Duality in Lebesgue spaces and bounded Radon measures

1) Let Ω be an open subset of \mathbb{R}^{N}. Show that $f_{n} \rightharpoonup f$ weakly in $L^{p}(\Omega)$ for $1<p<\infty$ (weakly* if $p=\infty$) if and only if
(i) there exists a constant $C>0$ such that $\left\|f_{n}\right\|_{p} \leq C$ for all $n \in \mathbb{N}$;
(ii) $\int_{\Omega} f_{n} \varphi d x \rightarrow \int_{\Omega} f \varphi d x$ for all $\varphi \in \mathcal{C}_{c}^{\infty}(\Omega)$.

Why is it not true in general for $p=1$?
2) Dirac mass. Let $\mathcal{C}_{0}\left(\mathbb{R}^{N}\right)$ be the space of all continuous functions vanishing at infinity endowed with the uniform norm

$$
\|u\|:=\max _{x \in \mathbb{R}^{N}}|u(x)| .
$$

Let $\delta: \mathcal{C}_{0}\left(\mathbb{R}^{N}\right) \rightarrow \mathbb{R}$ be defined by

$$
\delta(\varphi)=\varphi(0)
$$

a) Show that δ is a bounded Radon measure, i.e. an element of the dual of $\mathcal{C}_{0}\left(\mathbb{R}^{N}\right)$.
b) Show that δ cannot be extended to an element of $\left(L^{p}\left(\mathbb{R}^{N}\right)\right)^{\prime}$, for $p \geqslant 1$.

3) Concentration-compactness.

(i) Oscillation. Let $u \in L^{p}(0,1)$ be such that $\int_{0}^{1} u d x=0$. We extended u to \mathbb{R} by 1-periodicity, and we define the sequence

$$
u_{n}(x):=u(n x) \text { for a.e. } x \in \mathbb{R}
$$

Show that $u_{n} \rightharpoonup 0$ weakly in $L^{p}(0,1)$ (weakly* in $L^{\infty}(0,1)$) and that the convergence is not strong.
(ii) Concentration. We first assume that $1<p<\infty$. Let $v \in \mathcal{C}_{c}^{\infty}(\mathbb{R})$ be such that $\int_{-\infty}^{+\infty} v d x=1$, and define the sequence

$$
v_{n}(x):=n^{1 / p} v(n x) \text { for all } x \in \mathbb{R}
$$

Show that $v_{n} \rightharpoonup 0$ weakly in $L^{p}(\mathbb{R})$ and that the convergence is not strong. Show that v_{n} do not converge weakly to 0 in $L^{1}(\mathbb{R})$ and that $v_{n} \rightharpoonup \delta_{0}$ weakly* in $\mathcal{M}(\mathbb{R})$.
(ii) Evanescence. Let v be as before and define the sequence

$$
w_{n}(x):=v(n+x) \text { for all } x \in \mathbb{R}
$$

Show that $w_{n} \rightharpoonup 0$ weakly in $L^{p}(\mathbb{R})$ (for $1<p<\infty$), and weakly* in $L^{\infty}(\mathbb{R})$ (for $p=\infty$), and that the convergence is not strong. Show that w_{n} do not converge weakly to 0 in $L^{1}(\mathbb{R})$ and that $w_{n} \rightharpoonup 0$ weakly* in $\mathcal{M}(\mathbb{R})$.
4) Vitali-Hahn-Saks Theorem. Let (X, \mathfrak{M}, μ) be a finite measure space $(\mu(X)<\infty)$, and $\left(f_{n}\right)_{n \geq 1} \subset$ $L^{1}(X, \mu)$ be a sequence such that the limit

$$
\lim _{n \rightarrow \infty} \int_{E} f_{n} d \mu
$$

exists for every $E \in \mathfrak{M}$. Then for each $\varepsilon>0$, there exists $\delta>0$ such that for every $E \in \mathfrak{M}$ with $\mu(E)<\delta$, then

$$
\sup _{n \geq 1} \int_{E}\left|f_{n}\right| d \mu<\varepsilon
$$

1. Show that $A:=\left\{\chi_{E}: E \in \mathfrak{M}\right\}$ is a closed subset of $L^{1}(X, \mu)$. Deduce that A is a complete metric space.
2. Show that the sets

$$
A_{k}:=\left\{\chi_{E} \in A: \sup _{n, l \geq k}\left|\int_{X}\left(f_{n}-f_{l}\right) \chi_{E} d \mu\right| \leq \frac{\varepsilon}{8}\right\}
$$

are closed in A, and that $A=\bigcup_{k \geq 1} A_{k}$.
3. Applying Baire's Theorem, show that there exist $k_{0} \geq 1, \delta^{\prime}>0$ and $\chi_{E_{0}} \in A_{k_{0}}$ such that if $\chi_{E} \in A$ satisfies

$$
\int_{X}\left|\chi_{E}-\chi_{E_{0}}\right| d \mu<\delta^{\prime}
$$

then $\chi_{E} \in A_{k_{0}}$.
4. Show that there exists $0<\delta \leq \delta^{\prime}$ such that if $E \in \mathfrak{M}$ is such that $\mu(E) \leq \delta$, then

$$
\sup _{1 \leq n \leq k_{0}} \int_{E}\left|f_{n}\right| d \mu<\frac{\varepsilon}{4}
$$

5. Show that if $E \in \mathfrak{M}$ is such that $\mu(E) \leq \delta$, then $\chi_{E \cup E_{0}}$ and $\chi_{E_{0} \backslash E} \in A_{k_{0}}$.
6. Deduce that for all $n \geq k_{0}$,

$$
\left|\int_{E} f_{n} d \mu\right| \leq \frac{\varepsilon}{2}
$$

7. Deduce that for all $n \geq 1$,

$$
\int_{E}\left|f_{n}\right| d \mu \leq \varepsilon
$$

5) Dunford-Pettis Theorem. Let (X, \mathfrak{M}, μ) be a finite measure space $(\mu(X)<\infty)$, and $\left(f_{n}\right)_{n \geq 1} \subset$ $L^{1}(X, \mu)$ be a sequence such that

$$
\sup _{n \geq 1}\left\|f_{n}\right\|_{1}<+\infty
$$

(i) If $f_{n} \rightharpoonup f$ weakly in $L^{1}(X, \mu)$ for some $f \in L^{1}(X, \mu)$, then the sequence $\left(f_{n}\right)$ is equi-integrable.
(ii) If $\left(f_{n}\right)$ is equi-integrable, then there exist a subsequence $\left(f_{n_{j}}\right) \subset\left(f_{n}\right)$ and $f \in L^{1}(X, \mu)$ such that $f_{n_{j}} \rightharpoonup f$ weakly in $L^{1}(X, \mu)$.

1. Using the Vitali-Hahn-Saks Theorem, show that (i) holds.
2. The rest of the exercise consists in showing (ii).
(a) Show that there is no loss of generality to assume that $f_{n} \geq 0$ for all $n \geq 1$.
(b) Let $g_{n}^{k}:=f_{n} \chi_{\left\{f_{n} \leq k\right\}}$ for all $n, k \geq 1$. Show that

$$
\sup _{n \geq 1}\left\|g_{n}^{k}-f_{n}\right\|_{1} \rightarrow 0
$$

as $k \rightarrow \infty$.
(c) Show that there exists a subsequence $\left(g_{n_{j}}^{k}\right)_{j \geq 1} \subset\left(g_{n}^{k}\right)_{n \geq 1}$ and $g^{k} \in L^{1}(X, \mu)$ such that $g_{n_{j}}^{k} \rightharpoonup g^{k}$ weakly in $L^{1}(X, \mu)$ for all $k \geq 1$.
(d) Show that $g^{k} \rightarrow f$ strongly in $L^{1}(X, \mu)$ for some $f \in L^{1}(X, \mu)$.
(e) Conclude that $f_{n_{j}} \rightharpoonup f$ weakly in $L^{1}(X, \mu)$.
6) Dual of $L^{p}(X, \mu)$ for $0<p<1$.

Let (X, \mathfrak{M}, μ) be a measure space.

1. For any $0<p<1$, let

$$
d(f, g)=\int_{X}|f-g|^{p} d \mu
$$

Show that d is a distance on $L^{p}(X, \mu)$ and that $L^{p}(X, \mu)$ is a complete metric space.
2. Assume now that $X=[0,1], \mathfrak{M}=\mathcal{L}([0,1])$ and $\mu=\mathcal{L}^{1}$. Let $V \subset L^{p}([0,1])$ be an open convex set containing $0, r>0$ such that $B_{r}(0) \subset V$, and $f \in L^{p}([0,1])$. Show that there exists $n \in \mathbb{N}$ such that $n^{p-1} d(f, 0)<r$.
3. Show that there exist points $0=x_{0}<x_{1}<\ldots<x_{n}=1$ such that

$$
\int_{x_{i-1}}^{x_{i}}|f(t)|^{p} d t=n^{-1} d(f, 0)
$$

4. Let $g_{i}:=n f \chi_{\left(x_{i-1}, x_{i}\right]}$ for all $i \in\{1, \ldots, n\}$. Show that $g_{i} \in V$ and that

$$
d\left(g_{i}, 0\right)=n^{p-1} d(f, 0)<r
$$

5. Show that $f=\frac{1}{n} \sum_{i=1}^{n} g_{i} \in V$.
6. Deduce that $V=L^{p}([0,1])$.
7. Deduce that $\left(L^{p}([0,1])\right)^{\prime}=\{0\}$.
