UPMC Master 1, MM05E Basic functional analysis 2011-2012

Fourier series

1) Let $f : \mathbb{R} \to \mathbb{C}$ be a *T*-periodic function such that $f \in L^2(0,T)$.

a) Show that

$$\hat{f}(k) := \frac{1}{T} \int_0^T f(t) \, e^{-i2\pi kt/T} \, dt = \frac{1}{T} \int_a^{a+T} f(t) \, e^{-i2\pi kt/T} \, dt \quad \forall a \in \mathbb{R}, \, \forall k \in \mathbb{Z}.$$

b) Show that

$$f(t) = \sum_{k \in \mathbb{Z}} \hat{f}(k) e^{i2\pi k t/T} \text{ for a.e. } t \in \mathbb{R}.$$

c) Show that

$$\frac{1}{T} \int_0^T |f(t)|^2 dt = \sum_{k \in \mathbb{Z}} |\hat{f}(k)|^2.$$

2) Let f be a T-periodic function such that $f \in L^2(0,T)$. Let

$$\hat{f}_T(k) := \frac{1}{T} \int_0^T f(t) e^{-i2\pi kt/T} dt$$
 and $\hat{f}_{2T}(k) := \frac{1}{2T} \int_0^{2T} f(t) e^{-i\pi kt/T} dt$

for all $k \in \mathbb{Z}$. Show that $\hat{f}_{2T}(2k) = \hat{f}_T(k)$, and $\hat{f}_{2T}(2k+1) = 0$ for all $k \in \mathbb{Z}$.

- **3)** Let g be the 2-periodic function whose restriction to [0,2) is $g(x) = (1-x)\chi_{[0,1]}(x)$.
- a) Expand g in Fourier series.
- b) Find a 2-periodic function such that f' + f = g in (0, 2).
- 4) Let us define the functions $P_m : \mathbb{R} \to \mathbb{R}$ for all $m \in \mathbb{N}^*$ in the following way :
 - P_1 is the 2π -periodic function such that $P_1(x) = \pi x$ if $x \in [0, 2\pi]$.
 - $\forall m \geq 1$, we define P_{m+1} in terms of P_m by

$$P_{m+1}(x) = C_{m+1} + \int_0^x P_m(t) \, dt,$$

where the constant C_{m+1} is such that the average of P_{m+1} over $(0, 2\pi)$ is zero.

a) Show that P_m is 2π -periodic and that $P_m \in L^2(0, 2\pi)$ for all $m \in \mathbb{N}^*$.

- b) Expand P_m in Fourier series.
- c) Deduce that

$$\sum_{n \in \mathbb{N}^*} \frac{1}{n^2} = \frac{\pi^2}{6}, \quad \sum_{n \in \mathbb{N}^*} \frac{1}{n^4} = \frac{\pi^4}{90}.$$

5) Let $C_{\text{per}}([0, 2\pi])$ be the space of all continuous functions from \mathbb{R} to \mathbb{R} , which are 2π -periodic. We want to show that for all $x \in [0, 2\pi)$, the space of all functions $f \in C_{\text{per}}([0, 2\pi])$ whose Fourier series diverges at x, defines a G_{δ} dense subspace.

- 1. Prove the following refinement of the Banach-Steinhaus Theorem : Let $(T_i)_{i \in I}$ be an arbitrary family of continuous linear maps from a Banach space E to a normed linear space F. Then we have the following alternative :
 - (a) $\sup_{i \in I} ||T_i||_{\mathcal{L}(E,F)} < +\infty$,
 - (b) For all y in a G_{δ} dense subset of E, $\sup_{i \in I} ||T_i(y)||_F = +\infty$.

Let us fix $x \in [0, 2\pi)$. For $f \in \mathcal{C}_{per}([0, 2\pi])$, we introduce the Fourier coefficients $c_n(f)$, and the partial Fourier sum :

$$S_N(f)(x) := \sum_{-N \leqslant n \leqslant N} c_n e^{inx} = \frac{1}{2\pi} \int_0^{2\pi} f(t) D_N(x-t) dt,$$

with

$$D_N(x) := \sum_{-N \leqslant n \leqslant N} e^{inx}.$$

- 2. Show that $||D_N||_{L^1(0,2\pi)} \to +\infty$ when $N \to +\infty$.
- 3. Show that

$$\|S_N(\cdot)(x)\|_{\mathcal{L}(\mathcal{C}_{\rm per}([0,2\pi]),\mathbb{R})} = \frac{1}{2\pi} \|D_N\|_{L^1(0,2\pi)}$$

- 4. Conclude. Show that on a G_{δ} dense subspace of $\mathcal{C}_{per}([0, 2\pi])$ the Fourier series diverges.
- 5. Show that the map $f \in L^1(0, 2\pi) \to (c_n(f))_{n \in \mathbb{Z}} \in c_0$, where c_0 is the space of all sequences converging to zero, is not surjective.