Fourier transform of integrable and square integrable functions

1) Let $f \in L^{1}(\mathbb{R})$. The Fourier transform of f is defined on \mathbb{R} by $\hat{f}(\xi)=\int_{-\infty}^{+\infty} f(x) e^{-2 i \pi \xi x} d x$.
1. Let $f(x)=e^{-\pi x^{2}}$ for all $x \in \mathbb{R}$. Compute $\frac{d}{d \xi} \hat{f}(\xi)$. Deduce $\hat{f}(\xi)$.
2. Let $g(x)=e^{-|x|}$ for all $x \in \mathbb{R}$. Compute \hat{g}.
3. Deduce the Fourier transform of $\mathbb{R} \ni x \mapsto h(x)=\frac{1}{1+x^{2}}$.
2) a) Let χ be the characteristic function of the interval $\left[-\frac{1}{2}, \frac{1}{2}\right]$ and $\phi=\chi * \chi$. Compute $\phi, \widehat{\phi}$ and $\widehat{\chi}$.
b) Find two functions f and $g \in L^{2}(\mathbb{R})$, non identically zero and such that $f * g=0$.
c) Show that there is no function $u \in L^{1}(\mathbb{R})$ such that $f * u=f, \forall f \in L^{1}$.
3) Let $A \subset \mathbb{R}^{n}$ be a (Lebesgue) measurable set such that $0<\mathcal{L}^{n}(A)<\infty$, and let χ_{A} be its characteristic function. Show that $\widehat{\chi}_{A} \in L^{2}\left(\mathbb{R}^{n}\right)$ but $\widehat{\chi}_{A} \notin L^{1}\left(\mathbb{R}^{n}\right)$.
4) We consider the differential equation

$$
u^{\prime}(x)+\lambda x u(x)=0 \forall x \in \mathbb{R}
$$

where $\lambda>0$.
a) Find u such that $u(0)=1$.
b) Transform the previous equation to get an equation solved by \hat{u}.
c) Deduce \hat{u}.
5) Compute the Fourier transform of the following functions:

1. $f_{1}(x)=(1-|x|) \chi_{[-1,1]}(x)$.
2. $f_{2}(x)=x^{n} e^{-x} \chi_{[0,+\infty)}(x), n \in \mathbb{N}$.
3. $f_{3}(x)=\frac{\sin (\pi x)}{\pi x}$.
4. $f_{4}(x)=\left(\frac{\sin (\pi x)}{\pi x}\right)^{2}$.
5. $f_{5}(x)=\frac{1}{(1+2 i \pi x)^{n+1}}, n \in \mathbb{N}$.
