UPMC Master 1, MM05E

1) Let Ω be an open subset of \mathbb{R}^N . Show that $f_n \rightharpoonup f$ weakly in $L^p(\Omega)$ for $1 (weakly* if <math>p = \infty$) if and only if

(i) there exists a constant C > 0 such that $||f_n||_p \leq C$ for all $n \in \mathbb{N}$;

(ii) $\int_{\Omega} f_n \varphi \, dx \to \int_{\Omega} f \varphi \, dx$ for all $\varphi \in \mathcal{C}^{\infty}_c(\Omega)$. Why is it not true in general for p = 1?

2) Dirac mass. Let $\mathcal{C}_0(\mathbb{R}^N)$ be the space of all continuous functions vanishing at infinity endowed with the uniform norm

$$\|u\| := \max_{x \in \mathbb{R}^N} |u(x)|$$

Let $\delta : \mathcal{C}_0(\mathbb{R}^N) \to \mathbb{R}$ be defined by

$$\delta(\varphi) = \varphi(0).$$

- a) Show that δ is a bounded Radon measure, *i.e.* an element of the dual of $\mathcal{C}_0(\mathbb{R}^N)$.
- b) Show that δ cannot be extended to an element of $(L^p(\mathbb{R}^N))'$, for $p \ge 1$.

3) Concentration-compactness.

(i) Oscillation. Let $u \in L^p(0,1)$ be such that $\int_0^1 u \, dx = 0$. We extended u to \mathbb{R} by 1-periodicity, and we define the sequence

$$u_n(x) := u(nx)$$
 for a.e. $x \in \mathbb{R}$.

Show that $u_n \rightarrow 0$ weakly in $L^p(0,1)$ (weakly* in $L^{\infty}(0,1)$) and that the convergence is not strong.

(ii) Concentration. We first assume that $1 . Let <math>v \in \mathcal{C}_c^{\infty}(\mathbb{R})$ be such that $\int_{-\infty}^{+\infty} v \, dx = 1$, and define the sequence

$$v_n(x) := n^{1/p} v(nx)$$
 for all $x \in \mathbb{R}$.

Show that $v_n \to 0$ weakly in $L^p(\mathbb{R})$ and that the convergence is not strong. Show that v_n do not converge weakly to 0 in $L^1(\mathbb{R})$ and that $v_n \rightharpoonup \delta_0$ weakly* in $\mathcal{M}(\mathbb{R})$.

(ii) **Evanescence.** Let v be as before and define the sequence

$$w_n(x) := v(n+x)$$
 for all $x \in \mathbb{R}$.

Show that $w_n \to 0$ weakly in $L^p(\mathbb{R})$ (for $1), and weakly* in <math>L^{\infty}(\mathbb{R})$ (for $p = \infty$), and that the convergence is not strong. Show that w_n do not converge weakly to 0 in $L^1(\mathbb{R})$ and that $w_n \to 0$ weakly* in $\mathcal{M}(\mathbb{R})$.

4) Vitali-Hahn-Saks Theorem. Let (X, \mathfrak{M}, μ) be a finite measure space $(\mu(X) < \infty)$, and $(f_n)_{n>1} \subset$ $L^1(X,\mu)$ be a sequence such that the limit

$$\lim_{n \to \infty} \int_E f_n \, d\mu$$

exists for every $E \in \mathfrak{M}$. Then for each $\varepsilon > 0$, there exists $\delta > 0$ such that for every $E \in \mathfrak{M}$ with $\mu(E) < \delta$, then

$$\sup_{n\geq 1}\int_E |f_n|\,d\mu<\varepsilon$$

- 1. Show that $A := \{\chi_E : E \in \mathfrak{M}\}$ is a closed subset of $L^1(X, \mu)$. Deduce that A is a complete metric space.
- 2. Show that the sets

$$A_k := \left\{ \chi_E \in A : \sup_{n,l \ge k} \left| \int_X (f_n - f_l) \chi_E \, d\mu \right| \le \frac{\varepsilon}{8} \right\}$$

are closed in A, and that $A = \bigcup_{k>1} A_k$.

3. Applying Baire's Theorem, show that there exist $k_0 \ge 1$, $\delta' > 0$ and $\chi_{E_0} \in A_{k_0}$ such that if $\chi_E \in A$ satisfies

$$\int_X |\chi_E - \chi_{E_0}| \, d\mu < \delta',$$

then $\chi_E \in A_{k_0}$.

4. Show that there exists $0 < \delta \leq \delta'$ such that if $E \in \mathfrak{M}$ is such that $\mu(E) \leq \delta$, then

$$\sup_{1 \le n \le k_0} \int_E |f_n| \, d\mu < \frac{\varepsilon}{4}.$$

- 5. Show that if $E \in \mathfrak{M}$ is such that $\mu(E) \leq \delta$, then $\chi_{E \cup E_0}$ and $\chi_{E_0 \setminus E} \in A_{k_0}$.
- 6. Deduce that for all $n \ge k_0$,

$$\left|\int_{E} f_n \, d\mu\right| \le \frac{\varepsilon}{2}$$

7. Deduce that for all $n \ge 1$,

$$\int_E |f_n| \, d\mu \le \varepsilon.$$

5) Dunford-Pettis Theorem. Let (X, \mathfrak{M}, μ) be a finite measure space $(\mu(X) < \infty)$, and $(f_n)_{n \ge 1} \subset L^1(X, \mu)$ be a sequence such that

$$\sup_{n\geq 1}\|f_n\|_1<+\infty.$$

- (i) If $f_n \rightharpoonup f$ weakly in $L^1(X, \mu)$ for some $f \in L^1(X, \mu)$, then the sequence (f_n) is equi-integrable.
- (ii) If (f_n) is equi-integrable, then there exist a subsequence $(f_{n_j}) \subset (f_n)$ and $f \in L^1(X,\mu)$ such that $f_{n_j} \rightharpoonup f$ weakly in $L^1(X,\mu)$.
- 1. Using the Vitali-Hahn-Saks Theorem, show that (i) holds.
- 2. The rest of the exercise consists in showing (ii).
 - (a) Show that there is no loss of generality to assume that $f_n \ge 0$ for all $n \ge 1$.
 - (b) Let $g_n^k := f_n \chi_{\{f_n \leq k\}}$ for all $n, k \geq 1$. Show that

$$\sup_{n\geq 1} \|g_n^k - f_n\|_1 \to 0$$

as $k \to \infty$.

(c) Show that there exists a subsequence $(g_{n_j}^k)_{j\geq 1} \subset (g_n^k)_{n\geq 1}$ and $g^k \in L^1(X,\mu)$ such that $g_{n_j}^k \rightharpoonup g^k$ weakly in $L^1(X,\mu)$ for all $k \geq 1$.

- (d) Show that $g^k \to f$ strongly in $L^1(X, \mu)$ for some $f \in L^1(X, \mu)$.
- (e) Conclude that $f_{n_j} \rightharpoonup f$ weakly in $L^1(X, \mu)$.
- **6)** Dual of $L^p(X, \mu)$ for 0 .
 - Let (X, \mathfrak{M}, μ) be a measure space.
 - 1. For any 0 let

$$d(f,g) = \int_X |f-g|^p \, d\mu$$

Show that d is a distance on $L^p(X,\mu)$ and that $L^p(X,\mu)$ is a complete metric space.

- 2. Assume now that X = [0, 1], $\mathfrak{M} = \mathcal{L}([0, 1])$ and $\mu = \mathcal{L}^1$. Let $V \subset L^p([0, 1])$ be an open convex set containing 0, r > 0 such that $B_r(0) \subset V$, and $f \in L^p([0, 1])$. Show that there exists $n \in \mathbb{N}$ such that $n^{p-1}d(f, 0) < r$.
- 3. Show that there exist points $0 = x_0 < x_1 < \ldots < x_n = 1$ such that

$$\int_{x_{i-1}}^{x_i} |f(t)|^p \, dt = n^{-1} d(f, 0).$$

4. Let $g_i := nf\chi_{(x_{i-1},x_i]}$ for all $i \in \{1,\ldots,n\}$. Show that $g_i \in V$ and that

$$d(g_i, 0) = n^{p-1} d(f, 0) < r.$$

- 5. Show that $f = \frac{1}{n} \sum_{i=1}^{n} g_i \in V$.
- 6. Deduce that $V = L^p([0, 1])$.
- 7. Deduce that $(L^p([0,1]))' = \{0\}.$