the integral and the sum because the series
∑
k∈Z u(s)e2iπk(t−s)

diverges at each points s where u(s) 6= 0. For 0 < r < 1, let us introduce the functions

Ur(t) :=
∑
k∈Z

∫ 1/2

−1/2

u(s)r|k|e2iπk(t−s)ds.

For the same reasons than before, the series in the right hand side of the previous equality converges
uniformly. Moreover,

∑
k∈Z

∫ 1/2

−1/2

|u(s)|r|k||e2iπk(t−s)| ds 6 ‖u‖∞
∑
k∈Z

r|k| = ‖u‖∞
(

2
1− r

− 1
)
.

By Lebesgue’s dominated convergence theorem, we can now commute integral and series (this is why we
plugged the extra r) and get

Ur(t) =
∫ 1/2

−1/2

u(s)Pr(t− s) ds,
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where
Pr(τ) :=

∑
k∈Z

r|k|e2iπkτ

for any τ ∈ [−1/2, 1/2). Observe that Pr can simply be written as

Pr(τ) =
∑
k∈N

rke2iπkτ +
∑
k∈N

rke−2iπkτ − 1

= 2Re

(∑
k∈N

rke2iπkτ

)
− 1 = 2Re

∑
k∈N

(re2iπτ )k − 1

= 2Re
(

1
1− re2iπτ

)
− 1 =

1− r2

1− 2r cos(2πτ) + r2

so that
0 < Pr(τ) <

2
1− r

for every τ ∈ [−1/2, 1/2) and any r ∈ (0, 1). Note also that∫ 1/2

−1/2

Pr(τ) dτ =
∑
k∈Z

r|k|
∫ 1/2

−1/2

e2iπkτ dτ = 1 (8.1)

because all terms in the previous are zero except that for k = 0, and for each δ > 0,

sup
τ∈[−1/2,1/2)\[−δ,δ]

Pr(τ) 6
1− r2

1− 2r cos(2πδ) + r2
(8.2)

tends to zero as r → 1. Consequently, thanks to (8.1), one can write

|Ur(t)− u(t)| =

∣∣∣∣∣
∫ 1/2

−1/2

(u(t− s)− u(t))Pr(s) ds

∣∣∣∣∣
6

∣∣∣∣∣
∫ δ

−δ
(u(t− s)− u(t))Pr(s) ds

∣∣∣∣∣+

∣∣∣∣∣
∫

[−1/2,1/2)\[−δ,δ]
(u(t− s)− u(t))Pr(s) ds

∣∣∣∣∣
6 sup

x,y∈T, |x−y|6δ
|u(x)− u(y)|+ 2‖u‖∞

∫
[−1/2,1/2)\[−δ,δ]

Pr(s) ds,

and we deduce from (8.2) that

lim sup
r→1−

‖Ur − u‖∞ 6 sup
x,y∈T, |x−y|6δ

|u(x)− u(y)|.

Since the left hand side of the previous inequality is independent of δ, we can take the limit as δ → 0 in
the right hand side, and we finally obtain

lim
r→1−

‖Ur − u‖∞ = 0

which means that Ur uniformly converges to u on [−1/2, 1/2).
We now show the uniform convergence of Ur to U1 (i.e. the Fourier series of u), from which, by

uniqueness of the limit, the proof will be complete. Let ε > 0, since
∑
k∈Z |û(k)| < ∞, there exists

N ∈ N such that ∑
|k|>N

|û(k)| < ε

2
.

On the other hand,
lim
r→1−

∑
|k|<N

û(k)r|k|e2iπkt =
∑
|k|<N

û(k)e2iπkt,
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the convergence being uniform for t ∈ T. Hence,

lim sup
r→1−

‖Ur − U1‖∞ 6 lim sup
r→1−

∥∥∥∥∥∥
∑
|k|>N

û(k)(1− r|k|)e2iπkt

∥∥∥∥∥∥ 6 2
∑
|k|>N

|û(k)| < ε.

Since ε is arbitrary, the conclusion follows.

The previous result is applicable provided the condition
∑
k∈Z |û(k)| <∞ is satisfied. In particular,

it holds for functions smooth enough as the next proposition shows.

Proposition 8.3.1. Let u ∈ Cn(T; C) for some n ∈ N. Then for every j ∈ {0, . . . , n} and every k ∈ Z,

û(j)(k) = (2iπk)j û(k),

where u(j) denotes the j-th derivative of u. Consequently if u ∈ C2(T; C) then
∑
k∈Z |û(k)| <∞.

Proof. Since u(i) = (u(j−1))′ for j > 1, it is enough to consider the case j = 1, proceeding by induction
for the other cases. Let us assume that u ∈ C1(T; C) for some n ∈ N. As u′ ∈ C(T; C) ⊂ L1(T; C), we
have

û′(k) =
∫ 1/2

−1/2

u′(s)e−2iπks ds,

and an integration by parts ensures that

û′(k) = −
∫ 1/2

−1/2

u(s)(−2iπk)e−2iπks ds = (2iπk)û(k),

where we used the fact that the function s 7→ u(s)e−2iπks is 1-periodic.
If u ∈ C2(T; C), we get that for each k ∈ Z \ {0},

û(k) = − 1
4π2k2

û′′(k)

so that

|û(k)| 6 1
4π2k2

∫ 1/2

−1/2

|u′′(s)||e−2iπks| ds 6
‖u′′‖∞
4π2k2

and thus
∑
k∈Z |û(k)| <∞.

We will now extend the Fourier inversion formula to L2(T; C). Let us recall that since {e2iπkt}k∈Z
is an orthonormal family, Theorem 7.2.2 of Chapter 7 gives us some equivalences from which we deduce
the following result.

Theorem 8.3.2. The Fourier transform Φ : L2(T; C) → `2(T; C), u 7→ (û(k))k∈Z is an isometrical
isomorphism (a linear one to one mapping preserving the norm). In other words, there holds the Parseval
identity

‖u‖22 =
∑
k∈Z
|û(k)|2

for every u ∈ L2(T; C), and
u(t) =

∑
k∈Z

û(k)e2iπkt

for almost every t ∈ [−1/2, 1/2), the series in the right hand side converging in the sense of the L2(T; C)-
norm.

Proof. It follows from Theorem 8.3.1 and the second part of Proposition 8.3.1 that for each u ∈ C2(T; C),

u(t) =
∑
k∈Z

û(k)e2iπkt
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for every t ∈ [−1/2, 1/2), where the series is converging uniformly over [−1/2, 1/2) (and thus also in the
sense of the L2(T; C)-norm because [−1/2, 1/2) has finite Lebesgue measure). As a consequence, the
restriction of the linear mapping from L2(T; C) to L2(T; C) defined by

u 7→
∑
k∈Z

û(k)e2iπkt

to C2(T; C) is equal to the identity. As C2(T; C) is dense in L2(T; C), the uniqueness of the continuous
extension ensures that

u(t) =
∑
k∈Z

û(k)e2iπkt

for every u ∈ L2(T; C). In the previous equality, the series is converging in the sense of the L2(T; C)-norm,
and the functions u and t 7→

∑
k∈Z û(k)e2iπkt coincide as L2(T; C) functions, i.e., almost everywhere in

[−1/2, 1/2).
Since

û(k) =
∫ 1/2

−1/2

u(s)e2iπksds = (u, e2iπks)L2(T;C),

it follows from Theorem 7.2.2 that Φ is an isometry which is nothing else than Parseval identity.

To conclude this chapter, let us mention two easy applications of the previous theorem and Theorem
8.3.1.

8.4 Functional inequalities

In a broader framework, both following functional inequalities play an instrumental role in the analysis
of partial differential equations.

Theorem 8.4.1 (Poincaré-Wirtinger inequality). Let u ∈ C1(T; C) with zero average (i.e. such that∫ 1/2

−1/2
u(s)ds = 0). Then

‖u‖L2(T;C) 6
1

2π
‖u′‖L2(T;C).

Proof. The zero average condition implies that û(0) = 0 (it is actually an equivalence). Since C(T; C) ⊂
L2(T; C), applying the Parseval equality to u and u′ together with Proposition 8.3.1, we get that

‖u‖2L2(T;C) =
∑
k∈Z
|û(k)|2 =

∑
k∈Z\{0}

|û(k)|2

=
∑

k∈Z\{0}

1
4π2k2

|û′(k)|2 6
1

4π2

∑
k∈Z\{0}

|û′(k)|2

6
1

4π2
‖u′‖2L2(T;C).

Theorem 8.4.2 (Sobolev inequality). Let u ∈ C2(T; C) with zero average (i.e. such that
∫ 1/2

−1/2
u(s)ds =

0). Then

‖u‖L∞(T;C) 6
1√
12
‖u′‖L2(T;C).

Proof. Since u ∈ C2(T; C), using Proposition 8.3.1,
∑
k∈Z |û(k)| < ∞, and thanks to Theorem 8.3.1 we

get that ∑
k∈Z

û(k)e2iπkt = u(t)

for every t ∈ [−1/2, 1/2), where the series in the left hand side is converging uniformly. Therefore

|u(t)| 6
∑
k∈Z
|û(k)|.
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As before, the average condition implies that û(0) = 0, and by Proposition 8.3.1 and the Cauchy-Schwarz
inequality, we get

|u(t)| 6
∑

k∈Z\{0}

1
2πk
|û′(k)| 6 C

√ ∑
k∈Z\{0}

|û′(k)|2,

with C :=
√∑

k∈Z\{0}
1

(2πk)2 = 1√
12

. The Parseval equality yields in turn that

|u(t)| 6 1√
12
‖u′‖L2(T;C)

for every t ∈ [−1/2, 1/2).

8.5 Adaptation for T -periodic functions

The results obtained so far in the previous sections can be extended to T -periodic functions with T > 0
non necessarily equal to 1. Indeed if u = u(t) is T -periodic, then the function v(t) := u(t/T ) becomes
1-periodic. We thus work on the function v and once the conclusion is obtained, we rewrite everything
in terms of u. The family {e2iπkt}k∈Z is then the transformed of the family {e 2iπkt

T }k∈Z on [−T/2, T/2).
When T →∞, the frequency {k/T}k∈Z tend to become dense in the real line, and formally, for T =∞,
(i.e. functions on R without any periodicity) one should consider the uncountable family {e2iπst}s∈R.
This is the object of the next chapter where we will make this argument rigorous.
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Chapter 9

Fourier transform of integrable and
square integrable functions

Fourier transform describes which frequencies are present in a complex-valued function of real variables.
It therefore could be thought as an extension of the theory of Fourier series to non periodic functions.
In this chapter we will study the Fourier transform of L1 and L2 functions.

9.1 Fourier transform of integrable functions

Definition 9.1.1. Let u ∈ L1(RN ; C). The Fourier transform û of u is the function defined for ξ ∈ RN
by

û(ξ) :=
∫

RN
u(x)e−2iπx·ξ dx,

where x · y denotes the scalar product of x and y in RN .

We observe that this pointwise definition of û makes sense everywhere thanks to the comparison
Theorem.

Proposition 9.1.1. The Fourier transform is a continuous linear map from L1(RN ; C) to L∞(RN ; C).

Proof. The linearity follows from that of the Lebesgue integral. For the continuity we have for every
u ∈ L1(RN ; C) and any ξ ∈ RN ,

|û(ξ)| 6
∫

RN
|u(x)||e−2iπx·ξ| dx = ‖u‖1,

so that ‖û‖∞ 6 ‖u‖1.

If we formally derive û with respect to ξi, with i ∈ {1, . . . , N}, we get that

∂û

∂ξi
(ξ) = −2iπ

∫
RN

xiu(x)e−2iπx·ξdx.

This computation is justified provided x 7→ xiu(x) belongs to L1(RN ; C). In the same way in order to
compute ∂2û

∂ξ2i
(ξ) we need to assume that x 7→ x2

iu(x) ∈ L1(RN ; C). This suggests that the regularity of
û is connected to the decreasing character of u at infinity.

Conversely, if u is smooth enough, we can write for ξi 6= 0,

û(ξ) =
∫

RN
u(x)e−2iπx·ξ dx =

1
2iπξi

∫
RN

∂u

∂xi
(x)e−2iπx·ξ dx.

This suggests in turn that the decreasing character of û is closely related to the regularity of u. We
introduce the Schwartz space of all infinitely differentiable functions that are rapidly decreasing at infinity
along with all partial derivatives.
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Definition 9.1.2 (Schwartz space). A function u : RN → C belongs to the Schwartz space, denoted
by S(RN ), if any of its partial derivatives decreases at infinity more rapidly than any polynomial. More
precisely, u ∈ S(RN ) if and only if for any multi-indexes α and β ∈ NN , there exists a constant C =
C(u, α, β) > 0 such that

sup
x∈RN

|xβ∂αu(x)| 6 C.

We recall that for all multi-index α := (α1, . . . , αN ) ∈ NN , we denote

∂α :=
∂|α|

∂x1
α1 · · · ∂xNαN

, xα := xα1
1 · · ·x

αN
N ,

where |α| := α1 + · · ·+ αN is the length of α. Denoting α! := α1! · · ·αN !, we get the Leibnitz’ rule

∂α(u v) =
∑

β+γ=α

α!
β!γ!

∂βu ∂γv

for any u, v ∈ C∞(RN ; C) and for all α ∈ NN .
The following result can be easily checked by the reader.

Proposition 9.1.2. For all u, v ∈ S(RN ), all α ∈ NN and all P ∈ C[X1, . . . , XN ], then uv, ∂αu and
Pu belong to S(RN ).

Let us also notice that C∞c (RN ; C) ⊂ S(RN ), and that x 7→ e−|x|
2 ∈ S(RN ) \ C∞c (RN ; C).

The Schwartz space is a good framework to justify the above formal computations. Namely

Proposition 9.1.3. For all u ∈ S(RN ) and all α ∈ NN ,

∂αû(ξ) = ̂(−2iπx)αu(ξ),

∂̂αu(ξ) = (2iπξ)αû(ξ),

for any ξ ∈ RN .

Proof. As mentioned before, it suffices in the first case to derive the definition of û, and in the second
case to integrate by parts. In both cases, the fact that u ∈ S(RN ) enables to justify the operation
(domination property, and vanishing boundary term).

Let us recall that C0(RN ; C) denotes the space of all functions vanishing at infinity, that is the closure
of Cc(RN ; C) in Cb(RN ; C) (see Proposition 6.3.1 for a characterization of that space). We can now extend
Proposition 9.1.1 as follows.

Theorem 9.1.1 (Riemann-Lebesgue). The Fourier transform is a continuous linear mapping from
L1(RN ; C) to C0(RN ; C).

Proof. Let u ∈ L1(RN ; C). By density there exists a sequence (un)n∈N ⊂ C∞c (RN ; C) ⊂ S(RN ) which
converges to u in L1(RN ; C). Using Proposition 9.1.1, we deduce that ûn → û in L∞(RN ; C). Thanks
to Propositions 6.3.1 and 9.1.3, for each n ∈ N, one has ûn ∈ C0(RN ; C). Indeed if ε > 0, and α ∈ NN is
such that |α| = 1, then

|ûn(ξ)| 6 1
2π|ξ|

‖∂̂αun‖∞ 6
1

2π|ξ|
‖∂αun‖1 < ε

for every ξ 6∈ Kε, where Kε := {ξ ∈ RN : |ξ| 6 2π/ε‖∂αun‖1} is a compact set. Hence, since C0(RN ; C)
is closed with respect to the uniform convergence, we get that û ∈ C0(RN ; C).

The next result will be useful in the sequel.

Proposition 9.1.4. If u and v ∈ L1(RN ; C), then∫
RN

ûv dx =
∫

RN
uv̂ dx.
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Proof. We first remark that if u and v ∈ L1(RN ; C), then by the Riemann-Lebesgue Theorem (Theorem
9.1.1), û and v̂ ∈ C0(RN ; C) so that ûv and uv̂ ∈ L1(RN ; C) by Hölder’s inequality, and the above
integrals are well defined. We next use the Fubini and Tonelli Theorems to get that∫

RN
û(x)v(x) dx =

∫
RN

(∫
RN

u(y)e−2iπx·y dy

)
v(x) dx

=
∫

RN

(∫
RN

v(x)e−2iπx·y dx

)
u(y) dy

=
∫

RN
v̂(y)u(y) dy.

The Fourier transform enjoys some good properties with respect to the groups of translations and
dilatations.

Definition 9.1.3. If u : RN → C, for a ∈ RN and λ ∈ R \ {0}, we define the translation of u by a, and
the dilatation of u by λ as

(τau)(x) := u(x− a),
(δλu)(x) := u

(
x
λ

)
,

for every x ∈ RN .

Lemma 9.1.1. If u ∈ L1(RN ; C), a ∈ RN and λ ∈ R \ {0}, we have

τ̂au(ξ) = e−2iπa·ξû(ξ),

δ̂λu(ξ) = |λ|Nδ1/λû(ξ),

for every ξ ∈ RN .

Proof. By definition,

τ̂au(ξ) =
∫

RN
u(x− a)e−2iπx·ξ dx =

∫
RN

u(y)e−2iπ(y+a)·ξ dy

= e−2iπa·ξ
∫

RN
u(y)e−2iπy·ξ dy = e−2iπa·ξû(ξ).

Similarly

δ̂λu(ξ) =
∫

RN
u
(x
λ

)
e−2iπx·ξ dx = |λ|N

∫
RN

u(y)e−2iπ(λy)·ξ dy

= |λ|N
∫

RN
u(y)e−2iπy·(λξ) dy = |λ|N û(λξ)

= |λ|Nδ1/λû(ξ).

Corollary 9.1.1. The function u : x 7→ e−π|x|
2

is kept invariant through the Fourier transform.

Proof. Indeed, let α ∈ NN be a multi-index with length |α| = 1. Thanks to the properties of the
exponential, we have

∂αu = (−2πx)αu.

Since u ∈ S(RN ), we can take the Fourier transform on both sides of the previous equality and get,
taking into account Proposition 9.1.3, (2iπξ)αû = (−i∂)αû so that

∂αû = (−2πξ)αû.
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Hence

∂α
(
û

u

)
=

(∂αû)u− (∂αu)û
u2

= 0.

Since α is any multi-index of length 1, we infer that û
u is constant. As(

û

u

)
(0) =

û(0)
u(0)

= û(0) =
∫

RN
e−π|x|

2
dx.

Now to calculate the integral above, we observe that, thanks to the Fubini principle, we have∫
RN

e−π|x|
2
dx = (

∫
R
e−πx

2
dx)N = (

∫
R2
e−π|x|

2
dx)

N
2 = 1,

by using the polar coordinates. The conclusion follows.

If t > 0, we deduce from Lemma 9.1.1 and Corollary 9.1.1 that

̂e−πt2|x|2 = ̂δ1/t(e−π|x|
2) = t−Ne−π|x|

2/t2 .

We now arrive to the main result of this section which is the analogue of Theorem 8.3.1 in chapter 8.

Theorem 9.1.2 (Fourier inversion formula). Let u ∈ L1(RN ; C) ∩ Cb(RN ; C) be such that û ∈
L1(RN ; C). Then, for every x ∈ RN , ˆ̂u(x) = u(−x).

Proof. By definition,
ˆ̂u(x) =

∫
RN

û(ξ)e−2iπξ·x dξ.

Unfortunately, it is not possible to apply Proposition 9.1.4 because the function ξ 7→ e−2iπξ·x does not
belong to L1(RN ; C). However, since û ∈ L1(RN ; C), it follows from Lebesgue’s dominated convergence
Theorem that

ˆ̂u(x) = lim
t→0+

∫
RN

û(ξ)e−2iπξ·xe−πt
2|ξ|2 dξ

because e−πt
2|ξ|2 → 1 pointwise as t → 0+, and |û(ξ)e−2iπξ·xe−πt

2|ξ|2 | 6 |û(ξ)| for every ξ ∈ RN , with
|û| ∈ L1(RN ). Now since ξ 7→ e−πt

2|ξ|2 ∈ L1(RN ; C), we immediately obtain from Lemma 9.1.1 and
Proposition 9.1.4 that∫

RN
û(ξ)e−2iπξ·xe−πt

2|ξ|2 dξ =
∫

RN
τ̂xu(ξ)e−πt

2|ξ|2 dξ

=
∫

RN
τxu(ξ) ̂e−πt2|ξ|2 dξ

=
∫

RN
u(ξ − x)t−Ne−π|ξ|

2/t2 dξ

=
∫

RN
u(ty − x)e−π|y|

2
dy.

Consequently,

ˆ̂u(x) = lim
t→0+

∫
RN

u(ty − x)e−π|y|
2
dy = u(−x)

∫
RN

e−π|y|
2
dy = u(−x),

where we used once more Lebesgue’s dominated convergence Theorem which is licit since

|u(ty − x)e−π|y|
2
| 6 ‖u‖∞e−π|y|

2

and y 7→ e−π|y|
2 ∈ L1(RN ).

Corollary 9.1.2. The Fourier transform is a linear one to one map from S(RN ) to S(RN ).
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Proof. Let u ∈ S(RN ). Let us show that for any multi-indexes α and β ∈ NN , one has

sup
ξ∈RN

|ξβ∂αû(ξ)| <∞.

Thanks to Proposition 9.1.3, ∂αû(ξ) = ̂(−2iπx)αu(ξ) and thus

ξβ∂αû(ξ) = ξβ ̂(−2iπx)αu(ξ)

=
1

(2iπ)|β|
(2iπξ)β ̂(−2iπx)αu(ξ)

=
1

(2iπ)|β|
̂∂β((−2iπx)αu).

Since u ∈ S(RN ), by Proposition 9.1.2, x 7→ ∂β((−2iπx)αu(x)) ∈ S(RN ) as well, and in particular, it
also belongs to L1(RN ; C). As a consequence of the Riemann-Lebesgue Theorem (Theorem 9.1.1), we
infer that ̂∂β((−2iπx)αu) ∈ L∞(RN ; C). We thus proved that if u ∈ S(RN ), then û ∈ S(RN ). Therefore,
we can apply the Fourier inversion formula in S(RN ) to get that

ˆ̂̂
û = u for all u ∈ S(RN ),

and consequently u 7→ û is one to one.

Remark 9.1.1. According to Theorem 9.1.2 and Corollary 9.1.2, it follows that the inverse Fourier
transform can be written as

u(x) =
∫

RN
û(ξ)e2iπx·ξ dξ

for all u ∈ S(RN ).

One advantage of the Fourier transform is that it maps a convolution product into a usual product
of functions.

Corollary 9.1.3. If u and v ∈ S(RN ), then u ∗ v ∈ S(RN ) and

(i) û ∗ v = ûv̂;

(ii) û ∗ v̂ = ûv.

Proof. We start by proving (ii). By definition of the convolution product, we have thanks to Proposition
9.1.4, Lemma 9.1.1 and Theorem 9.1.2,

(û ∗ v̂)(z) =
∫

RN
û(z − y)v̂(y) dy =

∫
RN

(τzδ−1û)(y)v̂(y) dy

=
∫

RN
̂(τzδ−1û)(y)v(y) dy =

∫
RN

e−2iπy·z δ̂−1û(y)v(y) dy

=
∫

RN
e−2iπy·zu(y)v(y) dy = ûv(z).

Above we used that δ̂−1û = u, which is obtained by applying the Fourier inversion formula to û.
By invertibility of the Fourier transform on S(RN ), u = f̂ and v = ĝ for some f and g ∈ S(RN ).

Consequently, using (ii), we infer that û ∗ v = ̂̂f ∗ ĝ = ̂̂
fg = (δ−1f)(δ−1g) = ûv̂ because, thanks to

Theorem 9.1.2, δ−1f = ˆ̂
f = û and similarly for g. Hence we get (i).

Thanks to (i), we have u ∗ v = δ−1
̂̂uv̂. Since S(RN ) is stable with respect to the Fourier transform,

the multiplication, and obviously δ−1, it follows that u ∗ v ∈ S(RN ) which completes the proof.

Corollary 9.1.4. If u ∈ S(RN ), then
‖û‖2 = ‖u‖2.

81



Proof. Indeed, we have thanks to Proposition 9.1.4 and the Fourier inversion formula (Theorem 9.1.2),

‖û‖22 =
∫

RN
û(ξ)û(ξ) dξ

=
∫

RN
û(ξ)

∫
RN

u(x)e−2iπx·ξ dx dξ

=
∫

RN
û(ξ)

∫
RN

u(x)e−2iπx·(−ξ) dx dξ

=
∫

RN
û(ξ)û(−ξ) dξ =

∫
RN

û(ξ)δ̂−1u(ξ) dξ

=
∫

RN
u(ξ)̂̂

δ−1u(ξ) dξ =
∫

RN
u(ξ)δ−1δ−1u(ξ) dξ

=
∫

RN
u(ξ)u(ξ) dξ = ‖u‖22.

We will next extend the Fourier transform from L1(RN ; C) to L2(RN ; C). Let us remark that neither
L2(RN ; C) 6⊂ L1(RN ; C) nor L1(RN ; C) 6⊂ L2(RN ; C).

9.2 Fourier transform of L2 functions

Thanks to Corollary 9.1.4, the restriction of the Fourier transform to S(RN ) ⊂ L2(RN ; C) is linear
and continuous (it is actually an isomorphism) from S(RN ) ⊂ L2(RN ; C) to S(RN ) ⊂ L2(RN ; C). As
S(RN ) is dense in L2(RN ; C) for the norm ‖ · ‖2 (indeed C∞c (RN ; C) ⊂ S(RN ) and from Corollary 4.4.2,
C∞c (RN ; C) is dense in L2(RN ; C) for the norm ‖ · ‖2), we deduce from the extension theorem 1.2.3 that
there exists a unique continuous extension

F : L2(RN ; C) −→ L2(RN ; C)
u 7−→ F(u),

such that F(u) = û for each u ∈ S(RN ). We call F(u) the Fourier transform on L2(RN ; C). It is not
clear, a priori, that

F(u) = û

for u ∈ (L1(RN ; C) ∩ L2(RN ; C)) \ S(RN ). We will check this property later on. Let us start with the

Theorem 9.2.1. The Fourier transform F is an isometric isomorphism from L2(RN ; C) to L2(RN ; C).
Moreover, for all u ∈ L2(RN ; C),

F(F(u)) = δ−1u.

Proof. The conservation of the L2-norm and the Fourier inversion formula hold in S(RN ) (see Theorem
9.1.2 and Corollary 9.1.4). It thus suffices to appeal to the density of S(RN ) into L2(RN ; C), and to pass
to the limit using the continuity of F with respect to the L2-norm.

The next result extends Proposition 9.1.4 to L2(RN ; C)-functions.

Proposition 9.2.1. Let u and v ∈ L2(RN ; C), then∫
RN
F(u)v dx =

∫
RN

uF(v) dx.

Proof. Here again, we use the density of S(RN ) into L2(RN ; C). Indeed, let (un) and (vn) ⊂ S(RN ) be
such that un → u and vn → v in L2(RN ; C). Thanks to Proposition 9.1.4, we infer that∫

RN
ûnvn dx =

∫
RN

unv̂n dx.

But since for each n ∈ N, un and vn ∈ S(RN ), then ûn = F(un) and v̂n = F(vn). Finally it suffices
to pass to the limit as n→∞ in the previous equality, using the continuity of F in L2(RN ; C) and the
Cauchy-Schwarz inequality.
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Corollary 9.2.1. If u ∈ L1(RN ; C) ∩ L2(RN ; C), then F(u) = û.

Proof. Let χn ∈ C∞c (RN ; [0, 1]) be such that χn = 1 in B(0, n). If v ∈ C∞c (RN ; C), then χnv ∈
C∞c (RN ; C) ⊂ S(RN ). According to Propositions 9.1.4 and 9.2.1, we get that∫

RN
ûχnv̄ dx =

∫
RN

uχ̂nv dx =
∫

RN
uF(χnv) dx =

∫
RN
F(u)χnv dx,

so that ∫
B(0,n)

(û−F(u))v dx = 0

for any v ∈ C∞c (RN ; C). Take v = ρj ∗ û−F(u), where (ρj)j∈N is a sequence of mollifiers as in section
4.4.2. Taking the limit as j → ∞, and using Lemma 4.4.2 together with Theorem 3.3.4, we infer that
û = F(u) almost everywhere in B(0, n). Finally since n is arbitrary, both functions actually coincide
almost everywhere in RN .

We conclude this section by stating an analogous result than Corollary 9.1.4 for L2(RN ; C)-functions.

Corollary 9.2.2 (Plancherel identity). If u ∈ L2(RN ; C), then

‖u‖2 = ‖F(u)‖2,

and more generality, for u, v ∈ L2(RN ; C), we have∫
RN

u v̄ dx =
∫

RN
F(u)F(v) dx.

Proof. We proceed as usual by density. For u ∈ L2(RN ; C), consider a sequence (un) ⊂ S(RN ) such
that un → u in L2(RN ; C). Then, by Theorem 9.2.1, ûn = F(un)→ F(u) in L2(RN ; C), and thanks to
Corollary 9.1.4, we get that

‖u‖2 = lim
n→∞

‖un‖2 = lim
n→∞

‖ûn‖2 = lim
n→∞

‖F(un)‖2 = ‖F(u)‖2.

Concerning the second statement, it suffice to observe that for any u and v ∈ L2(RN ; C),∫
RN

uv̄ dx =
‖u+ v‖22 − ‖u− v‖22

2

=
‖F(u+ v)‖22 − ‖F(u− v)‖22

2

=
‖F(u) + F(v)‖22 − ‖F(u)−F(v)‖22

2

=
∫

RN
F(u)F(v) dx.

Now that we proved that the extension F correspnds to the ̂ for u ∈ L1(RN ; C) ∩ L2(RN ; C), we
can use the same notation û for u ∈ L1(RN ; C) ∪ L2(RN ; C), and also for u ∈ L1(RN ; C) + L2(RN ; C)
since any function can be written as the sum of a L1(RN ; C) and a L2(RN ; C) function.

9.3 Application to the heat equation

The model version of the heat equation (with initial datum u0) can be written as
∂u

∂t
(t, x)−∆u(t, x) = 0 for all (t, x) ∈ R+ × RN ,

u(0, x) = u0(x) for all x ∈ RN ,
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where u : R+ × RN → R, and ∆u(t, x) =
∑N
i=1

∂2u
∂x2
i
(t, x).

Let us consider, at least formally, the Fourier transform of u with respect to the x variable:

v(t, ξ) :=
∫

RN
u(t, x)e−2iπx·ξ dx.

Using Proposition 9.1.3, we obtain after having applied the Fourier transform to the heat equation
∂v

∂t
(t, ξ) = −4π2|ξ|2v(t, ξ) for all (t, ξ) ∈ R+ × RN ,

v(0, ξ) = û0(ξ) for all ξ ∈ RN .

The advantage of this last formulation is that, for fixed ξ (considered as a parameter), it is not anymore
a partial differential equation but an ordinary differential equation whose solution is simply given by

v(t, ξ) = û0(ξ)e−4π2|ξ|2t.

We observe that, setting ρ(ξ) := e−π|ξ|
2
, then

e−4π2|ξ|2t = δ1/
√

4πtρ

= δ1/
√

4πtρ̂

= (4πt)−N/2δ̂√4πtρ,

where we used the fact that ρ̂ = ρ according to Corollary 9.1.1. Hence, if u0 ∈ S(RN ), using Corollary
9.1.3,

v(t, ξ) = û0(ξ)(4πt)−N/2δ̂√4πtρ(ξ) = (4πt)−N/2 ̂u0 ∗ δ√4πtρ(ξ).

But Corollary 9.1.2 ensures that the Fourier transform is one to one on S(RN ), hence,

u(t, x) = (4πt)−N/2u0 ∗ δ√4πtρ(x) = (4πt)−N/2
∫

RN
u0(y)e−

|x−y|2
4t dy.

Now that we have ”guessed” the form of the solution, we can state the following:

Theorem 9.3.1. Let u0 ∈ L1(RN ). Then the function u : (0,∞)× RN → R defined by

u(t, x) := (4πt)−N/2
∫

RN
u0(y)e−

|x−y|2
4t dy

is infinitely differentiable on (0,∞)× RN . Moreover, it satisfies

∂u

∂t
(t, x)−∆u(t, x) = 0 for all (t, x) ∈ (0,∞)× RN ,

and
lim
t→0+

‖u(t, ·)− u0‖1 = 0.

Proof. We remark that the function (t, x, y) 7→ (4πt)−N/2e−
|x−y|2

4t admits partial derivatives of any order
with respect to t and/or x which are bounded (and thus belong to L∞(RN ) with respect to the y
variable). Since u0 ∈ L1(RN ) we are in position to apply the Lebesgue’s dominated convergence theorem
which enables to derivate under the integral sign, and ensures that u ∈ C∞((0,∞)×RN ). Moreover, we
can easily check that

∂u

∂t
(t, x)−∆u(t, x) = 0

for all (t, x) ∈ (0,∞)× RN .
We now study the convergence to the initial datum. We observe that, for any t > 0,

(4πt)−N/2
∫

RN
e−
|y|2
4t dy = 1 (9.1)

84



so that
|u(t, x)− u0(x)| 6 (4πt)−N/2

∫
RN
|u0(x− y)− u0(x)|e−

|y|2
4t dy

and thus, integrating with respect to x and applying Fubini’s Theorem leads to∫
RN
|u(t, x)− u0(x)| dx 6

∫
RN

∫
RN
|u0(x− y)− u0(x)| e

− |y|
2

4t

(4πt)N/2
dy dx

6
∫
B(0,δ)

(∫
RN
|τyu0(x)− u0(x)| dx

)
e−
|y|2
4t

(4πt)N/2
dy

+
∫

RN\B(0,δ)

(∫
RN
|τyu0(x)− u0(x)| dx

)
e−
|y|2
4t

(4πt)N/2
dy

6 sup
y∈B(0,δ)

‖τyu0 − u0‖1 + 2‖u0‖1
∫

RN\B(0,δ)

e−
|y|2
4t

(4πt)N/2
dy.

By the continuity of the translation in L1(RN ) (cf. Remark 4.4.1), one has

sup
y∈B(0,δ)

‖τyu0 − u0‖1 → 0

as δ → 0, while a change of variable yields for every δ > 0,∫
RN\B(0,δ)

e−
|y|2
4t

(4πt)N/2
dy =

∫
RN\B(0,δ/

√
4πt)

e−π|z|
2
dz → 0

as t→ 0, since z 7→ e−π|z|
2 ∈ L1(RN ). Finally taking first the limit as δ → 0, and then as t→ 0 leads to

lim
t→0+

‖u(t, ·)− u0‖1 = 0,

and the proof is complete.

Let us observe that another consequence of the property (9.1) is that for any t > 0,∫
RN

u(t, ·)dx =
∫

RN
u0. (9.2)
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Chapter 10

Tempered distributions and Sobolev
spaces

Distributions are objects that generalize functions. Whereas a derivative of a function does not always
exist in the classical sense, distributions admit some derivatives which are themselves some distributions.
They are therefore very useful in order to solve partial differential equations. One famous distributions
is the delta distribution introduced by Dirac in 1927. In the late 1940s Laurent Schwartz developed a
comprehensive theory of distributions, capitalizing on some earlier works by Sobolev. The basic idea is
to identify functions with abstract linear functionals on a space of smooth test functions. Operations on
distributions can then be understood by moving them to the test function. Here we will restrict ourselves
to the tempered distributions, which are sufficient to deal with Fourier transform in generality.

10.1 Tempered distributions

10.1.1 First definitions

Let us recall the definition of the Schwartz space

S(RN ) := {u ∈ C∞(RN ; C) : ∀α, β ∈ NN , xα∂βu ∈ L∞(RN ; C)}.

The space S(RN ) is a complete metric space. It may be possible to write explicitly the distance between
two elements of S(RN ) but it will not be useful for the considerations we will have in the sequel. We
rather write the definition of a converging sequence in that topology.

Definition 10.1.1. We say that a sequence (un)n∈N ⊂ S(RN ) converges to u in S(RN ) if for all multi-
indexes α and β ∈ NN , then ‖xα∂β(un − u)‖∞ → 0 as n→ +∞.

We are now in position to introduce the tempered distributions.

Definition 10.1.2 (Tempered distributions). We denote by S ′(RN ) the space of tempered distribu-
tions which is defined as the space of all sequentially continuous linear maps on S(RN ). In other words,
T ∈ S ′(RN ) if and only if T (un)→ T (u) for all sequence (un)n∈N ⊂ S(RN ) converging to u in S(RN ).

We usually write 〈T, u〉 instead of T (u).
It is possible to associate to any integrable function (and actually much more functions) a tempered

distribution through an integral:

Lemma 10.1.1. Let

Z := {u : RN → C measurable such that there exists ku ∈ N : (1 + |x|2)−kuu ∈ L1(RN ; C)}.

Then the mapping
i : Z −→ S ′(RN )

u 7−→ Tu,
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where

〈Tu, v〉 :=
∫

RN
uv dx for every v ∈ S(RN )

is a well defined canonical continuous linear injection from Z to S ′(RN ).

Proof. It suffices to remark that uv = (1 + |x|2)−kuu(1 + |x|2)kuv is the product of a L1(RN ; C) function
(by definition of Z) and a L∞(RN ; C) function (because v ∈ S(RN ), which implies that the map Tu is
well defined. The continuity follows from the same reasoning, while the injectivity is a consequence of
the uniqueness part of the Riesz theorem.

Clearly, S(RN ) ⊂ Z.
We shall use the following notion of convergence of tempered distributions:

Definition 10.1.3. We say that a sequence (Tn)n∈N ⊂ S ′(RN ) converges to T in S ′(RN ) if 〈Tn, u〉 →
〈T, u〉 for any u ∈ S(RN ).

If S(RN ) was a normed space, then S ′(RN ) would have been the topological dual of S(RN ), and the
convergence in S ′(RN ) would have been the weak* convergence. Unfortunately, It is not the case but
many things remain nevertheless true.

10.1.2 Transpose

Many operations on distributions will be defined by means of the transpose that we now define.

Definition 10.1.4 (Transpose). Let L : S(RN ) → S(RN ) be a sequentially continuous linear map,
i.e., Lun → Lu in S(RN ) whenever un → u in S(RN ). The transpose map of L, denoted Lt, is defined
on S ′(RN ) by

〈LtT, u〉 = 〈T, Lu〉

for all u ∈ S(RN ) and all T ∈ S ′(RN ).

Note that LtT defines well a tempered distribution. Indeed, if (un)n∈N ⊂ S(RN ) is a sequence
converging to u in S(RN ), then since L is sequentially continuous, it follows that Lun → Lu in S(RN ), and
since T ∈ S ′(RN ), we have that 〈T, Lun〉 → 〈T, Lu〉. Hence by definition of the transpose 〈LtT, un〉 →
〈LtT, u〉 so that LtT ∈ S ′(RN ).

Proposition 10.1.1. The map Lt : S ′(RN )→ S ′(RN ) is linear and continuous.

Proof. The linearity is obvious. For what concerns continuity, assume that Tn → T in S ′(RN ). Then
for each u ∈ S(RN ), we have Lu ∈ S(RN ) and thus, 〈Tn, Lu〉 → 〈T, Lu〉. Hence by definition of the
transpose, 〈LtTn, u〉 → 〈LtT, u〉. This shows that LtTn → LtT in S ′(RN ).

We are going to define elementary operations on tempered distributions (multiplication, derivation,
Fourier transform, convolution) as transpose of their analogous continuous linear maps on S(RN ). To
this aim, let us first prove the following

Proposition 10.1.2. The following linear maps are continuous from S(RN ) to S(RN ):

1. Translation: u 7→ τau(x) := u(x− a), a ∈ RN ;

2. Dilatation: u 7→ δλu(x) := u(x/λ), λ ∈ R \ {0};

3. Derivation: u 7→ ∂αu, α ∈ NN ;

4. Multiplication: u 7→ χu, χ ∈ ΘM (RN ), where ΘM (RN ) := {χ ∈ C∞(RN ; C) : ∀α ∈ NN , ∃kα ∈
N such that (1 + |x|2)−kα∂αχ ∈ L∞(RN ; C)} is the space of all tempered functions on RN ;

5. Fourier transform: u 7→ û;

6. Convolution: u 7→ χ ∗ u, where χ ∈ S(RN ).
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Proof. Only the three last statements need to be proved, the other ones being obvious. Concerning 4),
according to Leibniz’ formula, we have for all α, β ∈ NN ,

xβ∂α(χu) = xβ
∑

γ+δ=α

α!
γ!δ!

∂γχ∂βu.

For fixed γ, we have |∂γχ| 6 Cγ(1 + |x|2)kγ so that

|xβ∂γχ| 6 Cγ(1 + |x|2)kγ+|β|.

The conclusion follows from the definition of the convergence in S(RN ) and from the fact that the sum
is finite.

Concerning 5), we observe that

ξβ∂αû = ξβ ̂(−2iπx)αu

=
1

(2iπ)|β|
(2iπξ)β ̂(−2iπx)αu

=
1

(2iπ)|β|
̂∂β((−2iπx)αu).

If un → u in S(RN ), then from 3) and 4) we obtain that ∂β((−2iπx)αun) → ∂β((−2iπx)αu) in S(RN )
and thus in L1(RN ; C) as well. From the Riemann-Lebesgue Theorem (Theorem 9.1.1) the Fourier
transform maps continuously L1(RN ; C) into C0(RN ; C) (and thus also L∞(RN ; C)). It ensures that

̂∂β((−2iπx)αun)→ ̂∂β((−2iπx)αu) in L∞(RN ; C), whence the conclusion.
It remains to prove 6). For that, let us remark that form Theorem 9.1.2 and Corollary 9.1.3, one has

u ∗ χ = δ−1
̂̂u ∗ χ = δ−1

̂̂uχ̂
and the conclusion follows from 2), 4) and 5).

The following formulas are satisfied in S(RN ):

Proposition 10.1.3. For every u and v ∈ S(RN ), one has

1.
∫

RN
(τau)v dx =

∫
RN

u(τ−av) dx for all a ∈ RN ;

2.
∫

RN
(δλu)v dx = |λ|N

∫
RN

u(δ1/λv) dx for all λ ∈ R \ {0};

3.
∫

RN
(∂αu)v dx = (−1)|α|

∫
RN

u(∂αv) dx for all α ∈ NN ;

4.
∫

RN
(χu)v dx =

∫
RN

u(χv) dx for all χ ∈ ΘM (RN );

5.
∫

RN
ûv dx =

∫
RN

uv̂ dx;

6.
∫

RN
(χ ∗ u)v dx =

∫
RN

u((δ−1χ) ∗ v) dx for all χ ∈ S(RN ).

A way to interpret the properties of Proposition 10.1.3 uses the injection i : S(RN ) → S ′(RN )
introduced in Lemma 10.1.1. Indeed 1) implies that the transpose of τa (: S(RN ) → S(RN )), τ ta :
S ′(RN ) → S ′(RN ) restricted to i(S(RN )) is nothing but i ◦ τ−a. We proceed similarly for the other
properties and we get the following definitions

Definition 10.1.5. The following linear maps are continuous from S ′(RN ) to S ′(RN ):

1. Translation: 〈τaT, v〉 := 〈T, τ−av〉;
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2. Multiplication: 〈δλT, v〉 := |λ|N 〈T, δ1/λv〉;

3. Derivation: 〈∂αT, v〉 := (−1)|α|〈T, ∂αv〉;

4. Multiplication: 〈χT, v〉 := 〈T, χv〉 for every χ ∈ ΘM (RN );

5. Fourier transform: 〈T̂ , v〉 := 〈T, v̂〉;

6. Convolution: 〈χ ∗ T, v〉 := 〈T, (δ−1χ) ∗ v〉 for every χ ∈ S(RN ).

Let us observe that a tempered distribution can derived as much as we want, the result being an
element of S ′(RN ).

Theorem 10.1.1. The Fourier transform is a continuous linear one to one mapping from S ′(RN ) to
S ′(RN ). Moreover, we have the Fourier inversion formula

ˆ̂
T = δ−1T

for every T ∈ S ′(RN ).

Proof. By definition we have for all v ∈ S(RN ),

〈 ˆ̂T, v〉 = 〈T̂ , v̂〉 = 〈T, ˆ̂v〉
= 〈T, δ−1v〉 = 〈δ−1T, v〉,

where we use the Fourier inversion formula (see Theorem 9.1.2) for functions in S(RN ). The fact that
the Fourier transform is one to one follows from the inversion formula in S ′(RN ).

The formulas relating derivation, convolution, Fourier transform, etc... which are valid in S(RN ) can
be transposed almost immediately in S ′(RN ).

Proposition 10.1.4. For every T ∈ S ′(RN ), we have

1. τ̂aT = e−2iπa·ξT̂ for all a ∈ RN , where the right hand side is the product of the tempered distribution
T̂ with the tempered function ξ 7→ e−2iπa·ξ;

2. δ̂λT = |λ|Nδ1/λT̂ for all λ ∈ R \ {0};

3. ∂̂αT = (−2iπξ)αT̂ for all α ∈ NN ;

4. χ̂T = χ̂ ∗ T̂ for all χ ∈ S(RN );

5. χ̂ ∗ T = χ̂T̂ for all χ ∈ S(RN );

6. ∂α(χ ∗ T ) = ∂χ ∗ T = χ ∗ ∂αT for all α ∈ NN and all χ ∈ S(RN ).

The Dirac at a point a ∈ RN , as a bounded Radon measure, is also a tempered distribution since
S(RN ) ⊂ C0(RN ). It is defined by

〈δa, v〉 := v(a)

for all v ∈ S(RN ).

Proposition 10.1.5. The Fourier transform of δa is the tempered function ξ 7→ e−2iπa·ξ. In particular
δ̂0 = 1, and δ0 acts as an identity element for the convolution product:

χ ∗ δ0 = i(χ) ∼ χ,

where ∼ means the identification of a function with its associated distribution.

90



Proof. Let v ∈ S(RN ), we have

〈δ̂a, v〉 = 〈δa, v̂〉 = v̂(a)

=
∫

RN
v(x)e−2iπa·x dx = 〈i(e−2iπa·x), v〉 ∼ 〈e−2iπa·x, v〉.

Hence

χ ∗ δ0 = δ−1

(
̂̂
χ ∗ δ0

)
= δ−1

(̂̂
χδ̂0

)
= δ−1

(
̂̂χi(1)

)
= i(δ−1

ˆ̂χ) = i(χ).

10.1.3 Fundamental solution of a differential operator with constant coeffi-
cients

Definition 10.1.6. A differential operator with constant coefficients on RN is an operator

L :=
∑
i∈I

ci∂
αi ,

where I has finite cardinality, ci ∈ C and αi ∈ N. We say that T ∈ S ′(RN ) is a fundamental solution of
the differential operator L if L(T ) = δ0 in S ′(RN ).

Corollary 10.1.1. Let L be a differential operator with constant coefficients in RN , and T be a fun-
damental solution of L. Then for every f ∈ S(RN ), if we set u := f ∗ T , we have L(u) = f . In other
words, f ∗ T is a solution of the partial differential equation L(u) = f .

Proof. From Proposition 10.1.4, we have

L(u) =
∑
i∈I

ci∂
αi(f ∗ T ) = f ∗

∑
i∈I

ci∂
αiT = f ∗ L(T ) = f ∗ δ0 = f.

Example 10.1.1. Let us consider the differential operator L on RN+1 associated to the heat equation:

L(T ) :=
∂T

∂t
−∆T =

∂T

∂t
−

N∑
i=1

∂2T

∂x2
i

.

The reader can try to show as an exercise that the tempered distribution associated to the function of
Z defined by

G(x, t) :=


1

(4πt)N/2
e−
|x|2
4t if t > 0,

0 if t 6 0

is a fundamental solution for L on RN+1.
Hint: Observe that G ∈ C∞((RN × R) \ {0, 0}) ∩ L1(RN × R) and that for each (x, t) 6= (0, 0),(

∂G

∂t
−∆G

)
(x, t) = 0.

Then write that for all χ ∈ S(RN × R),〈
∂G

∂t
−∆G,χ

〉
=

∫
RN×R

G(x, t)
(
∂χ

∂t
−∆χ

)
(x, t) dx dt

= lim
ε→0

∫
(RN×R)\Λε

G(x, t)
(
∂χ

∂t
−∆χ

)
(x, t) dx dt,

where λε := B(0, ε)× [−ε3, ε3] is a small cylinder surrounding the origin. Note that G ∈ C∞((RN ×R) \
Λε), perform an integration by parts, and identify the limit as ε→ 0 of the boundary terms.
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10.2 Sobolev spaces

10.2.1 Definition

Definition 10.2.1. For any k ∈ N, we define the spaces

W k,2(RN ) := {u ∈ S ′(RN ) : ∂αu ∈ L2(RN ) for all α ∈ N with |α| 6 k}

and
Hk(RN ) := {u ∈ S ′(RN ) : (1 + |ξ|2)k/2û ∈ L2(RN )},

endowed with the scalar products

(u, v)Wk,2(RN ) :=
∑
|α|6k

(∂αu, ∂αv)L2(RN )

and
(u, v)Hk(RN ) :=

(
(1 + |ξ|2)k/2û, (1 + |ξ|2)k/2v̂

)
L2(RN )

,

and with the associated norms.

It turns out that the spaces W k,2(RN ) and Hk(RN ) are algebraically and topologically identical.

Lemma 10.2.1. We have W k,2(RN ) = Hk(RN ) and their norms are equivalent.

Proof. Thanks to the Plancherel identity, Corollary 9.2.2, that for each α ∈ NN with |α| 6 k, then
∂αu ∈ L2(RN ) if and only if (2iπξ)αû ∈ L2(RN ). On the other hand, by simple algebraic manipulation,
it can be easily seen that for fixed k ∈ NN , there exists a constant Ck > 0 such that

1
Ck

(1 + |ξ|2)k/2 6
∑
|α|6k

(2iπξ)α 6 Ck(1 + |ξ|2)k/2 (10.1)

for any ξ ∈ RN . Hence ∂αu ∈ L2(RN ) if and only if (1+|ξ|2)k/2û ∈ L2(RN ), so thatW k,2(RN ) = Hk(RN )
algebraically. The equivalence of the norms (and thus the topological equality) follows from (10.1).

The Sobolev spaces Hk(RN ) play an intermediate role between the Lebesgue space L2(RN ) (where
function are missing of regularity) and the Schwartz space S(RN ) (which is not normed, and thus not a
Hilbert space). Indeed, we have both following important results.

Theorem 10.2.1. For each k ∈ N, Hk(RN ) is a Hilbert space.

Proof. It is enough to show that Hk(RN ) is complete. Let (un)n>1 ⊂ Hk(RN ) be a Cauchy sequence in
Hk(RN ). By definition, it follows that ξ 7→ (1 + |ξ|2)k/2ûn(ξ) is a Cauchy sequence in L2(RN ). Since
the latter is complete, there exists v∞ ∈ L2(RN ) such that (1 + |ξ|2)k/2ûn → v∞ in L2(RN ). As the
function ξ 7→ (1 + |ξ|2)−k/2 is tempered then by Definition 10.1.5, (1 + |ξ|2)−k/2v∞ ∈ S ′(RN ) and by
the bijectivity of the Fourier transform in S ′(RN ) (see Theorem 10.1.1), there exists u∞ ∈ S ′(RN ) such
that û∞ = (1 + |ξ|2)−k/2v∞. Hence (1 + |ξ|2)k/2û∞ = v∞ ∈ L2(RN ) so that u∞ ∈ Hk(RN ). Moreover,
(1 + |ξ|2)k/2ûn → (1 + |ξ|2)k/2û∞ in L2(RN ), and thus, by definition un → u∞ in Hk(RN ).

10.2.2 A few properties

Theorem 10.2.2. If k > m + N/2, then Hk(RN ) ⊂ Cm0 (RN ) algebraically and topologically. We write
Hk(RN ) ↪→ Cm0 (RN ).

Let us recall that Cm0 (RN ) := {u ∈ Cm(RN ) : ∂αu ∈ C0(RN ) for each |α| 6 m}.

Proof. From the Riemann-Lebesgue Theorem (Theorem 9.1.1), we know that the Fourier transform maps
continuously L1(RN ) into C0(RN ). Hence, according the Fourier inversion formula, Theorem 9.1.2, it
suffices to check that for each α ∈ NN with |α| 6 m, we have ∂̂αu ∈ L1(RN ) when u ∈ Hk(RN ). Indeed,

if it is the case, then ∂αu = δ−1
̂̂
∂αu ∈ C0(RN ).
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Let u ∈ Hk(RN ), we have

|∂̂αu(ξ)| = |(2iπξ)αû(ξ)| =
∣∣∣∣ (2iπξ)α

(1 + |ξ|2)k/2
(1 + |ξ|2)k/2û(ξ)

∣∣∣∣ . (10.2)

Since k > m+N/2 and |α| 6 m, letting ε := k −m−N/2 > 0, we have∣∣∣∣ (2iπξ)α

(1 + |ξ|2)k/2

∣∣∣∣ 6 C(1 + |ξ|2)−k/2+|α|/2 6 C(1 + |ξ|2)−N/4−ε/2 ∈ L2(RN ),

for some constant C > 0 depending only on N , k and m. On the other hand, since (1+|ξ|2)k/2û ∈ L2(RN )
we deduce from (10.2) and the Cauchy-Schwarz inequality that ∂̂αu ∈ L1(RN ).

In particular, in 1-space dimension (N = 1), then H1(R) ↪→ C0(R).
For later applications, it will be convenient to restrict ourself to an open subset Ω ⊂ RN . We will

not define Hk(Ω) but only Hk
0 (Ω), which roughly speaking, stands for those Hk(RN ) functions vanishing

outside Ω (this simplied way of saying hides problems of extending smoothly Sobolev functions on the
boundary of Ω). Let us see the rigorous definition of ”functional analysis” nature.

Definition 10.2.2. The space Hk
0 (Ω) is the closure of C∞c (Ω) is Hk(RN ).

It follows from the definition of Hk
0 (Ω) that it is a closed subset of Hk(RN ) endowed with the norm

‖ · ‖Hk . It is consequently complete as well.

Proposition 10.2.1 (Locality). If u ∈ Hk
0 (Ω), then for each α ∈ NN such that |α| 6 k,

‖∂αu‖L2(RN ) = ‖∂αu‖L2(Ω).

Proof. The property is obviously true for functions in C∞c (Ω). If u ∈ Hk
0 (Ω) and (un)n>1 ⊂ C∞c (Ω)

converging to u in Hk(RN ). Then ∂αun → ∂αu in L2(RN ) and consequently,

|‖∂αu‖L2(RN\Ω) − ‖∂αun‖L2(RN\Ω)| 6 ‖∂α(u− un)‖L2(RN\Ω) 6 ‖∂α(u− un)‖L2(RN ),

which goes to 0 when n goes to infinity.

Theorem 10.2.3 (Compactness). Let Ω ⊂ RN be a bounded open set. Then the injection of H1
0 (Ω)

in L2(Ω) is compact.

Proof. Let u ∈ H1
0 (Ω) be such that ‖u‖H1(RN ) 6 1, and h ∈ RN . Thanks to the Plancherel identity,

Corollary 9.2.2, one has

‖τhu− u‖L2(RN ) = ‖τ̂hu− û‖L2(RN )

= ‖e−2iπξ·hû− û‖L2(RN )

= ‖(e−2iπξ·h − 1)û‖L2(RN ).

It is easy to check that there exists a constant C > 0 such that

|e−2iπξ·h − 1| = |e−2iπξ·h − e−2iπ0·h| 6 C|h||ξ|.

Hence,

‖τhu− u‖L2(RN ) 6 C|h|‖|ξ|û‖L2(RN )

6 C|h|‖(1 + |ξ2)1/2û‖L2(RN )

= C|h|‖u‖H1(RN ) 6 C|h|.

As a consequence, according to the Riesz-Fréchet-Kolmogorov Theorem (Theorem 4.5.1), we deduce that
{u ∈ H1

0 (Ω) : ‖u‖H1(RN ) 6 1} is compact in L2(Ω).
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Corollary 10.2.1 (Poincaré inequality). If Ω ⊂ RN is a bounded open set, then there exists a constant
C > 0 such that

‖u‖L2(Ω) 6 C‖∇u‖L2(Ω)

for every u ∈ H1
0 (Ω).

Proof. If the conclusion was not true, for any n > 1, there would exists vn ∈ H1
0 (Ω) such that ‖vn‖L2(Ω) >

n‖∇vn‖L2(Ω). Define un := vn/‖vn‖L2(Ω), then ‖un‖L2(Ω) = 1 and ‖∇un‖L2(Ω) → 0 as n → ∞. In
particular the sequence (un)n>1 would be bounded in H1

0 (Ω), and thanks to the compact imbedding
of H1

0 (Ω) into L2(Ω) (Theorem 10.2.3), there would exist a subsequence of (un)n>1 (still denoted by
(un)n>1) and u ∈ H1

0 (Ω) such that un → u in L2(Ω), and in particular by Proposition 10.2.1,

‖u‖L2(RN ) = ‖u‖L2(Ω) = lim
n→∞

‖un‖L2(Ω) = 1.

On the other hand, since ∇un → 0 in L2(Ω) then ∇u = 0 a.e. in Ω, and thus also a.e. in RN by the
localization property (Proposition 10.2.1). This would imply that u is constant in RN which is absurd
since ‖u‖L2(RN ) = 1 <∞.

It follows from the Poincaré inequality that the norm on H1
0 (Ω) is equivalent to

‖u‖H1
0 (Ω) := ‖∇u‖L2(Ω),

and that H1
0 (Ω) endowed with the scalar product

(u, v)H1
0 (Ω) :=

∫
Ω

∇u · ∇v dx

is a Hilbert space.

10.2.3 Dirichlet problem

We conclude this chapter by an application concerning the existence of solutions of the Dirichlet problem.

Theorem 10.2.4. Let Ω ⊂ RN be a bounded open set, and f ∈ L2(Ω). Then, there exists a unique
u ∈ H1

0 (Ω) such that
−∆u = f

in the sense of distributions in Ω, i.e., for any χ ∈ C∞c (Ω),

〈−∆u, χ〉 = 〈f, χ〉.

Proof. The map
L : H1

0 (Ω) −→ C,

u 7−→
∫

Ω

u(x)f(x) dx

is a continuous linear map. Indeed by the Cauchy-Schwarz and Poincaré inequalities,

L(u) 6 ‖u‖L2(Ω)‖f‖L2(Ω) 6 C‖∇u‖L2(Ω)‖f‖L2(Ω) 6 C‖f‖L2(Ω)‖u‖H1
0 (Ω).

Hence by the Riesz representation Theorem in Hilbert spaces (Theorem 7.4.1), there exists a unique
u ∈ H1

0 (Ω) such that
L(v) = (u, v)H1

0 (Ω)

for all v ∈ H1
0 (Ω), or in other words, ∫

Ω

∇u · ∇v dx =
∫

Ω

fv dx.

In particular, since C∞c (Ω) ⊂ L2(Ω), the previous relation holds for any v ∈ C∞c (Ω) as well. Next,
thanks to the definition of the derivation in the sense of distributions, Definition 10.1.5, and the fact
that C∞c (Ω) ⊂ S(RN ), we deduce that

〈−∆u, χ〉 = 〈∇u,∇χ〉
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for any χ ∈ C∞c (Ω). Moreover, since ∇u ∈ L2(RN )

〈∇u,∇χ〉 =
∫

Ω

∇u · ∇χdx,

where we used the locality property, Proposition 10.2.1. Gathering everything, we infer that

〈−∆u, χ〉 = 〈f, χ〉

for any χ ∈ C∞c (Ω). The uniqueness of the solution follows from that of the Riesz representation Theorem
7.4.1.

We say that u ∈ H1
0 (Ω) is a weak solution (or solution in the sense of distributions) of the equation

−∆u = f in Ω.

The next step, which is out the scope of this course, consists in studying the regularity of weak solutions,
and to ask wether weak solutions are actually classical solutions.
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