UPMC Master 1, MM05E Basic functional analysis 2011-2012

Hilbert analysis

1) Let $(e_n)_{n\geq 1}$ be an Hilbertian basis in a separable Hilbert space H.

a) Show that $e_n \rightharpoonup 0$ as $n \rightarrow \infty$.

Let $(a_n)_{n\geq 1}$ be a bounded sequence of real numbers. We set

$$u_n = \frac{1}{n} \sum_{i=1}^n a_i e_i.$$

b) Show that $||u_n|| \to 0$.

c) Show that $\sqrt{n} u_n \rightharpoonup 0$ weakly in *H*.

2) Let *H* be a real Hilbert space, and $K \subset H$ be a convex closed cone with vertex 0 (*i.e.* if $x \in K$ and $\lambda \geq 0$, then $\lambda x \in K$). Show that if $f \in H$, then its projection $u = P_K(f)$ is characterized by the properties $-u \in K$

$$- (f - u, u) = 0$$

- for all $v \in K$, $(f - u, v) \le 0$.

3) Let Ω be an open subset of \mathbb{R}^N with finite (Lebesgue) measure, and $\varphi : \Omega \to \mathbb{R}$ be a nonnegative measurable function. We define

$$K = \left\{ u \in L^2(\Omega) ; |u(x)| \le \varphi(x) \text{ for a.e. } x \in \Omega \right\}.$$

Show that K is a non empty convex and closed subset of $L^2(\Omega)$. Show that the orthonormal projection $P_K(u)$ of any element $u \in L^2(\Omega)$ is given by

$$P_K(u) = u\chi_{\{|u| \le \varphi\}} + \varphi\chi_{\{u > \varphi\}} - \varphi\chi_{\{u < -\varphi\}}.$$

4) Let H be a real Hilbert space, and M be a non zero closed linear subspace of H. Show that for all $f \in H \setminus M^{\perp}$, the infimum

$$\mu = \inf_{\substack{u \in M \\ \|u\|=1}} (f, u)$$

is reached at a unique point. (Hint : consider a minimizing sequence)

5) All functions of this exercise are real valued. Let us consider the equation

$$\begin{cases} u''(t) = f(t) \text{ for all } t \in (0,1), \\ u(0) = u(1) = 0. \end{cases}$$
(1)

a) Show that if $f \in \mathcal{C}([0,1])$, then the solution of (1) is given by

$$u(t) = \int_0^1 K(t,s) f(s) \, ds \quad \forall t \in [0,1],$$

for some $K : [0,1] \times [0,1] \to \mathbb{R}$ to be determined.

b) Show that the operator $T: f \mapsto Tf$ defined by

$$(Tf)(t) = \int_0^1 K(t,s) f(s) \, ds$$

is well defined from $L^2(0,1)$ to $L^2(0,1)$, that it is linear, continuous, symmetric and compact.

- c) Compute explicitly the eigenvalues of T.
- d) For all $n \in \mathbb{N}^*$ and $t \in [0, 1]$, let $e_n(t) = \sin(n\pi t)$. Deduce from b) and c) that the family

$$\left\{\frac{e_n}{\|e_n\|}: n \in \mathbb{N}^*\right\}$$

is a Hilbertian basis of $L^2(0,1)$.

6) Let X and Y be two normed linear spaces. Let $\mathcal{K}(X, Y)$ be the space of all compact operators from X to Y.

- 1. Show that $\mathcal{K}(X,Y)$ is a linear subspace of $\mathcal{L}(X,Y)$.
- 2. Show that any operator $T \in \mathcal{L}(X, Y)$ with finite range $(i.e. \dim(T(X)) < \infty)$ is compact.
- 3. Assume that Y is complete. Show that $\mathcal{K}(X, Y)$ is closed in $\mathcal{L}(X, Y)$.
- 4. Assume that Y is a Hilbert space. Show that any compact operator $T \in \mathcal{L}(X, Y)$ is the limit of a sequence of operators with finite range.

<u>Hint</u>: We recall that a metric space is compact if and only if it is complete and totally bounded.

7) Hilbert-Schmidt operators. Let (X, \mathfrak{M}, μ) be a finite measure space, and let $(X \times X, \mathfrak{M} \otimes \mathfrak{M}, \mu \otimes \mu)$ be the product measure space. Consider a Hilbert basis $(\phi_n)_{n\geq 1}$ of $L^2(X, \mu)$.

- a) For every $m, n \ge 1$, and every $(x, y) \in X \times X$, define the function $\psi_{mn}(x, y) := \phi_m(x)\phi_n(y)$. Show that $(\psi_{mn})_{m,n\ge 1}$ is a Hilbert basis of $L^2(X \times X, \mu \otimes \mu)$. (*Hint* : use Fubini's Theorem).
- b) Let $K \in L^2(X \times X, \mu \otimes \mu)$, and define the operator $T_K : L^2(X, \mu) \to L^2(X, \mu)$ by

$$T_K f(x) := \int_X K(x, y) f(y) \, d\mu(y) \quad \text{ for all } f \in L^2(X, \mu).$$

Show that $T_K(x)$ is well defined for a.e. $x \in X$, and that T_K is a linear continuous mapping from $L^2(X,\mu)$ into itself.

c) Show that T_K is compact (*Hint*: one can show that it is the limit of a sequence of operators with finite range).