Fourier transform of integrable and square integrable functions

- 1) Let $f \in L^1(\mathbb{R})$. The Fourier transform of f is defined on \mathbb{R} by $\hat{f}(\xi) = \int_{-\infty}^{+\infty} f(x) e^{-2i\pi\xi x} dx$.
 - 1. Let $f(x) = e^{-\pi x^2}$ for all $x \in \mathbb{R}$. Compute $\frac{d}{d\xi}\hat{f}(\xi)$. Deduce $\hat{f}(\xi)$.
 - 2. Let $g(x) = e^{-|x|}$ for all $x \in \mathbb{R}$. Compute \hat{g} .
 - 3. Deduce the Fourier transform of $\mathbb{R} \ni x \mapsto h(x) = \frac{1}{1+x^2}$.
- 2) a) Let χ be the characteristic function of the interval [-1/2, 1/2] and φ = χ * χ. Compute φ, φ̂ and χ̂.
 b) Find two functions f and g ∈ L²(ℝ), non identically zero and such that f * g = 0.
 - c) Show that there is no function $u \in L^1(\mathbb{R})$ such that $f * u = f, \forall f \in L^1$.

3) Let $A \subset \mathbb{R}^n$ be a (Lebesgue) measurable set such that $0 < \mathcal{L}^n(A) < \infty$, and let χ_A be its characteristic function. Show that $\widehat{\chi}_A \in L^2(\mathbb{R}^n)$ but $\widehat{\chi}_A \notin L^1(\mathbb{R}^n)$.

4) We consider the differential equation

$$u'(x) + \lambda x u(x) = 0 \ \forall x \in \mathbb{R},$$

where $\lambda > 0$.

- a) Find u such that u(0) = 1.
- b) Transform the previous equation to get an equation solved by \hat{u} .
- c) Deduce \hat{u} .
- 5) Compute the Fourier transform of the following functions :

1.
$$f_1(x) = (1 - |x|)\chi_{[-1,1]}(x).$$

2. $f_2(x) = x^n e^{-x}\chi_{[0,+\infty)}(x), n \in \mathbb{N}.$
3. $f_3(x) = \frac{\sin(\pi x)}{\pi x}.$
4. $f_4(x) = \left(\frac{\sin(\pi x)}{\pi x}\right)^2.$
5. $f_5(x) = \frac{1}{(1+2i\pi x)^{n+1}}, n \in \mathbb{N}.$